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Abstract –The problem of DC motor speed controller design for 
electric locomotive equipped by multi-level DC-DC converter is 
discussed where control system consists of two feedback loops. In 
the first one the armature current control for DC motor is provided 
by means of pulse-width modulated control for multi-level DC-DC 
converter. In the second one the DC motor speed control is main-
tained. Proportional-integral (PI) controllers are designed for arma-
ture current and motor speed based on singular perturbation tech-
nique such that multi-time-scale motions are artificially induced in 
the closed-loop system. Numerical simulations are included in order 
to show the efficacy of the proposed design methodology. 
 
Index Terms –DC-DC motor speed control, converters, pulse-width 
modulation, PI controller, singular perturbation method. 

I. INTRODUCTION 

NCREASE OF CAPACITY OF ELECTRIC locomotives con-
ducts to an increase of losses in networks of a supply voltage. 

Modern electro-carts of a direct current are usually calculated for 
operation on networks with the supply voltage 1,5 kV and 3 kV. 
Progress of power semi-conductor switching devices makes pos-
sible to increase the supply voltage up to 12-18 kV on the basis 
of application of converters of the high-voltage direct voltage 
into the direct voltage corresponding to the level of traction elec-
tric motors [1-5]. Therefore an interest to systems of electric lo-
comotive equipped by DC-DC converters has been renewed. 
Transition to contact networks with the raised supply voltage 
requires development of methods of controller design for engines 
of electric locomotives with the voltage converters. 
This paper is a continuation of [4,5] where the multi-level DC-
DC converter of a contact catenary 12kV in voltage 3kV for an 
electric locomotive has been offered. Then the mathematical 
model of this multi-level DC-DC converter as well the propor-
tional-integral (PI) controller with an additional low-pass filter-
ing were derived in [6]. The problem of controller design was 
reduced to the continuous-time controller design based on Filip-
pov's average approach [7-9]. In this paper the problem of DC 
motor speed controller design for electric locomotive equipped 
by multi-level DC-DC converter [4,5] is discussed where control 
system consists of two feedback loops shown on Fig.1. In the 
first one the armature current control for DC motor is provided 
by means of pulse-width modulated control for multi-level DC-
DC converter shown on Fig.2. In the second one the DC motor 
speed control is maintained. Both of controllers for armature 
current and motor speed are designed based on singular perturba-
tion technique such that multi-time-scale motions are artificially 
induced in the closed-loop system [10].  

The paper is organized as follows. First, general structure of the 
discussed DC motor speed control system is highlighted. Second, 
the mathematical model is presented for the multi-level DC-DC 
converter where its load is series connection of two DC motors 
of electric locomotive wheel pair. Third, the armature current 

controller and motor speed controller are designed based on sin-
gular perturbation technique. Finally, simulation results of the 
closed-loop control system are included in order to show the ef-
ficacy of the proposed design methodology. 

 
Fig. 1. Block diagram of control system 

 

 
Fig. 2. The multi-level DC-DC converter circuit 

 

II. CONTROL PROBLEM STATEMENT 

The current controller is being designed so that to maintain the 
desired value of the DC-DC motor armature current ai , that is 

 lim ( ) d
a at

i t i


 , (1) 

where d
ai  is the desired value (reference input) of the armature 

current. The speed controller is being designed so that to 
maintain the desired value of the DC-DC motor speed , 
that is 
 lim ( ) d

t
t 


 , (2) 

where d is the desired value (reference input) of the DC-DC 

motor speed. Moreover, the controlled transients of   and ai  
should have the desired settling time without overshoot.                                

III. AVERAGED MODEL OF MULTI-LEVEL CONVERTER 

The discussed multi-level converter operation consists of a pe-
riodical sequence of the three stages which can be defined by the 
switching functions 1u , 2u , and 3u shown on Fig.3, that are: 

 

I 



 Stage 1: 1 2 31, 0, 0.u u u    

 Stage 2: 1 2 30, 1, 0.u u u    

 Stage 3: 1 2 30, 0, 1.u u u    
In order to avoid the effect of operation condition differences in 

the charge-discharge of capacitors, the switching sequence is 
doing as the following one: Stage 1, Stage 2, Stage 3, Stage 1, 
Stage 3, Stage 2, etc. 

 
Fig. 3. Plots of  the switching functions 1u , 2u , and 3u  

 

A discontinuous control strategy is provided by the pulse-width 
modulator where the input signal of the modulator (duty ratio 
function) is defined as the scalar variable ( )d t  which takes val-
ues in the interval[0,1] . The output signals of the modulator are 

defined as the switching functions 1u , 2u , and 3u given by  
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where sT  is the PWM sampling period, ( )d t  is the value of the 
duty ratio function when t t , st T  , and 0,1,2,   . 

