
Power Systems 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 



Ryszard Strzelecki • Grzegorz Benysek  
Editors 

Power Electronics  
in Smart Electrical  
Energy Networks 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

123 



 
 

Ryszard Strzelecki, DSc, PhD 
Department of Electrical Engineering 
Gdynia Maritime University 
81-87 Morska street 
81-225 Gdynia 
Poland 
 

Grzegorz Benysek, DSc, PhD 
Institute of Electrical Engineering 
University of Zielona Góra 
50 Podgórna street 
65-246 Zielona Góra 
Poland 
 

ISBN 978-1-84800-317-0 e-ISBN 978-1-84800-318-7 

DOI 10.1007/978-1-84800-318-7 

Power Systems Series ISSN 1612-1287 

British Library Cataloguing in Publication Data 
Power electronics in smart electrical energy networks. -        
   (Power systems)                                               
   1. Power electronics 2. Electric networks                     
   I. Strzelecki, Ryszard II. Benysek, Grzegorz                  
   621.3'17                                                      
ISBN-13: 9781848003170                                        

Library of Congress Control Number: 2008926908 

© 2008 Springer-Verlag London Limited 

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted
under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or
transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case
of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing
Agency.  Enquiries concerning reproduction outside those terms should be sent to the publishers. 

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free for
general use. 

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions that
may be made.   

Cover design: deblik, Berlin, Germany 

Printed on acid-free paper 

9  8  7  6  5  4  3  2  1 
springer.com 



 
 
 
 
 
 
 
 
 
 
 
 
 

 

Dedicated to our loving families 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

Preface 

The book arises from the conviction that it is necessary to re-think the basic 
philosophy governing the electricity distribution systems. In the authors’ opinion 
there is a need to exploit fully the potential advantages of renewable energy 
sources, distributed generation, energy storage and other factors  which should not 
only be connected but also fully integrated into the system to increase the 
efficiency, flexibility, safety, reliability and quality of the electricity and networks. 
Transformation of the current electricity grids into a smart (resilient, interactive 
etc.) network necessitates the development, propagation and demonstration of key 
cost effective technologies enabling (e.g., innovative interconnection solutions, 
storage technologies for renewable energy sources, power electronics, 
communications etc.). On the basis of the above, the major aim of this book is to 
present the features, solutions and applications of the power electronics 
arrangements likely to be useful in future smart electrical energy networks.  

The first part of this book introduces the structure and fundamental problems of 
the current electricity grids together with the concept of smart electrical energy 
networks. 

Next there is a critical overview of power theories, mainly under non-sinusoidal 
conditions in single-phase and three-phase systems, in both time and frequency 
domains. The basic criterion for the choice of the discussed theories is historical 
development of knowledge in this field and the usefulness of power theory in 
solving practical problems: reactive power compensation, balancing the supply 
network load and mitigation of voltage and current distortion. Particular attention 
is given to the theories defining the current components in the time domain as the 
basis for present-day interconnection, active compensation and filtering systems. 
The content of this part is essential for understanding both the principle of 
operation and the control algorithms of the majority of the currently used power 
quality improvement and interconnecting systems. 

Additionally, in this part an overview of control methods in power systems with 
the focus on damping of electromechanical oscillations and mitigation of power 
quality problems is presented. The focus is on power systems with increased levels 
of uncertainty resulting from deregulation of theelectrical power industry and the 
presence of non-conventional types of generation (renewable energy sources and 
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distributed generation). The issue of finding the best techno-economical solution 
for the problems is also briefly mentioned. The focus in thepower quality section is 
on probabilistic modelling of disturbances and  their consequences.  

In the next part of the book the main emphasis is on low, medium, and high 
power conversion issues and the power electronic converters that process power 
for a variety of applications in smart grids. Following recent trends in power 
electronics technology, greater stress is placed on modern power electronic 
converters, such as resonant and multi-level inverters or matrix converters, and 
these are thoroughly covered. Special features include in-depth discussions of all 
power conversion types: AC/DC, AC/AC, DC/DC, and DC/AC.  

After that, both the relationships and the differences between electrical power 
quality and electromagnetic compatibility are explained and definitions of these 
notions are provided. The principles of standardization in both fields are also be 
discussed. The power quality survey is a useful procedure for identifying and 
resolving power-related equipment or facility problems. It is an organized, 
systematic approach to problem solving. If all the steps for a power quality survey 
are completed, information is obtained that either identifies a solution to a power-
related problem or reveals that the problem is not related to the electrical power 
system. 

After that, EMC related problems in smart electrical power systems as well as 
some EMC regulations are overviewed. Special attention is paid to the origin and 
the spreading of the conducted EMI over power systems containing power 
converters. This is true because the diversity of power converters makes difficult 
the general analysis of the EMI spectra. However, there are some common features 
which can be derived from typical applications and layouts of the systems with 
power converters. Specific key aspects of electromagnetic compatibility in power 
electronics are presented, such as a typical role of power converters and their place 
in the smart power system, a typical frequency range of generated EMI noises, 
specific features of the common mode source in three-phase power converter 
systems and traveling wave phenomena. This part gives a detailed analysis based 
on the authors’ own experimental results in the systems with converters that are 
common in smart power systems.  

The next part of the book introduces high frequency AC power distribution 
systems as relatively new and promising developments in the field of electric 
power. Compared with low frequency or DC link power systems, the high 
frequency system offers many key advantages including system compactness due 
to small filtering and transforming components, better power quality, freedom from 
acoustic noise and mechanical resonance. In addition, it is particularly conducive 
to the distributed and amalgamated structures of future power systems, which are 
likely to converge with the information superhighways. Also described are the 
motivations and performances of the earliest high frequency systems used in 
telecommunications and NASA’s Space Station, and to those more recently 
introduced in the fields of electric vehicles, micro-grids and renewable energies. 
Additionally there is discussion of the many potential benefits these systems can 
offer in shaping the future electric power infrastructure, and also the challenges 
that need to be overcome.  
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Next addresed are the technical considerations for interconnecting distributed 
generation equipment with conventional electric utility systems. This discussion 
arises from the fact that most electric distribution systems are designed, protected, 
and operated on the premise of being a single source of electric potential on each 
distribution feeder at any given time. Distributed generation violates this 
fundamental assumption, and therefore special requirements for connecting to the 
utility distribution grid are critical to ensure safe and reliable operation. 
Manufacturers, vendors, and end-users often see distributeed generation 
interconnection requirements as a huge market barrier, whereas utility engineers 
consider them to be absolutely necessary. Thus tools to help assess practical 
interconnection for specific projects and equipment are provided; we also create a 
clearinghouse for the many ongoing domestic and international efforts to develop 
uniform standards for interconnection.  

After that, the next part of this book is targeted at known electric energy storage 
systems as well as development of methodologies and tools for assessing the 
economic value and the strategic aspects of storage systems integrated into 
electricity grids. Such tools should be ble to evaluate and analyse energy storage 
solutions in a variety of applications, such as integration of distributed/renewable 
energy resources, reduction of peak loading, improvement of transmission grid 
stability and reliability. Additionally, electricity storage is presented as a strategic 
enabling technology which not only reduces costs and increases the efficient use of 
grid assets, but is key for accelerating the integration of distributed generation and 
renewable sources of energy.  

The next part of our book deals with grid integration of wind energy systems. 
The focus of this topic is on the electrical side of wind conversion systems. After a 
short description of the basics, such as energy conversion, power limitation and 
speed control ranges, the existing generator types in wind energy conversion 
system are described. Because of the practical problems arising with wind turbine 
installations, their grid integration is an interesting field, whereas the 
characteristics of wind energy conversion itself, the common types of grid coupling 
and resulting wind park designs are discussed. On the point of common coupling, 
wind energy generation may produce distortions of the grid, e.g., flicker effects and 
harmonics. The causes of their generation, superposition and mitigation are 
described in detail. Existing standards and the requirements of the transmission 
system operators are also discussed from the point of view of the conversion 
system.  

Because of limited onshore areas for wind energy systems in Europe, powerful 
wind parks can be installed only at selected places. A solution of this problem is 
offshore technology which, due to better wind conditions, brings higher energy 
yields, but also a lot of additional requirements for the installation and operation of 
the wind turbines. This includes a special generator design necessitated by the salty 
environment and different possibilities for the wind park structure, which has 
internal fixed or free adjustable parameters such as frequency, voltage range and 
transmission type. The external energy transmission to the onshore substation can 
be realized with different system configurations. Their advantages and 
disadvantages are explained.  
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The next part of the book describes grid integration of photovoltaic systems and 
fuel cell systems. First the cell types and their efficiency and place requirement are 
explained. The focus lies on grid-connected photovoltaics, mainly their plant 
design and grid interfacing of systems depending on isolation conditions, and the 
possible use of different components is a topic of current interest. Power quality 
becomes an important issue if higher unit powers are installed. Special problems 
arising from common connection at the low voltage level are discussed. Derived 
from the existing devices and their assigned problems in the grid, possibilities for 
future development are presented.  

