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Preface

Thin-walled structures in the form of plates and shells are encountered in many

branches of technology, such as civil, mechanical, aeronautical, marine, and chemi-

cal engineering. Such a widespread use of plate and shell structures arises from their

intrinsic properties. When suitably designed, even very thin plates, and especially

shells, can support large loads. Thus, they are utilized in structures such as aerospace

vehicles in which light weight is essential.

In preparing this book, we had three main objectives: first, to offer a compre-

hensive and methodical presentation of the fundamentals of thin plate and shell

theories, based on a strong foundation of mathematics and mechanics with emphasis

on engineering aspects. Second, we wanted to acquaint readers with the most useful

and contemporary analytical and numerical methods for solving linear and non-

linear plate and shell problems. Our third goal was to apply the theories and methods

developed in the book to the analysis and design of thin plate-shell structures in

engineering. This book is intended as a text for graduate and postgraduate students

in civil, architectural, mechanical, chemical, aeronautical, aerospace, and ocean

engineering, and engineering mechanics. It can also serve as a reference book for

practicing engineers, designers, and stress analysts who are involved in the analysis

and design of thin-walled structures.

As a textbook, it contains enough materal for a two-semester senior or grad-

uate course on the theory and applications of thin plates and shells. Also, a special

effort has been made to have the chapters as independent from one another as

possible, so that a course can be taught in one semester by selecting appropriate

chapters, or through equivalent self-study.

The textbook is divided into two parts. Part I (Chapters 1–9) presents plate

bending theory and its application and Part II (Chapters 10–20) covers the theory,

analysis, and principles of shell structures.
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The book is organized in the following manner. First, the general linear the-
ories of thin elastic plates and shells of an arbitrary geometry are developed by using
the basic classical assumptions. Deriving the general relationships and equations of
the linear shell theory requires some familiarity with topics of advanced mathe-
matics, including vector calculus, theory of differential equations, and theory of
surfaces. We tried to keep a necessary rigorous treatment of shell theory and its
principles and, at the same time, to make the book more readable for graduate
students and engineers. Therefore, we presented the fundamental kinematic and
static relationships, and elements of the theory of surfaces, which are necessary
for constructing the shell theory, without proof and verification. The detailed deri-
vation and proof of the above relationships and equations are given in Appendices
A–E so that the interested reader can refer to them.

Later on, governing differential equations of the linear general theory are
applied to plates and shells of particular geometrical forms. In doing so, various
approximate engineering shell theories are presented by introducing some supple-
mentary assumptions to the general shell theory. The mathematical formulation of
the above shell theories leads, as a rule, to a system of partial differential equations.
A solution of these equations is the focus of attention of the book. Emphasis is given
to computer-oriented methods, such as the finite difference and finite element meth-
ods, boundary element and boundary collocation methods, and to their application
to plate and shell problems. Nevertheless, the emphasis placed on numerical methods
is not intended to deny the merit of classical analytical methods that are also pre-
sented in the book, for example, the Galerkin and Ritz methods.

A great attempt has been made to emphasize the physical meanings of engi-
neering shell theories, mathematical relationships, and adapted basic and supple-
mentary assumptions. The accuracy of numerical results obtained with the use of the
above theories, and possible areas of their application, are discussed. The main goal
is to help the reader to understand how plate and shell structures resist the applied
loads and to express this understanding in the language of physical rather than
purely mathematical aspects. To this end, the basic ideas of the considered plate
and shell models are demonstrated by comparisons with more simple models such as
beams and arches, for which the main ideas are understandable for readers familiar
with strength of materials. We believe that understanding the behavior of plate and
shell structures enables designers or stress analysts to verify the accuracy of numer-
ical structural analysis results for such structures obtained by available computer
code, and to interpret these results correctly.