Consider the model of DC motor equipped by multi-level DC-
DC converter with the ideal switches in the owing form [6]: 
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where 1E  is the supply voltage of a power line, 1 12E  kV, 

inR is the active resistance of catenary, Ciu  are capacitor volt-
ages, loadT  is the normalized load torque, J is the normalized 
inertia torque, 1k  and 2k  are the motor form factors. The load 
consists of series connection of two identical DC motors of the 
electric locomotive wheel pair with the total inductance aL , the 
total active resistance aR , and the total reverse electromotive 
force (back EMF) aE  in the armature circuit.  

Assumption 1: The pulse-width modulator is not saturated, that 
is the following inequality 0 1d   holds. 

Assumption 2: The sampling period sT  is assumed to be suffi-
ciently small in compare with time constants associated with the 
dynamics of the converter. 

From Assumptions 1 and 2, by following to the Filippov's ap-
proach [9], the geometric approach to PWM control [7,8], and by 
taking into account the definition of the switching func-
tions 1u , 2u , and 3u , the response of discontinuously controlled 
system given by (3) coincides with Filippov's average model 
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where the variables 1 2 3 4, , , ,a C C C CI U U U U  are the averaged 
values of variables 1 2 3 4, , , ,a C C C Ci u u u u  and 

1 2 3 4Ci C C C CU U U U U     .  
Take 1 2 3 4C C C C C     and, under assumption that the 

conditions 1 2 3 4C C C C CU U U U U    hold, instead of the 
full order averaged system (4), the reduced order averaged sys-
tem can by considered, that is 
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The analysis of the eigenvalue spectrum of (5), in case when 
d const , reveal the stability and two-time scale nature of tran-
sients in the system (5), where aI  and   CU  are the slow vari-

ables, CU  is the fast variable. Hence, the further order reduction 
of the averaged system (5) can be done by assumption that the 
condition / 0CdU dt  holds. Moreover, the sake of simplicity, 

by the neglecting of small variations for CU , let the condition 

1 / 4CU E  holds.  Consider the total reverse electromotive 
force (back EMF) aE  in the armature circuit as given by 

 1aE k . (6) 
Finally, from (5) and (6), on purpose of controller design, the 
following averaged model of DC motor equipped by multi-level 
DC-DC converter will be treated: 
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IV. ARMATURE CURRENT CONTROLLER 

The current regulator is being designed for the discussed multi-
level converter so that to maintain the desired value of the arma-
ture current ai  that is (1). Consider the current continuous-time 
controller given by the following differential equation:  

2 (2 1)) ( (1) [( ) / ]d
a aa a a a a ad d d k i i T i           (8) 

where a  is a small positive parameter of the controller, 
0,a  0ad  , and 0aT  . The control law (8) can be ex-

pressed in terms of the Laplace transform that is the structure of 
the PI controller with an additional low-pass filtering given by 
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The closed-loop system analysis is provided below based on 
the consideration of the reduced average system (7) with control-
ler (8) where the current ai  is replaced by aI , that is 
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 Denote (1)
1 2, ad d d d  . The replacement of (1)

aI in the thir-
d equation of (9) by the right member of the first equation of (9) 
yields the reduced order averaged closed-loop system in the form 
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Since a  is the small parameter, the above equations (10) are the 
singularly perturbed differential equations [11-15]. Hence, fast 
and slow modes are artificially forced in the closed-loop system 
(10) as 0a  . The degree of time-scale separation between 
these modes depends on the parameter a . From (10), the aver-
aged fast-motion subsystem (FMS) 
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results, where aI  and   are treated as the frozen variables dur-
ing the transients in  (11). 

Remark 1: The stability of FMS transients of (11) is provided 
by selection of the gain ak  such that the condition 1 0ak E   
holds given that 0a   and 0ad  . 

Assume that the control law parameters ak , a , and ad  have 
been selected such that the FMS (11) is stable as well as time-
scale decomposition is maintained in the closed-loop system 
(10).  Take, for example,  
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then the FMS (11) characteristic polynomial is given by 
 2 2 1a a as d s   . (12) 
Letting 0a   in (11), we obtain the steady state (more pre-

cisely, quasi-steady state) of the FMS (11), where 1 1
idd d , that 

is the inverse dynamics solution, and 
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Substitution of 1 1
idd d into the first equation of (10) yields the 

averaged slow-motion subsystem (SMS) given by  
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So, the average behavior of the current aI  is prescribed by the 
stable reference equation, that is the first equation in system (13), 
and by that the requirement (1) is maintained, in the average 
sense, that is  

 lim ( ) d
a at

I t i


 . 