Fuel cells, photovoltaic systems, generate DC voltage and need a power 
electronic conversion unit for their grid connection. The different types of fuel 
cells and their typical applications are described. But the focus lies on plant design, 
grid interfacing and future development. At the moment only a few fuel cell 
applications exist. The big potential of this technology may lead to large 
installation numbers within the next five years. Existing standards of this 
technology are listed to assist the understanding of this technology. 
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3 

Overview of Power Electronics Converters and 
Controls   

Ryszard Strzelecki1 and Genady S. Zinoviev2  

1Department of Ship Automation, 
Gdynia Maritime University, 
81-87 Morska Street, Gdynia, Poland. 
Email: Rstrzele@am.gdynia.pl 

2Department of Industrial Electronics, 
Novosibirsk State Technical University, 
20 Karla Marksa Prospect, Novosibirsk, Russia. 
Email: Genstep@mail.ru 

3.1 Power Electronics Background 

Power Electronics (PE) is the technology associated with efficient conversion, 
control and conditioning of electric power by static means from its available input- 
into the desired electrical output form. Electric energy conversions carried out by  
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Figure 3.1. Efficiency of line and pulse voltage regulators 
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PE circuits are diverse and apply to power varying from tens of watts up to 
hundreds of megawatts. This by particular wide range of power is reflected, among 
others, in the varying overall dimensions of PE arrangements. Some of the 
arrangements are hand size, while others require spaces especially designed for 
their utilization. 

Our attention should be drawn to the fact that the definition of PE emphasizes 
high conversion efficiency. That is connected to the fact that the principle of 
operation of any PE circuit consists in periodical linking of a power source to the 
electrical energy consumer – load. In such a case, assuming ideal switches 
(immediate switching, null resistance in the “on” state and infinitesimally high 
resistance in the “off” state) as well as the lack of other dissipation elements, power 
losses equal zero. High efficiency of the PE circuits, in comparison to alternative 
solutions is demonstrated by the example in Figure 3.1.  

Let us assume that we must select only one of the two regulators with input 
voltage Vin=100 V and output voltage Vout=50 V, which are presented in Figure 
3.1. Their load is their resistance R=5 Ω. In the case of selection of the line 
regulator, power losses occurring on variable resistor equal Ploss=500 W. The 
losses increase along with increasing load (decreasing R) as well as increase of the 
voltage Vin. Efficiency of the line regulator   

( ) inlossinlossininout PPPPPPP −=−== 1η  (3.1)

where Pout and Pin – output and input power, changes same as quotient Vout/Vin. The 
above provides arguments to the advantage of the pulse regulator – PE converter. 
In this regulator, the switch takes alternative positions 1 and 2 in the time interval 
DTS and (1-D)TS pulse repetition period TS, where D – the so-called duty cycle. 
None of the positions, in the case of ideal switches, causes power losses, Ploss=0. 
Thus, efficiency of the pulse regulators, as well as other PE circuits, approaches 
100%.  

In practice the efficiency PE circuits is somewhat smaller (depending on the 
type circuit, from 85% up to almost 100%). It relates to the fact that, first, real 
elements L and C are dissipative. Second, and most of all, none of the actual power  

 
Figure 3.2. Power losses in ideal and real switches 
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switches switch over immediately, and its resistance in the “on” state is positive. 
That causes extra power losses. Figure 3.2 provides illustrative but simplified 
demonstration of the process in which the power losses arise.  

3.1.1 Historical Perspective  

Historical background of PE backs to the end of the nineteenth century, when in 
1896 Karol Pollak, honorary doctor of the Warsaw University of Technology, was 
issued a German patent (DRP 96564) for an electric aluminum rectifier. 
Description of the patent also included a scheme of one-phase, full-wave rectifier, 
known today as Graetz bridge. The description was published in the “Elektronische 
Zeitung” no 25 from 1897, with notation from the editor that at that time professor 
L. Graetz was working on rectifiers of similar principle of operation. However, the 
solution of Prof. Graetz was published a year and a half after the patent for Dr. K. 
Pollak had been issued. Other, successive inventions that are of importance to 
power electronics and therefore we should be aware of are:  

1902 –  Mercury-arc rectifier (P. Cooper Hewitt); 
1903 – Phase angle control (PH. Thomas); 
1904 –  Vacuum diode (JA. Fleming); 
1906 –  Triode (L. De Forest); 
1908 – Iron vessel rectifier (B. Schäfer); 
1912 – Megamp (E. Alexanderson); 
1912 – Power rectifier. Sub-synchron cascade one-phase/66 kW, three-phase 

/300 kW (B. Schäfer); 
1922 –  Cycloconverter  (M. Meyer/LA. Hazeltine); 
1923 – Pooled cathode thyratron (I. Langmuir); 
1924 – Chopper principle (A. Burnstein); 
1925 – Parallel inverter commutation (DC. Prince); 
1925 – Field-effect transistor theoretical development (JE. Lilienfeld);  
1926 – Hot cathode thyratron (AW. Hull); 
1928 – Practical grid-controlled mercury-arc rectifier (I. Langmuir,  

DC. Prince); 
1929 – Thyratron controlled rectifier (A.W Hull); 
1931 – Ignitron (J. Slepian); 
1931 – Cycloconverter for railways (M. Schenkel, I. von Issendorf); 
1932 – Mercury-arc rectifier for wattles power compensation (M. Schenkel 

1932); 
1932 – First HVDC transmision system  (VM. Stör); 
1934 – Thyratron motor built and tested (E. Alexanderson); 
1935 – HVDC transmission system 287 kV between Mechanicville and 

Shenectady, NY, USA;  
1942 – Frequency changers 20 MW, 25/60 Hz; 
1947 – Point contact transistor (J. Bardeen, WH. Brattain, WB. Shockley); 
1951 – Junction transistor (WB. Shockley); 
1953 – Developed of the germanium power diode 100 A. 
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The year 1957, which is associated with the development of semiconductor 
technology, was also adopted as the beginning of modern PE. At that time, Bell 
Laboratory developed the first p-n-p-n switches – the thyristor or Silicon 
Controlled Rectifier (SCR). However, the idea of the SCR had been described for 
the first time by WB. Shockley in 1950. It was  referred to as a bipolar transistor 
with a p-n hook-collector. The operation mechanism of the thyristor was further 
analyzed in 1952 by JJ. Ebers. In 1956 JL. Moll investigated the switching 
mechanism of the typical thyristor. Development continued and more was learned 
about the device such that the first SCR became available in the early 1960s and 
started gaining a significant level of popularity for power switching. To that day 
many more innovative and much improved power semiconductor switches were 
developed [1]. Because of the stimulation of new technical solutions and 
applications the following arose:   

• Triode for Alternating Current (TRIAC) thyristor – developed 1964;  
• Bipolar Junction Transistor (BJT) 500 V, 20 A – developed 1970; 
• Power Metal-oxide Semiconductor Field-effect Transistor (MOSFET) 100 

V, 25 A – developed 1978; 
• High power GTO thyristor 2500 V, 1000 A – developed 1981;  
• Insulated-gate Bipolar Transistor (IGBT) – developed 1983;  
• Intelligent Power Module (IPM)  – developed 1990; 
• Integrated Gate Commutated Thyristor (IGCT) /emitter turn-off (ETO) 

thyristor – developed 1997; 
• Reverse blocking IGBT (RBIGBT) – developed 2000; 
• Matrix converter power module (ECONOMAC) – developed 2001. 

However, the present stage of PE development not only results from progress in 
research on power semiconductors switches [2]. These switches are mostly, and at 
the same time only, the muscle of PE systems. Also significant are achievements in 
other related research areas, most of all micro-electronics, control theory and 
informatics [3]. Without development of these areas we would not be able to equip 
modern PE arrangements with “brain and nerves”. All of these areas are 
interdependent, which is seen in particular on the example of a microprocessor [4]. 
The application of microprocessors allowed production of practical implementation 
complex control algorithms, while at the same time stimulating their development. 
The microprocessor also had significant impact on progress in construction, actual 
monitoring, diagnostics and remote control of PE systems. Altogether it influenced 
development of several new technological disciplines [5].  

From day to day, changes also occurred in electrical power engineering. The 
possible place of the PE in the flow of electrical energy from producer to consumer 
is illustrated in Figure 3.3. Nowadays compensators have become more and more 
popular on AC transmission and distribution lines as well as feeders, power quality 
conditioners and power flow controllers [6–11]. It is also unacceptable rationally to 
apply many renewable energy sources as well as to develop local/distribution 
generation without PE arrangements [12–15]. The same relates to DC distribution 
systems and energy storage systems. 
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Figure 3.3. Power electronics place in the electrical power engineering 

As we see, PE as an area of electrical engineering studies continues to develop 
intensively. Often, such development is described as a “quiet revolution”.  Utilized 
in all areas of application of electrical energy, modern PE is a research field of 
interdisciplinary character (Figure 3.4).  It is referred to as industrial electronics, 
and combines multiple diverse technological disciplines [16, 17].  

 
Figure 3.4. Interdisciplinary nature of power electronics 

3.1.2 Generic Power Electronics Arrangements 

Conventional PE system usually consists of functional modules, delineated as in 
Figure 3.5. The PE circuit is the central module, and is constructed with application 
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of semiconductor switches. The second module – internal controller – is 
responsible for operating the switches according to an assumed operation algorithm 
and on the basis of physical quantities (most by electric currents and voltages), 
measured in the PE circuit as well as the output and input PE circuits. Supervisory 
control of the consumption of electrical energy (e.g., heating), usually assured by 
external controllers, is nowadays realized together with the internal controllers on 
the same control board. Some of the applications do not even require additional 
external controllers.  