Postgraduate students, stress analysts, and engineers will be interested in the
advanced topics on plate and shell structures, including the refined theory of thin
plates, orthotropic and multilayered plates and shells, sandwich plate and shell
structures, geometrically nonlinear plate, and shell theories. Much attention is also
given to orthotropic and stiffened plates and shells, as well as to multishell structures
that are commonly encountered in engineering applications. The peculiarities of the
behavior and states of stress of the above thin-walled structures are analyzed in
detail.

Since the failure of thin-walled structures is more often caused by buckling, the
issue of the linear and nonlinear buckling analysis of plates and shells is given much
attention in the book. Particular emphasis is placed on the formulation of elastic
stability criteria and on the analysis of peculiarities of the buckling process for thin
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shells. Buckling analysis of orthtropic, stiffened, and sandwich plates and shells is

presented. The important issues of postbuckling behavior of plates and shells—in

paticular, the load-carrying capacity of stiffened plates and shells—are discussed in

detail. Some considerations of design stability analysis for thin shell structures is also

provided in the book.

An introduction to the vibration of plates and shells is given in condensed form

and the fundamental concepts of dynamic analysis for free and forced vibrations of

unstiffened and stiffened plate and shell structures are discussed. The book empha-

sizes the understanding of basic phenomena in shell and plate vibrations. We hope

that this materal will be useful for engineers in preventing failures and for acousti-

cians in controlling noise.

Each chapter contains fully worked out examples and homework problems

that are primarily drawn from engineering practice. The sample problems serve a

double purpose: to help readers understand the basic principles and methods used in

plate and shell theories and to show application of the above theories and methods

to engineering design.

The selection, arrangement, and presentation of the material have been made

with the greatest care, based on lecture notes for a course taught by the first author

at The Pennsylvania State University for many years and also earlier at the Kharkov

Technical University of Civil Engineering, Ukraine. The research, practical design,

and consulting experiences of both authors have also contributed to the presented

material.

The first author wishes to express his gratitude to Dr. R. McNitt for his

encouragement, unwavering support, and valuable advice in bringing this book to

its final form. Thanks are also due to the many graduate students who offered

constructive suggestions when drafts of this book were used as a text. A special

thanks is extended to Dr. I. Ginsburg for spending long hours reviewing and criti-

quing the manuscript. We thank Ms. J. Fennema for her excellence in sketching the

numerous figures. Finally, we thank Marcel Dekker, Inc., and especially, Mr. B. J.

Clark, for extraordinary dedication and assistance in the preparation of this book.

Eduard Ventsel

Theodor Krauthammer
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1

Introduction

1.1 GENERAL

Thin plates are initially flat structural members bounded by two parallel planes,
called faces, and a cylindrical surface, called an edge or boundary. The generators
of the cylindrical surface are perpendicular to the plane faces. The distance between
the plane faces is called the thickness (h) of the plate. It will be assumed that the plate
thickness is small compared with other characteristic dimensions of the faces (length,
width, diameter, etc.). Geometrically, plates are bounded either by straight or curved
boundaries (Fig. 1.1). The static or dynamic loads carried by plates are predomi-
nantly perpendicular to the plate faces.

The load-carrying action of a plate is similar, to a certain extent, to that of
beams or cables; thus, plates can be approximated by a gridwork of an infinite
number of beams or by a network of an infinite number of cables, depending on
the flexural rigidity of the structures. This two-dimensional structural action of
plates results in lighter structures, and therefore offers numerous economic advan-
tages. The plate, being originally flat, develops shear forces, bending and twisting
moments to resist transverse loads. Because the loads are generally carried in both
directions and because the twisting rigidity in isotropic plates is quite significant, a
plate is considerably stiffer than a beam of comparable span and thickness. So, thin
plates combine light weight and a form efficiency with high load-carrying capacity,
economy, and technological effectiveness.

Because of the distinct advantages discussed above, thin plates are extensively
used in all fields of engineering. Plates are used in architectural structures, bridges,
hydraulic structures, pavements, containers, airplanes, missiles, ships, instruments,
machine parts, etc. (Fig. 1.2).