Remark 2: The parameter aT  is selected in accordance with the 
desired settling time SMSt  for the armature current aI  such 
that / 3S Sa MtT  . The time-scale decomposition is maintained in 
the system (10) by selection of the parameter a  such that the 
condition /a a aT   holds, where a  is the degree of time-
scale separation between fast and slow modes. The desired 
damping of the FMS transients is provided by selection of the 
parameter ad .  



Finally, by taken into account that the transients of the armature 
current aI in system (13) are much faster than the transients of 

the speed , take d
a aI i , and on purpose of motor speed con-

troller design, the following reduced model of DC motor will be 
treated: 

 2 ,d load
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dt J J
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where d
ai is considered as the new control variable of the motor 

speed feedback loop.  
 

V. DC MOTOR SPEED CONTROLLER 

The DC motor speed controller is being designed so that to 
maintain the desired value of the motor speed , that is (2). Con-
sider the motor speed continuous-time controller given by the 
following differential equation:  
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where   is a small positive parameter of the controller, 
0,   0T  . The control law (15) can be expressed in terms 

of the Laplace transform that is the structure of the conventional 
PI controller given by 
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The closed-loop system analysis is provided below based on 
the consideration of the reduced model (14) with controller (15). 
The replacement of /d dt  in (15) by the right member of (14) 
yields the closed-loop system in the form 
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The above equations (16) are the singularly perturbed differential 
equations where fast and slow modes are artificially forced 
as 0   [11-15]. The degree of time-scale separation between 
these modes depends on the parameter  . From (16), the fast-
motion subsystem (FMS) 
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results, where   is treated as the frozen variable during the tran-
sients in  (17). 

Assume that the control law parameter k has been selected 
such that 2/k J k  then the FMS (17) characteristic polyno-
mial is given by 

 1s  . (18) 
Then the FMS (17) is stable as well as time-scale decomposition 
is maintained in (16) by selection of  .  Letting 0   in 
(17), we obtain the steady state (more precisely, quasi-steady 
state) of the FMS (17), where ( )d d id

a ai i , that is the inverse dy-
namics solution, and 
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Substitution of ( )d d id
a ai i  into the first equation of (16) yields 

the averaged slow-motion subsystem (SMS) given by  

 
dd

dt T

  
 . (19) 

Hence, after damping of fast transients of (17), we get from (16) 
the slow-moion subsystem (19). So, the behavior of the motor 
speed   is prescribed by the stable reference equation (19) and 
by that the requirement (2) is maintained.  

Note, time-scale decomposition between the both control loops 
is maintained by selection of controller parameters such that the 
conditions a aT T      hold. 

VI. SIMULATION OF CLOSED-LOOP SYSTEM 

Let the DC motor and the multi-level converter parameters are 
as the following ones: 150J   kG m 2 , 0.003L H , 

1 2 3 4 0.002C C C C F    , 0.34aR   ,  0.1inR   , 

1 12E kV . The sampling period of the pulse-width modulator 
is selected as 0.001sT  s.  In accordance with the presented 
above design methodology, the following controller parameters 
were selected: 6

14 / 1 10aa Ek L     , 2 5 44/ .k J k  , 
2ad  , 0.0013a   s , 0.01aT  s, 0.1   s , 1T  s, 

The simulation of the discussed DC motor equipped by multi-
level converter based on the model (3) with controllers (8) and 
(15) has been done based on Matlab/Simulink Tools. The results 
of simulation are displayed in Figs.4-7, where the simulation 
results confirm the analytical calculations.  

The deviations of   and ai  on Figs.4-5 in the time instance 
equals 7s are exited by the step change of loadT from 9000 N m 
to 12000 N m. The deviation of   on Fig.6 in the time instance 
equals 10 s is exited by the step change of 1E from 12 kV to 11 
kV (see Fig.7). 

 
Fig. 4 Simulation results: Plot of  (rad/s) 

 

 
Fig. 5 Simulation results: Plots of ai (A)  



 
Fig. 6 Simulation results: Plot of  (rad/s) 

 
Fig. 7 Simulation results: Plot of 1E (V) 

VII. CONCLUSION 

The advantage of the presented singular perturbation technique 
of controller design for the discussed DC motor equipped by 
multi-level DC-DC converter is that the desired transients of the 
motor speed are maintained in the presence of uncertainties of   
the supply voltage 1E  of a power line and load torque loadT . The 
other advantage is that analytical expressions for selection of 
controller parameters are derived, where controller parameters 
depend explicitly on the specifications of the desired behavior of 
motor speed. 
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