 
Figure 3.5. Block diagram of a power electronics system  

Today PE arrangements (Figure 3.6) differ from solutions developed 10–15 
years ago by means of realization of particular functions. For example, changes in 
control layers resulted from development of digital technologies, in particular 
Digital Signal Processors (DSP), Complex Programmable Logic Devices (CPLD)  
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and Application Specific Integrated Circuit (ASIC). Here software application is 
dominating. The majority of the functions (e.g., number of safety devices) that 
used to be realized by discrete components has been moved to the software level. 
However, discrete components remain at the power layer, which still requires 
hardware application. Here, we observe integration or packaging of components, 
for example, in the form of ready modules [18–21]. Examples of such ready blocks 
are Power Electronics Building Blocks (PEBB), being constructional closed power 
layers, as well as block EconoMAC [22–24]. 

In terms of their functionality, power electronics circuits can be divided into 
two main groups: contactless switches and converters (Figure 3.7). To the first 
group belong all modern protection and reconfiguration devices, such as static 
current limiters, static current breakers, and static transfer switches. Application of 
contactless switches, when compared to contactors, can be characterized by many 
advantages and especially by very short operating time, high permitted frequency 
of switch-overs, long lifetime and lack of electric arc while switching them off. 
This group is less numerous and is not considered further below.   

The second, more numerous group, PE circuits, applies to conversion of the 
form alternating current into direct current and inversely as well as electrical 
energy parameters (value of voltage/electric current, frequency, number of phases, 
reactive power etc.). The group can be further divided into basic types of PE 
converters, which is illustrated in Figure 3.7. AC/AC converters can be realized as 
single-stage (AC regulators, direct frequency converters) or two-stage through DC 
link. Similarly, DC/DC converters can be realized. However, rectifiers and 
inverters are characterized by only a single-stage energy conversion. 

 

 
Figure 3.7. Basic types of the power electronics circuits and converters   
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3.1.3 Switching and Continuous Models of Converters 

PE Converters (PEC), independently of their function, construction details and 
application, can also be divided into two general classes:  

• Direct converters – in which main reactive elements are connected only to 
input or output terminals of the converter and can be considered as part of 
the source or the load. Rectifiers and voltage inverters with LC filters are an 
example of such direct converters; 

• Indirect converters – including main reactive elements inside their structure. 
Because they usually have very few elements, indirect converters are mostly 
analyzed as connections of direct converters with reactive elements among 
them. 

The division, in most cases is consistent with either single-stage or two-stage 
realization of the PEC.  

Figure 3.8 presents the general model of direct PEC in the form of a switch 
matrix with “N” inputs and “m” outputs as well as examples of realization of the 
switches, determining specific characteristics of  PEC.  Although  inputs  as well as  
outputs  are  changeable, they must  remain  of different character, i.e., in case of 

 

 
Figure 3.8. The general model of the direct PEC and examples of switch realization 

voltage input (voltage source or capacitor) the output must be current (current 
source or reactor), and vice versa. The presented model is described by the 
following equations      
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where ⎪M⎪– connection matrix; ⎪M⎪T– transpose of a matrix ⎪M⎪; Sij – state of the 
switch Sij, where if the switch is “on” then Sij=1,  and if the  switch is “off” then 
Sij=0,  i=A,B,…, N  and j=a,b,…m.   

Switch states Sij can only take values 0 or 1, depending on time. In such a case 
the natural method to shape output voltage [ua0, ub0, uc0,…, um0] and input currents 
[iA, iB, iC,…, iN] in direct converters is pulse modulation. The applied modulation 
algorithm includes practical limitations [25, 26]. In particular, states of all 
switches, at any given moment, cannot result in short-circuit or overvoltage. For 
example, in the presented direct converters model (Figure 3.7) with input voltage 
and output current, the states Sij of all switches must meet the following 
requirements 
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The first condition (Equation 3.3) should be understood as the condition where 
one switch can be connected to one output only – otherwise, input short-circuit 
occurs. Meeting the second condition (Equation 3.3) ensures the direction of the 
output current flow – the number of additional switches must always be equal to the 
number of outputs. On this basis, the direct converters analysis is made together with 
synthesis of their algorithms. The analysis of general characteristics of direct 
converters can also be carried out in a simplified way. It is assumed that the relative 
time to connect a switch Sij is equal to the instantaneous value of the modulating 
continuous function dji(t), such thet 0≤ dji(t)≤1 and satisfying Equation 3.3, i.e., 
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In this case, instead of the switch matrix (Figure 3.7) we obtain a continuous 
model of direct converters, where each switch Sij is exchanged by an ideal 
transformer with a transformation ratio equaling to the modulating function dji(t). 
An example of such a model for 3×3 direct converters with fully bi-directional 
turn-off switches is presented in Figure 3.9. The same figure shows the 
fundamental method to determine the state of the matrix switches on the basis of 
modulating functions. The method is discussed with the example of the simplest 
Pulse-width Modulation (PWM) and in relation to the output “a” of a direct 
converter.  

Additionally, Figure 3.10 presents the basic scheme of a three-phase voltage 
source inverter supplied by the voltage UDC and the corresponding continuous 
model. If taking into account this model, the general characteristics of three-phase 
VSI can be determined from the equations 

 

 
Figure 3.9. The continuous model of the 3×3 direct converters 

 
a     b 

Figure 3.10. a Basic scheme of the three-phase VSI. b Its continuous model 
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where uA0=–uB0=UDC/2. Only sinusoidal modulating functions are further 
considered 
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where ω=2πf; f – output fundamental frequency; A – modulation factor (0≤A≤1).  
From Equations 3.5–3.8 it results that, for such modulating functions, the 

amplitude of the sinusoidal output voltage cannot exceed UDC/2. It should be 
emphasized that the value is not any boundary value. In the case of vector 
modulation the amplitude of the sinusoidal voltage can be increased by about 15%. 
However, if output-voltage overmodulation is allowable (it is even advisable), then 
taking into account the boundary cases, the amplitude of a component of 
fundamental frequency may even reach the value 2UDC/π [26, 27]. 

On the basis of Equations 3.6–3.8 it is easy to show that the input currents of a 
three-phase VSI with sinusoidal output voltage are 

( ) 021 iii DCA ⋅+= ,  ( ) 021 iii DCB ⋅+−= ,  cba iiii ++=0                   (3.9)

where 

( ) ( ) ( ) ( )[ ]34sin32sinsin2 πωπωω −⋅+−⋅+⋅⋅= tititiAi cbaDC    

The above relations indicate the unique characteristic of a three-phase VSI, 
which is its ability to generate reactive currents, theoretically without application 
of any input energy storage such as capacitors CDC. This characteristic, resulting 
from the lack of reactive power in DC circuits, is used, for example, in D-
STATCOM systems [9, 10].  
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Continuous (average) models, are very supportive when one wants to evaluate 
usability of PEC in specific application. By avoiding impact of switching process, 
problems with stiff differential equations are avoided. At the same time, in the case 
of switching frequency exceeding 5 kHz, simulation error usually does not exceed 
5%. Therefore we can successfully focus our attention on functional characteristics 
of tested application. It is worth noting that application of average models of the 
PEC usually includes controlled voltage sources and electric current sources, 
instead of transformers of adjustable ratio of transformation. This results, mainly, 
from the approach used in the circuits’ theory. One example is model three-phase 
VSI presented in Figure 3.11, corresponding with the model in Figure 3.10b.   

 

 
Figure 3.11. Continuous model of the three-phase VSI with of controllable sources 

3.2 High Technology of Converters 

The conventional circuit elements applied to PE arrangements can be assigned to 
one of the classes resistive elements, capacitive elements, magnetic devices, 
semiconductor devices operated in the linear mode, and semiconductor devices 
operated in the switched mode (Figure 3.12). At the same time, different classes 
vary in priorities of application. In the case of controllers one usually avoids 
applying magnetic devices because of relatively large overall dimensions and 
integration difficulties. Whereas in PEC, with respect to power losses, 
semiconductor devices operated in the linear mode are not applied. Moreover, 
application of resistors should also be limited and replaced with other possibilities. 
Nowadays, resistors remain in use in cases of dissipative snubbers [28–30] as well 
as in starting systems PEC, e.g., for initial charging of capacitors in DC circuits. As  

 
Figure 3.12. Different conventional circuit elements of the PE arrangements  
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supplementation of the above discussion, Figure 3.13 presents usual quantities, 
expressed in percentage, of the components in weight and volume of the PE 
arrangements with medium power. As we can see the critical elements are 
capacitors, semiconductor switches and magnetic devices, and secondary cooling 
systems and bus work.  

3.2.1 State-of-the-Art of Power Semiconductors Switches  

Recent technology advances in PE have been made by improvements in 
controllable power semiconductor switches. Figure 3.14 presents probably the 
most important power semiconductors switches on the market today and their 
power range [31].  

 

 
Figure 3.13. Typical components in the construction of the PE arrangements 

 

 
Figure 3.14. Power range of commercially available power semiconductors 
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MOSFETs and IGBTs have replaced BJT almost completely. A remarkable 
development in MOSFETs took place during the last few years. Today, available 
MOSFETs achieve maximum switch power up to about 100 kVA. 

Conventional GTOs are available with a maximum device voltage of  
6 kV in industrial converters. High state current density, high blocking voltages, as 
well as the possibility to integrate an inverse diode are considered significant 
advantages of these devices. However, the requirement of bulky and expensive 
snubber circuits as well as the complex gate drives leads to replacement of GTOs 
by IGCTs. Just like GTOs, IGCTs are offered only as press-pack devices. A 
symmetrical IGCT, for example, is offered by Mitsubishi with maximum device 
voltage of 6.5 kV. It is technically possible today to increase the blocking voltage 
of IGCTs as well as the inverse diodes to 10 kV. Due to the thyristor latching 
structure, the GTO offers lower conduction losses than the IGBT of the same 
voltage class. In order to improve switching performance of classical GTOs, 
researchers developed Gate-commutated Thyristors (GCTs) with a very short turn-
off delay (about 1.5 μs) [32]. Although new asymmetric GCT devices 
characterized by up to 10 kV with peak controllable currents and 1 kA have been 
developed, only devices with 6 kV and 6 kA are commercially available. 

Also commercially distributed nowadays are IGBTs from 1.2 kV up to 6.5 kV 
with DC current ratings up to 3 kA [33]. They are optimized to meet the specific 
requirements of high-power motor drives for industrial applications. Due to the 
complex and expensive structure of a pres-pack, IGBT are mainly applied to 
module packages. In IGBT modules, multiple IGBT chips are connected in parallel 
and bonded to ceramic substrates to provide isolation. Both IGCTs and IGBTs 
have the potential to lower overall costs of the systems, to increase the number of 
economically valuable applications as well as to improve the performance of high-
power converters, (when compared to GTOs) due to a snubber-less operation at 
higher switching frequencies. 

In the case of insufficient voltage-current parameters of available 
semiconductor devices in a given application, it is possible to use their parallel and 
series connections [30, 34, 35]. In a similar manner it is also possible to connect 
ready converter modules, e.g., PEBB. The possibilities of different connections 
depend upon achieved uniformity of division of currents and voltages, with the 
assistance of proper control mechanism. Therefore, parallel connection is usually 
applied only to MOSFETs or converter modules.  

On the other hand, GTOs, GCTs/IGTCs and IGBTs are devices which connect 
in series relatively well. In such arrangements the most difficult task is to 
compensate voltages in dynamic states – during switching on and especially during 
switching off. For example, relatively small differences between switching-off 
time of the two transistors IGBT equal Δtoff=40 ns can cause differences in 
dividing voltage of more than 50%. In such a case connecting in series more than h 
devices is purposeless. The same problem can be attenuated in a simper way, 
mainly by introducing additional Gate Balance Transformers (GTC) [36] into the 
gate circuits. The solution, which is presented in Figure 3.15, can also be applied to 
series connections of three or more transistors IGBT. The effectiveness of the 
proposed solution is illustrated by current and voltage waveforms during switching 
off (Figure 3.15). 
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Figure 3.15. IGBTs series connection with gate balance transformer 

IGBTs, GTOs, GCTs and IGCTs, as well as Emitter Turn-off (ETO) thyristors, 
are being improved continuously [37, 38]. Research is mainly focused on increase 
of permissible voltages, currents and switching frequency, and decrease in 
conduction and switching losses. Hopes are placed in ETO thyristors, which are 
distinguished by two gate circuits (Figure 3.16). Because of this characteristic, the 
turn-off time of the ETO thyristor is shorter than GTOs’ or IGCTs’.  

 

 
Figure 3.16. Gate drivers of conventional GTOs, GCTs/IGCTs, and ETOs 

Research also concentrates on semiconductor devices that would be different to 
siliceous [39], and which would be characterized by higher voltage breakdowns 
(Figure 3.17) as well as higher permissible work temperatures. Sooner or later, 
commercial power-electronic devices based on silicon carbide (SiC), of relatively 
high power and high mean base voltage [40] should be available on the market. 
However, today the most important and fundamental semiconductor remains 
silicon.  

3.2.2 Soft-switching vs Hard-switching Techniques 

At the beginning of modern PE, that is about 10–15 years after the solid state 
thyristor had been invented, the elementary arrangements were phase-controlled 
rectifiers, inverters, and cycloconverters that operate on line or load commutation  
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Figure 3.17. Relative breakdown voltage of a p-n junction  

principle use soft-switching [41–43]. When an incoming thyristor is turned on, the 
current is gradually transferred from the outgoing to the incoming device, and then 
the outgoing device turns off by a segment of reverse voltage. Basically, this is soft 
switching at zero current for both the incoming and outgoing devices. In fact, the 
classical force-commutated thyristor inverters could also be defined as soft-
switched with the help of auxiliary devices and circuit components [44–46]. Their 
structures, however, were quite developed, and this fact had negative impact on the 
overall efficiency of the PE circuits. Force-commutated thyristor converters 
gradually became obsolete due to the emergence of turn-off power semiconductor 
devices (MOSFET, IGBT, GTO, IGCT etc.).  

Many modern PEC are used with turn-off power semiconductor devices that 
apply hard-switching techniques. In this case, during turn-on simultaneous current 
growth and voltage extinction occur in the switches, whereas in the case of turn-off 
the exact opposite occurs – simultaneous current extinction and voltage growth. In 
both situations, in real power switches, significant switching losses occur (Figure 
3.2). For that reason, as well as because of other device stresses and EMI problems 
[47], the typical PEC switching frequency with application of hard-switching 
technique is limited to a few tens of kilohertz (depending on the type of power and 
application PEC).   

In order to improve operating conditions of the power devices, in particular in 
switching processes, the circuits forming the switching trajectory are applied 
(Figure 3.18). The earliest applied device was dissipative passive snubbers, while 
later active snubbers with energy recovery were introduced [5, 29, 30].  In 
addition, supportive LC circuits that realize so-called soft-switching were 
introduced [48]. This concept consists in utilization of resonant tanks in the 
converters in order to create oscillatory voltage and/or current waveforms. In such 
a case, Zero Voltage Switching (ZVS) or Zero Current Switching (ZCS) conditions 
can be created for the power switches. 
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Figure 3.18. Typical switching trajectories of power semiconductor devices  

Figure 3.19 shows the typical voltage and current waves at hard turn-on and 
turn-off of a device in a simple buck converter with and without dissipative 
snubbers. The turn-on snubber L1-R1-D1 allows decreased maximum value of the 
transistor current iT, decreased stress diT/dt as well as decreased current component 
iT caused by reverse current of the diode D0, limiting turn-on switching losses and 
transferring them to resistor R2. However turn-off snubber C2-R2-D2 allows one to 

 

 
Figure 3.19. Switching waveforms of the converter with and without snubbers  

transfer turn-off switching losses from the transistor to the resistor R2. Therefore it 
decreases the maximum voltage in the transistor uT. In such a manner the snubbers 
produce a more secure switching trajectory of a transistors (Figure 3.18). 

Sometimes, in the modern PEC, in particular high power PECs, the number of 
snubbers is minimized or they are not used at all. This results from the fact that 
better and better power switches are developed as well as from the pursuit of cost 
cutting. Obviously semiconductor devices are then more head load and should be 
over-dimension. Often, however, supportive circuits must be used in order to 
produce a switching trajectory. In such cases more and more often solutions that 
allow for soft-switching are utilized [49–53].  

Throughout the 1990s, new generations of soft-switched PEC that combine the 
advantages of conventional hard-switching PWM converters and resonant 
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converters were developed. Unlike typical resonant converters, new soft-switched 
converters usually utilize resonance in a controlled manner. Resonance is allowed 
to occur just before and during the turn-on and turn-off processes so as to create 
ZVS and ZCS conditions. Other than that, they behave just like conventional PWM 
PEC. With simple modifications, many customized control integrated circuits 
designed for conventional PEC can be employed for soft-switched converters. 
Because the switching loss and stress have been reduced, soft-switched PEC can be 
operated at very high frequencies (reaching even a few megahertz) and allow one 
to obtain very high packing density (over 10 W/cm3). Soft-switching techniques 
also provide an effective solution to suppress EMI [54, 55] and have been applied 
to different PEC converters [28–30].  

  

 

        

 

 
a     b 

Figure 3.20. Types of resonant switches: a zero-current; b zero-voltage 

The fundamental component used in a soft-switching technique is a resonant 
switch. It is a sub-circuit comprising a semiconductor switch S and resonant 
elements Lr and Cr. Uni-directional as well as bi-directional switches are also used 
as switches S. In addition, a type of applied switch S determines the operation 
mode of the resonant switch [28, 56]. The basic two types of resonant switches, 
including Zero-current (ZC) and Zero-voltage (ZV) resonant switches, are shown 
in Figure 3.20. 

In a ZC resonant switch (Figure 3.20a), an inductor Lr is connected in series 
with a power switch S in order to create ZCS conditions. The objective of this type 
of switch is to shape the switch current waveform during conduction time in order 
to create a zero-current condition for the switch to turn off. If a uni-directional 
switch S is applied, the switch current is allowed to resonate in the positive half 
cycle only, that is,  to operate in half-wave mode. If a diode is connected in anti-
parallel, the switch current can flow in both directions. In this case, the resonant 
switch can operate in full-wave mode. At turn-on, the switch current will rise 
slowly from zero. It will then oscillate because of the resonance between Lr and Cr.  
Finally, the switch can be commutated at the next zero current duration.  
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In a zero-voltage resonant switch (Figure 3.20b), a capacitor Cr is connected in 
parallel with the switch S in order to create ZVS conditions. The objective of a ZV 
switch is to use the resonant circuit to shape the switch voltage waveform during 
the off time in order to create a zero-voltage condition for the switch to turn on. If 
the switch S is uni-directional, the voltage of the capacitor Cr can oscillate freely in 
both positive and negative half-cycle, and the resonant switch can operate in full-
wave mode. However, if the switch S is bi-directional (that is when a diode is 
connected in anti-parallel with the unidirectional switch), the resonant voltage of 
the capacitor is clamped by the diode to zero during the negative half-cycle. Then 
the resonant switch will operate in half-wave mode. 

This book is not designed to deal with other important aspects of soft-switching 
in PEC comprehensively. More detailed information about the subject can be found 
in works referred to in this book. 

3.2.3 Construction Arrangement and Cooling Systems 

Construction arrangments and dimensions of PECs vary. Distribution of the 
components and execution of the electric connections significantly influence 
characteristics of the PECs. Considering reliability, particularly important are 
electromagnetic screening of the control circuits from power circuits. Therefore, 
nowadays, connections between the circuits are often realized with fiber optic 
cable. Reliability of all connections is also very important.  
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Figure 3.21. Single module 48 V/ 230 V/ 5 kW of a redundant inverters system   
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Figure 3.22. Design of an 6 kV / 2 MVA 18-pulse diode rectifier: 1) modules of the three-
phase diode rectifier bridge with radiators; 2) power supply of the contactor (invisible); 3) 
resistors of the auxiliary circuits; 4) starting resistors; 5) transformer of the auxiliary 
circuits; 6) cooling fans; 7) DC link capacitors; 8) fuse base; 9) fuse; 10) vacuum contactor; 
11) cubicle; 12) reactor    
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Figure 3.23. Design of the prototype of the four-level 6 kV voltage inverter branch 
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In PECs with power up to about 100 kVA, all components are usually placed in 
a common box. An example of such a solution could be design of a single modul 
of a redundant inverters system (Figure 3.21). For high power, particular 
components or assembly components are placed in a separate cubicle (Figures 3.22 
and 3.23).  

Relatively often, power semiconductor devices are also offered as complete 
construction modules – assembly components together with heatsink arrangement. 
Examples of these modules are shown in Figure 3.24. Similar diode modules were 
applied, for example, in an 18-pulse rectifier (Figure 3.22). Such a simplifying 
solution design of the PECs [18, 22, 23, 57] in connection with modern cooling 
systems [58–60], and modern passive elements [20, 21, 61] can be realized for 
wide power intervals and for different applications.  

  

GTO AC switch
(fully bi-directional)

Inverter switch
(bi-directional –

carrying
forward -blocking)

 

Figure 3.24. Example of  a construction of high PE modules  

To PE arrangements, air-cooling and liquid-cooling systems – direct and 
indirect – are applied. During the direct cooling, the medium is in direct contact 
with package semiconductor devices, heatsink or other electric components. 
However, with indirect cooling, two cooling media are used, one of which transfers 
heat from the components to a heat exchanger, second to environment. Coolant 
 can consist of natural circulation or forced circulation (fans, pumps). Sometimes 
mixed coolant and circuits are also applied. 

In low power PECs, air-cooling with natural circulation is almost always used. 
However, in PECs with power from few to hundreds of kilowatts, it is usual to 
apply forced air-cooling. The selected solutions of cooling systems of cubicles are 
presented in Figure 3.25. In all examples, cool air is delivered via vents in the 
bottom of the cubicle or in the lower parts of lateral faces.  If PECs are to work 
under conditions of dustiness, then sealing of the cubicle and application of 
exchangeable dust filters in the vents are required. Sometimes, in order to achieve 
the desired goal, indirect cooling with a heat exchanger (HE) is used, for example 
as presented in Figure 3.25f.  

In PECs for very high currents, liquid-cooling systems, for which water is a 
medium [60], are usually used. At certain, oil is used because of its insulating 
properties. It should be noted that liquid cooling is also used to carrying away heat 
from other power components of the PECs. The fundamental problem in liquid-
cooling systems is leaking of any connections. Moreover, efficiency of liquid-



76 R. Strzelecki and G.S. Zinoviev 
 

cooling is much higher if a medium is in a boiling state. Then heat transfer takes 
place not only by convection but also thanks to the phase transition of liquid into 
steam. Arrangements which rely on this property are referred to as vapor-cooling 
systems [58].  

a)      

 

b)       

 

c)    

 
One main air flux Additionally cross air flux Oblique air flux 

d)   
 

 

e)     
 

 

f) 

 
Heatsink arranged in steps   Heatsink with loss of pressure Indirect air-cooling 

Figure 3.25. Air-cooling systems of cubicles with forced circulation 

Variations of vapor-cooling systems are heat pipes (Figure 3.26) [59, 62]. 
Closed pipe is filled with liquid (water, freon, fluorocarbon etc.). On the inner wall 
are layers of a special material with capillary properties, forming a wick structure.  

  

 
a     b 

Figure 3.26. a Principle of the heat pipe. b Example of application in PEC 
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Figure 3.27. Example of the heat pipes assisted heat-sink  

The steam formed in the heating sphere is transport to the condensation sphere 
at low temperature under conditions of pressure difference. In this sphere the steam 
gives up heat and condenses. Due to capillary forces the liquid comes back through 
the wick structure to the heating sphere and the cooling cycle is repeated. A 
significant property of heat pipes is also the option of accommodating almost any 
arrangement. Thanks to that the constructor can apply a cooling component that 
enables him to transfer heat to the part from which it is easiest to carry away. One 
example is the  heat pipes presented in Figure 3.27. 

3.3 Multi-level Converters  

This section briefly discusses selected basic problems of modern multi-level PECs.  

3.3.1 Multi-level Converter Concepts  

In PECs with  PWM of medium/high voltage/power and some specific applications 
and running conditions, typical solutions (for example three-phase VSI presented 
in Figure 3.10) are not the most suitable ones. Then too high frequency of the 
switches in semiconductor devices of high voltage/power (requires a compromise 
between output-voltage quality and regulation dynamics with application of an 
output filter), higher voltage stresses, and smaller dv/dt and EMI problems (without 
any special countermeasures), and sometimes an insufficient value of the peak 
voltage in semiconductor devices (for a peak voltage of 6 kV, the recommended 
voltage is about 3.5 kV) would be the main reasons for  a second interest in multi-
level PECs in the 1980s–1990s, in particular multi-level VSI [63–69]. Many older 
solutions would then have limited applications [70–75].   

As the main advantages of modern multi-level VSI we can count [76]: 

• Increased range of output-voltage amplitude changes;  
• Greater accuracy in modeling output voltage and current; 
• Ability to decrease transformation ratio and even eliminate the output 

transformer for medium voltage; 
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• More easy adaptation to low-voltage energy storage; 
• Decreased voltage hazard and current elements (dependent on applied 

typology); 
• Decreased level of common-mode disturbances. 

The basic differences regarding conventional two-level VSI and the general 
principle of wave-forming output multi-level voltage are illustrated in Figures 3.28 
and 3.29. 
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Figure 3.28. Principles of voltage wave-forming in: a two-level VSI; b three-level VSI 
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Figure 3.29. General principles of voltage wave-forming in N-level VSI 

and the multi-layer topology presented for the case of three-layers in Figure 3.30. 

All known topologies of multi-level VSI in the literature, without isolated 
(galvanic separated) DC voltage sources, can be synthesized on the basic VSI modules 
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the majority of multi-level VSIs obtained in this manner did not find any 
applications, either because of the complexity of this typology or because of 
greater losses. In practice, two special cases of multi-layer topology that are 
realized are multi-level Diode Clamped Inverters (DCI), with which we also 
include Neutral Point Clamped (NPC) VSIs, and multi-level Flying Capacitor 
Inverters (FCI) [76]. Furthermore, also applied are multi-level Cascaded H-bridge 
Inverters (CHBI), which require, in contrast to the first two, isolated DC voltage 
sources [69, 76, 77]. The main advantage of CHBIs is the possibility of easy 
development and independent stabilization of the voltage in the DC circuit for each 
mode H-bridge. However, none of the three selected topologies of multi-level VSI, 
presented as one branch in Figure 3.31, has so far gained a leading position.  

3.3.1.1  Diode Clamped Multi-level VSI  
As a type of VSI configuration, which is important for high-power applications, the 
diode-clamped inverter provides multiple voltage levels through the connection of 
the phases to a series bank of capacitors. According to the original invention [64], 
the concept can be extended to any number of levels by increasing the number of 
capacitors. Early descriptions of this topology were limited to three levels [70, 71], 
where two capacitors were connected across the DC bus, resulting in one 
additional level. The additional level was the neutral point of the DC bus.  

 

    
  a      b 

Figure 3.30. a Three-layer VSI. b Example of the basic-VSI module 

For such multi-level PEC, the terminology neutral point clamp converter was 
introduced [63].  

In case N+1 number of voltage levels of DCI (Figure 3.31), one phase leg 
consists of 2N active switches (IGBT, IGCT, GTO) and minimum 2(N–1) 
clamping diodes [78]. The total bus voltage UDC is distributed across the capacitors 
C1, ...,CN. Hence, if voltage pattern on capacitors is uniform, then output voltage of 
the DCI can take values UDC·(n–N)/2 for n=0,1,…,N. 

The manner of their synthesis is to exclude individual switches properly. However 



80 R. Strzelecki and G.S. Zinoviev 
 

 

 
Figure 3.31. Generalized typologies of the most frequently applied multi-level VSI 

3.3.1.2 Flying Capacitor Multi-level VSI  
Another fundamental multi-level topology, the flying capacitor inverter (and other 
flying capacitor PECs), involves a series connection of capacitor switching cells 
[66, 79]. This topology, presented in Figure 3.31, reveals several unique and 
attractive features when compared to the diode-clamped converter. One feature is 
that added clamping diodes are not needed. Furthermore, the flying capacitor 
converter has a switching redundancy within the phase, which can be used to 
balance the flying capacitors so that only one DC source is needed. Traction 
converters are typical applications of this topology. One phase leg consists of 2N 
active switches and N–1 flying capacitors.  

3.3.1.3 Cascaded  H-Bridge VSI 
This class of multi-level PECs is based on a series connection of single-phase VSI 
bridges (Figure 3.31), and the earliest reference to them appeared in 1975 [70]. The 
CHBI topology has several advantages that have made it attractive to medium and 
high power drive applications [77]. Since this topology consists of series power 
conversion cells, the voltage and power level may be easily scaled. The DC link 
supply for each H-bridge VSI element must be provided separately. The ability to 
synthesize quality wave-form of the output voltage with excellent harmonic 
spectrum is one of its main advantages. Additional, a very important advantage of 
CHBIs is the possibility to utilize low-cost low-voltage power semiconductors, 
switches and capacitors [80]. However, drawbacks of this topology are the large 
number of power devices and of voltages required to supply each cell with a 
complex, bulky and expensive isolated transformer.  
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3.3.2 Basic Comparison of Multi-level Inverter Topology  

Each of the typologies of multi-level inverters presented above differs in the 
number of semiconductor switches used as well as reactive elements. The 
cooperative analysis of them could help to decide about appropriate solutions for 
particular applications. 

Based on familiarity with the operation principle we are able to compare 
topologies of the multi-level voltage inverters according to various criteria. Most 
often as a criterion we accept a required number of semiconductor and passive 
components depending on a number N output voltage levels. With these 
assumptions and one phase of different multi-level VSI, the results obtained are 
presented in Table 3.1 [81]. 

Table 3.1. Number of the components for one phase of the N-level VSIs   

Topology DCI FCI CHBI 
Number of   active switches 2(N–1) 2(N –1) 2(N –1) 

Number of   clamped diodes (N –1)( N –2) 0 0 
Number of   flying capacitors 0 (N –1)( N –2)/2 0 
Number of   supply capacitors (N –1) (N –1) (N –1)/2 

In Tables 3.2 and 3.3, based on [82, 83, 84, 85], are presented results of the 
comparative analysis and calculation of realization costs of selected topologies of 
three-phase multi-level VSIs. This analysis and evaluation by the authors of listed 
publications was conducted for the following comparable topologies: 

• FK-L2: conventional VSI with four IGBTs connected in series;  
• NPC-L3: NPC VSI with two IGBTs connected in series;  
• DCI-L5: five-level DCI with four capacitors;  
• FCI-L5:  five-level FCI with neutral point;  
• CHBI-L9: nine-level IHBI realized as cascaded connection of the four 

inverter bridges 

with the assumption that 

• Value of the constant voltage supplying VSI UDC=6.2 kV; 
• Inverters should assure line-voltage 4.2 kV; 
• IGBTs (3.3 kV, 1200 A) are applied as active switches 

with subjective evaluation of degree of complexity of their realization and 
assuming relative cost per unit for used components: IGBT (generally) – 1 p.u., 
IGBT for CHBI (lower  voltage 1600 V) – 0.5 p.u., power diode with snubbers – 
0.5 p.u., diode clamped – 0.3 p.u., capacitor (1.5 kV, 5 mF) –  0.5 p.u., snubber for 
IGBT – 0.1 p.u.  

In typical applications of multi-level inverters in a medium voltage supply 
network, the number of output voltage levels rarely exceeds four to five. Available 
commercial turn-off 6.5 kV power switches nowadays allow realization three-
phase VSIs of output voltage 6 kV without any problems. Increased number of 
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levels and higher output voltage could be obtained only when cascade VSIs were 
applied, e.g., CHBIs. Module based construction and isolated power supplies in 
CHBIs improve their safety in terms of electric shock and ease use. Unfortunately 
CHBIs have quite large overall dimensions and complicated control and protection. 

Table 3.2. Number of components for analyzed multi-level VSI (one-phase) 

Topology FK-L2 NPC-L3 DCI-L5 FCI-L5 CHBI-L9 
IGBTs 8 8 8 8 16 

Clamped diodes  0 4 12 0 0 
Power supply  1 1 1 1 4 

Snubbers 8 8 8 0 0 
Flying capacitors 0 0 0 6 0 
Supply capacitors  4 4 4 4 4 

Table 3.3. Comparison of estimated costs of the analyzed multi-level VSI  

Topology/costs FK-L2 NPC-L3 DCI-L5 FCI-L5 CHBI-L9 

Semiconductor 
switches 24 24 24 24 24 

Supply capacitors 6 6 6 6 12 

Extra 
(diode/capacitors) --- 3,6 10,8 9 --- 

Snubbers 2,4 2,4 2,4 --- --- 
 

We should note that Table 3.3 does not include the cost of the output filter, 
which is most expensive in the case of a conventional two-level VSI. The cost of 
the filter depends to a great extent on harmonic distortion in output voltage. 
Estimated cost of the filter is equal to the cost of elements of the one-phase VSI, 
whereas the main component is the cost of the reactor. Also, Table 3.3 does not 
include realization costs for the controller in this initial charging of capacitors, and 
the expenses of technological processing of VSI realization and its installation. 
Therefore the technological-economic evaluation of the presented topologies of 
multi-level VSIs, without taking into consideration considerable technical 
problems, cannot be unequivocally final. Each topology (Figure 3.31) and 
derivative topologies [69, 76–78] have their advantages and disadvantages. Usually 
the specific application decides which typology should be selected. 

3.3.3 Space Vector PWM Algorithm of a Multi-level VSI 

For the particular states of the switches of the inverter the appropriate voltage 
space vector can be selected in stationary coordinates α-β [77, 84, 86]. In the m-
level VSIs, the area of the space vector is usually divided into six sectors, in which 
we can distinguish triangular areas among three nearest locations of the space 
vector. Single sector and equilateral triangles of a side a is shown in Figure 3.32. 
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Figure 3.32. Single sector for m-level VSI 

Reference voltage vector V can be presented as a linear combination of the 
vectors i and j. In accordance with Figure 3.34, coordinates [α, β] of vector V are as 
follows 

[ ] jnimV
rrr
⋅+⋅== βα ,          (3.10)

where  

( ) ( )32  ;3 anaam ββα ⋅=−=          (3.11)

Integers of the m and n define coordinates of beginning of parallelogram P (point 
PR on Figure 3.32), where the reference vector occurs at the time.  In order to 
determine the belonging of the reference vector V to one of the two triangles in 
parallelogram P, the value of the following sum D needs to be found out 

( )[ ] ( )[ ]nnmmD intint −+−=          (3.12)

 
 
   

 
Figure 3.33. Positions of the  vector V  in parallelogram P 
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If D≤1, then the reference vector V occurs in the triangle with index [m][n]1, 
else the vector V belongs to the triangle with index [m][n]2. Finally, the synthesis 
of the reference vector V in addition consists of several states of switches, during 
modulator’s work, according to the order defined in the control strategy.  

There exist two possible positions of the vector V in the parallelogram P 
(Figure 3.32). Reference vector V can be projected within the area of each of the 
two triangles. According to Figure 3.33, the reference voltage vector can be 
expressed as a vector sum for the position of the vector V as in Figure 3.33 (left)  

( ) ( ) ( ) 32122113322311 1
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or for position of the vector V as in Figure 3.33 (right)  
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where p1, p2  are relative lengths (durations) of the active vectors V1 and V2. 
Duration of zero vectors V3 and V4 result from a difference in carrier period and 
duration of the active vectors. All space vectors of the four-level VSI are presented 
in Figure 3.34. 

In the selected sector 0 in the Figure 3.34 occur nine numbered regions. 
Specified position of the space vector is coded as follows – given number defines a 
point in the linking circuit connected to a load terminal of the particular phase 
(from left a, b, c). For example, the code “321” means that phase a was linked to 
voltage source of value 3·(UDC/3), phase b was linked to the voltage source of 
value 2·(UDC/3), and phase c was linked to the voltage source of value 1·(UDC/3). In 
the case of linear modulation range, value of maximum phase voltage equals 
√3·(UDC/3), and maximum value of normalized modulation factor ma in this case 
equals 3·√3/2.  

Figure 3.35 provides exemplary positions of the space vector of a four-level 
inverter. When the reference vector V occurs in region 4, relative lengths of the 
space vectors  V331=V220 and V321=V210 equal 

mpnp −=−= 1  ;2 21          (3.14) 

Hence, the vector-duty factors for particular positions of the space vector in 
modulation period are as shown in Table 3.4.  

The discussed algorithm Space Vector PWM (SVPWM) is easy to be 
implemented in the DSP controller. This algorithm in three-phase VSIs can be 
easily complemented by a selection procedure of one of few alternative vectors – 
so-called redundancy vectors. Correct selection of one of the vectors always helps 
but does not always fully stabilize voltages of the capacitors in multi-level VSIs. In 
particular, it refers to the typology DCI. For this typology multi-level VSIs 
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sector 0

 
Figure 3.34. Space vectors of the four-level VSI 

 

 
Figure 3.35. Example of the position of the normalized vector V  in region 4  
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stabilization of the capacitors’ voltages within full admissible range of changes of 
output voltage is possible only with reactance loads [86–88], that is, for example, 
in D-STATCOM systems and active power filters. In case of different loads, 
stabilization of capacitors’ voltages is possible only within a limited range of 
changes of output voltage. The worst case is resistive load. With such load DCIs, 
above some value of output voltage, it is necessary to change to quasi-three-level 
and quasi-two-level wave-forming of the output voltage [89]. Active stabilizing 
circuits could also be applied, or an independent power supply for all supply 
capacitor DCIs. The final method is most often used in drives. An example is 
topology of driving frequency converter that is presented in Figure 3.36 [90]. In the 
controller of these converters the algorithm SVPVM was applied and then 
completed by selection of appropriate redundancy vectors. This successfully allows 
a level load of transformer winding in a simple 12-pulse rectifier [91]. Typical the 
solution are output wave-shapes of the phase voltage and load currents presented in 
Figures 3.37 and 3.38. 

Table 3.4. Vector-duty factors for regions 1–9 in Figure 3.35 

Reg. Duty factors 
1 d200/311=3-m-n ,         d310=n ,          d300=m-2 
2 d200/311=1-n  ,         d210/321=2-m ,         d310=m+n-2 
3 d210/321=3-m –n ,         d310=m-1 ;  ,         d320=n-1 
4 d210/321=2- n  ,         d220/331=1-m ,         d320= m+n-2 
5 d220/331=3-m-n ,         d330=n-2 ,         d320=m 
6 d100/211/322=2-m-n ,         d200/311=m -1 ,         d200/321=n 
7 d110/221/332=1-m  ,         d100/211/322=1-n ,         d210/321=m+n-1 
8 d110/221/332=2-m-n ,         d210/321=m  ,         d220/331=n-1 
9 d000/111/222/333=1-m-n ,         d100/211/322=m  ,         d110/221/332=n 

  

 
Figure 3.36.  Frequency converter with four-level DCI and 12-pulse rectifier 
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a     b 

Figure 3.37. Phase voltage and load currents for modulation factor ma= 2.59 and PWM 
carriers: a  fc= 4 kHz; b fc= 800 Hz 

    
a     b 

Figure 3.38. Phase voltage and load currents for modulation factor ma= 1.55 and PWM 
carriers: a fc= 4 kHz; b fc= 800 Hz 

The discussed SVPWM algorithm (slightly modified) is also used in multi-level 
topology, which is a hybrid connection of typical two-level VSI with additional H-
bridge modules in every output [92]. An example of this solution, together with 
characteristic oscillograms of output line-to-line voltage and phase voltage in 
individual modes, is presented in Figure 3.39.  

 
Figure 3.39. Connection of a two-level VSI and three H-bridge module 
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The discussed multi-level inverters obviously do not exhaust all the important 
solutions that have been tried in recent years, and first of all they concern only 
voltage systems – VSI. The issue of the multi-level current source inverter, because 
of its duality when compared to VSI systems, was not dealt with, despite the 
increasing interest given to these systems and the results achieved [93].  

3.4 Z-source Converters 

Many significant problems that occur in the conventional inverters (Figure 3.40) 
result from their operating principle. These problems are connected to the 
following disadvantages: 

• In case of voltage source inverters (Figure 3.40a): output voltage 
V≤VDC/1.73; voltage regulation – only decreasing; problems with short 
circuits in branches; 

• In case of current source inverters (Figure 3.40b): output voltage 
Um≥UDC/1.73; voltage regulation – only increasing; difficult to apply 
conventional modules IGBT and open circuits problems.     

The issues with short circuits in branches and open circuits are connected with 
vulnerability of the inverters to damages from EMI distortion. 

 

 

 

DC

IDC
3-phase CSIDC voltage 

source

UDC

 
a          b 

Figure 3.40. Conventional inverter systems: a VSI; b CSI 

If the inverters’ applications require amplitude to be adjusted outside the 
limited region, output transformer or additional DC/DC converter (Figure 3.41) can 
be used. Disadvantages of the solutions with output transformer (Figure 3.41 left) 
are most of all large overall dimensions, heavy weight and range of regulation 
limited by transformer voltage ratio. However, if an additional DC/DC converter is 
applied (Figure 3.41 right), then it results in two-stage conversion of the electrical 
energy, and therefore we should consider higher costs of the system and increased 
losses. Moreover, in such a case, one type of inverter cannot be replaced by an 
other type (i.e., CSI can not be replaced by VSI and vice versa) and short circuits 
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or open circuits and transition processes occur. Therefore, the search continues for 
new solutions in inverter systems with improved adjustment properties. Especially 
worth attention seems to be the Z-source inverter patented by F.Z. Peng in 2003 
[94]. 
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Figure 3.41. The inverter systems with increased range of regulation   

Figure 3.42 presents basic schemes of the three-phase Z-inverters: voltage 
(Figure 3.42a) and current (Figure 3.42b) [94, 95]. In contrast to conventional VSI 
and CSI inverters, on the DC side of the Z-inverter is a D diode and a Z-source of 
“X” shape, composed of two capacitors C1 and C2 and two chokes L1 and L2. The D 
diode prevents forbidden reversed current flow (for voltage Z-inverter) or reversed 
voltage (for current Z-inverter). For this reason, application of the basic Z-inverters 
are possible only if energy return to the input source is unnecessary. Further, this is 
forbidden in the case of a fuel cell or photo-voltaic cell. It should be noted that the 
same diode function can be served by other PE systems as well. The main 
advantages of the Z-converters are: 

• Secures the function of increasing and decreasing of voltage in the one-step 
energy processing (lower costs and decreased loses); 

• Resistant to short circuits on branches and to opening of the circuits that 
improve resistance to failure switching and EMI distortions; 

• Relatively simple start-up (lowered current and voltage surges).  

We should acknowledge that two-direction energy flow is only possible due to 
change of a diode of the source on the switch of the inverter.  

Because the operation principle of the voltage and current Z-inverter is similar, 
all the solutions considered below relate only to the voltage Z-inverter. 
 

 

    

 

 
a     b 

Figure 3.42. Basic schemes of the Z-inverter: a voltage; b current 
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3.4.1. Operation Principle of the Voltage Z-inverter  

Conventional three-phase VSI system (Figure 3.40a) can assume eight states: six 
active states (while exchange of instantaneous power between the load and DC 
circuit) and two null states (when the load is shorted by transistors). Whereas, 
three-phase Z-inverter (Figure 3.42a) can assume 9 states, that is one more than in 
the VSI system — the additional nine state is the third 0 state, occurring when the 
load is shorted simultaneously by lower and upper groups of transistors. This state 
is defined as “shoot-through” state and may be generated in seven different ways, 
although of equivalent procedures: independently through every branch (three 
procedures), simultaneously through two of the branches (three procedures), and 
simultaneously through all of the three branches (one procedure). The main and 
unique characteristic of the Z-inverter is that the shoot-through state permits one to 
raise output voltage above the voltage VIN. 

Figure 3.43 describes simple equivalent schemes of the Z-inverter examined 
from the clap site of DC, where a source vd is modeling inverter S1–S6. In the 
shoot-through states (Figure 3.43a) a D diode is polarized reversely and does not 
conduct the inverter bridge input voltage vd=0, and energy stored in capacitors C is 
transferred to the chokes L. In “non-shoot-through” states (Figure 3.43b), where 
every combination of the switches S1–S6 that is allowed in VSI system is also 
possible, the D diode conducts and the voltage vd increases stepwise  from 0 to its 
maximum vd*. 

 

 
a 

 

 
b 

Figure 3.43. Equivalent schemes of the Z-source inverter: a “shoot-through” states; b “non-
shoot-through” states 

Since Z-source are symmetric circuits (Figure 3.43), when C1=C2 and L1=L2 
and low voltage pulsation vC1 and vC2 during pulse period T, 

CCC Vvv == 21  and LLL vvv == 21  (3.15)

where VC is average value of voltage in capacitors, vL – instantaneous voltage in 
chokes. Considering Equation 3.15 and equivalent schemes of the Z-inverter 
(Figure 3.43), voltage vd is calculated on the basis of following dependencies in 
“shoot-through” states (Figure 3.43a) duration TZ  

CL Vv = ,  Cf Vv ⋅= 2 ,  0=dv   (3.16)
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in “non-shoot-through” states (Figure 3.43b) duration TN  

CINL VVv −= ,  INf Vv = ,  INCLCd VVvVv −⋅=−= 2   (3.17)

where vf  is Z-source input voltage. 
Assuming that in a pulse period T=TZ+TN, in a steady state the average voltage 

in chokes VL=0, on the basis Equations 3.16 and 3.17, we should conclude 

( ) 01

0

=
−⋅+⋅

=⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= ∫∫ T

VVTVTdtvdtv
T

V CINNCZ
T

T
L

T

LL

Z

Z

  (3.18)

Hence, average input voltage of the inverter bridge input voltage 
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where D=TZ/T is “shoot-through” duty factor, satisfying a requirement D<0.5. 
Similarly on the basis of Equations 3.17–3.19, the value vd

* of voltage vd  in  “non-
shoot-through” is determined 
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D
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−
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21
12   (3.20)

where B=1/(1–2·D)=T/(TN–TZ)≥1 is a peak factor, and the value vd* is determined 
by relative voltage VIN.  

Further, the value vd
* determines output voltage amplitude VOUT(max) of the Z-

inverter. When applying sinusoidal PWM the amplitude equals 

( ) 22212
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where M  is modulation index, of maximum value limited by inequity  M≤1–D, 
related to time TZ of “shoot-through” states. As we conclude, based on Equation 
3.21, the Z-inverter output voltage amplitude VOUT(max) can be either lower or 
higher than in typical VSI system with sinusoidal PWM, e.g. VOUT(max)=M·VIN/2. 
This possibility is acknowledged when looking at the 3D diagram of the function 

( )DMK ⋅−= 21   (3.22)

within the acceptable area  
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This function is presented in Figure 3.44.  

 

 

 
Figure 3.44. 3D diagram of the function  K (Equation 3.22) within area Ω  

The discussed properties of the voltage Z-inverter are confirmed by research 
presented in a number of publications from the recent past [96–99]. The properties 
are also illustrated below in selected results from the authors’ research. Basic 
parameters of the system that were assumed in the research are presented in Table 
3.5. In order to control switches V1–V6, we applied the algorithm of simple 
sinusoidal PWM, modified by “shoot-through” states.  The essence of this 
modification is explained in Figure 3.45. Selected results of the research are 
presented in Figure 3.46.  

Table 3.5. Parameters of researched voltage Z-inverter (Figure 3.42a) 

Supply  DC UIN 150 V 
Chokes  L1, L2 0.2 mH Z-source 
Capacitors C1, C2 0.2 mF 
Chokes  Lf 100 μH Output filter 
Capacitors Cf 50 μF 

Load (resistance)   R0 60 Ω 
PWM frequency carrier  1/T 10 kHz 

Further research on the Z-inverter confirmed the theoretical analysis. Little error 
arose from assumed values of loads R0 and parameters L=L1=L2 and C=C1=C2 of 
Z-source. In addition, a harmonic distortion coefficient in input voltage vOUT, that 
was calculated every time, has never exceeded 3–4%. The research also showed 
that transitions in the Z-inverter, resulting from changes of load and factors M and 
D (in open control system), are relatively fast. Furthermore, they inspired many 
researchers to elaborate and investigate other Z-source inverters, including NPC 
inverters and four-wire inverters. 
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Figure 3.45.  Control algorithms implementing of the Z-inverter 

3.4.2. Three-level and Four-wire Inverters with Z-source  

In the three-level Z-NPC inverter [100, 101], presented in Figure 3.47, two  

 

    

 

 
 

       

Figure 3.46. Selected  currents  and  voltages  waveform before and after change of 
coefficient  D = 0.43→0.35 for the time t = 10 ms (M = 0.48) 

Z-sources with input voltage VIN1 and VIN2 without common point were applied. 
That allows joint as well as separated voltage ud1 and ud2 control. The possibility is 
explained by equivalent diagrams of the Z-NPC inverter in “shoot-through” states, 
shown in Figure 3.48. 
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Figure 3.47.  Three-level Z-NPC inverter with two Z-sources 

In the “shoot-through” state of upper branches (Figure 3.48a), the switches  S1–
S6 & S7–S9 are turn-on, whereas “shoot-through” states of lower branches (Figure 
3.48b) switches S7–S12 and S4–S6. These two states, together with the duration TZ1 
and TZ2 in pulse period T (Figure 3.49) cause an average voltage increase to VC and 
maximal vd

* up to a value on output of the upper Z1-source   
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Figure 3.48.  Equivalent schemes of the Z-NPC inverter (Figure 3.47) in states of “shoot-
through”: a upper branches; b lower branches; c full 
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on output o lower Z2-source 
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where D1=TZ1/T  and D2=TZ2/T are “shoot-through” coefficients of upper and 
lower branches.  

Physical process occurring and following deduced Equations 3.24 and 3.25, are 
analogous to those in a basic system of Z-inverter (Figure 3.42) and Equations 3.19 
and 3.20. It remains unchanged by total “shoot-through” state (Figure 3.48c), 
occurring when short circuits of upper and bottom branched happen simultaneously 
at the time TZ2–ΔTZ  (Figure 3.49). 

 

 
Figure 3.49.  Exemplary schedule of branches “shoot-through” in T period 

When considering the Z-NPC inverter presented in Figure 3.47, which is 
supplied by a source of different voltage VIN1≠VIN2 and controlled on the basis of 
sinusoidal PWM, and taking into account Equations 3.24 and 3.25, input voltage 
peak-to-peak value can be determined on the basis of the following dependence 
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where M1 and M2  are modulation indexes for positive and negative halves of the 
output voltage. Hence, if the following condition is true  
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then the voltage vcom between reference potential VN (Figure 3.47) and star point in 
symmetrical load three-phase load (e.g., DC-offset) is as follows 

( ) ( ) ( )( ) 0=++−= cOUTbOUTaOUTNcom vvvVv   (3.28)

If Equation 3.27 is not satisfied, then additional distortion in the output voltage 
occurs that is mainly related to even harmonics. 

Taking into account Equation 3.27, elimination of output voltage distortion and 
DC-offset, is possible through: (a) selection of different modulation index’s M1 and 
M2 for the positive and negative half; (b) selection of different “soot-through” 
coefficient D1 and D2 for upper and bottom branches (Figure 3.50). In the second 
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case maximal voltages in switches S1–S6 and S7–S12 (Figure 3.47) are equal. 
Obviously it opens up the possibility to join both procedures. 

 

 

    

 
a         b 

Figure 3.50. The output phase voltages vOUT(a,b,c), DC-offset voltage vcom and VSI output 
voltage vVSI (phase a): a in cases of differentiated VIN1≠UIN2 and equal D1=D2; b after 
correction of coefficient D2 on the basis of Equation 3.27 

In [102], an alternative for Z-NPC inverter presented in Figure 3.47 topology of 
the NPC inverter using a single Z-source was proposed. Single Z-source was also 
tested in application for the DC-link Cascaded Inverter (DCLC). Both solutions 
that are presented in Figure 3.51 must unfortunately be supplied by two input 
voltage sources. This disadvantage is not of concern in the Z-NPC inverter, of 
which the fundamental topology is presented in Figure 3.52 [103]. This inverter 
can be realized when one of the Z-sources with high frequency transformer of 
transformation ratio 1:1 is applied. It needs to be supplied from only one source.  

 

       
a    b  

Figure 3.51. Inverters with a single Z-source: a NPC; b DCLC 
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Figure 3.52. Z-NPC inverter supplied only from one source VIN  

Presented typologies of Z-inverters for obvious reasons do not consider all 
detailed solutions, such as other Z-source converters [104–111]. Many are also 

 

      

 

 
Figure 3.53. Simple topology of the voltage Z-inverters for four-wire systems  

applications of these inverters, such as those for distributed generation [112–115]. 
Dedicated literature, however, has discussed only three-wire systems so far. There 
are practically no publications about application of Z-inverters in four-wire 
systems including significant research results. Under these circumstances it seems 
necessary to conduct further research of even such simple solutions as those 
presented in Figure 3.53. 

3.5 Summary  

The following text should only be considered as a comment. Also, in this manner, 
we would like to explain ourselves for disregarding many significant issues in the 
chapter. We are aware that relatively important issues discussed in the field of 
power electronics are not included here.    

For example, we did not discuss diode and thyristor converters, including 
significant and large groups of conventional PECs with different applications, 
starting with generating systems, power transmission systems and local DC supply 
networks to improve the power quality for various technological applications. 
These PECs, however, have already been discussed by the major stream literature 
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for many years, for example [41–43], or the newest trends focusing on issues of 
improvement of power quality factors [116, 117]. Valuable publications such as 
[118, 119] continue to be released. Similar circumstances apply with regard to 
DC/DC converters [120–122], various AC/AC matrix converters [123–129] or 
even systems of power factor correctors, which include Vienna converters [130–
133] and resonant converters [134–137]. It seems difficult to present carefully yet 
comprehensively all the most significant issues and the most utilized solutions. 
Well written and valuable guides to the above-mentioned topics are available in 
books, in particular [1, 5, 11, 26, 28–30, 77].   

The authors also hope that the content of the chapter, as well as referred 
literature, inspires the reader and initiates individual thinking about the issues 
discussed as well as the possibilities of applications of power electronics 
converters in smart energy networks. 
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