We consider a plate, for which it is common to divide the thickness h into equal
halves by a plane parallel to its faces. This plane is called the middle plane (or simply,

Part I

Thin Plates
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Fig. 1.1

Fig. 1.2
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the midplane) of the plate (Fig. 1.3). Being subjected to transverse loads, an initially
flat plate deforms and the midplane passes into some curvilinear surface, which is
referred to as the middle surface. With the exception of Secs 3.8 and 4.8, we will
consider only plates of constant thickness. For such plates, the shape of a plate is
adequately defined by describing the geometry of its middle plane. Depending on the
shape of this midplane, we will distinguish between rectangular, circular, elliptic, etc.,
plates.

A plate resists transverse loads by means of bending, exclusively. The flexural
properties of a plate depend greatly upon its thickness in comparison with other
dimensions. Plates may be classified into three groups according to the ratio a=h,
where a is a typical dimension of a plate in a plane and h is a plate thickness. These
groups are

1. The first group is presented by thick plates having ratios a=h � 8 . . . 10. The
analysis of such bodies includes all the components of stresses, strains, and displace-
ments as for solid bodies using the general equations of three-dimensional elasticity.

2. The second group refers to plates with ratios a=h � 80 . . . 100. These plates
are referred to as membranes and they are devoid of flexural rigidity. Membranes
carry the lateral loads by axial tensile forces N (and shear forces) acting in the plate
middle surface as shown in Fig. 1.7. These forces are called membrane forces; they
produce projection on a vertical axis and thus balance a lateral load applied to the
plate-membrane.

3. The most extensive group represents an intermediate type of plate, so-
called thin plate with 8 . . . 10 � a=h � 80 . . . 100. Depending on the value of the
ratio w=h, the ratio of the maximum deflection of the plate to its thickness, the
part of flexural and membrane forces here may be different. Therefore, this group,
in turn, may also be subdivided into two different classes.

a. Stiff plates. A plate can be classified as a stiff plate if w=h � 0:2. Stiff plates
are flexurally rigid thin plates. They carry loads two dimensionally, mostly by inter-
nal bending and twisting moments and by transverse shear forces. The middle plane
deformations and the membrane forces are negligible. In engineering practice, the
term plate is understood to mean a stiff plate, unless otherwise specified. The concept
of stiff plates introduces serious simplifications that are discussed later. A funda-

Fig. 1.3
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mental feature of stiff plates is that the equations of static equilibrium for a plate
element may be set up for an original (undeformed) configuration of the plate.

b. Flexible plates. If the plate deflections are beyond a certain level,
w=h � 0:3, then, the lateral deflections will be accompanied by stretching of the
middle surface. Such plates are referred to as flexible plates. These plates repre-
sent a combination of stiff plates and membranes and carry external loads by the
combined action of internal moments, shear forces, and membrane (axial) forces.
Such plates, because of their favorable weight-to-load ratio, are widely used by
the aerospace industry. When the magnitude of the maximum deflection is con-
siderably greater than the plate thickness, the membrane action predominates. So,
if w=h > 5, the flexural stress can be neglected compared with the membrane
stress. Consequently, the load-carrying mechanism of such plates becomes of
the membrane type, i.e., the stress is uniformly distributed over the plate
thickness.

The above classification is, of course, conditional because the reference of the
plate to one or another group depends on the accuracy of analysis, type of loading,
boundary conditions, etc.

With the exception of Sec. 7.4, we consider only small deflections of thin plates,
a simplification consistent with the magnitude of deformation commonly found in
plate structures.

1.2 HISTORY OF PLATE THEORY DEVELOPMENT

The first impetus to a mathematical statement of plate problems, was probably done
by Euler, who in 1776 performed a free vibration analysis of plate problems [1].

Chladni, a German physicist, discovered the various modes of free vibrations
[2]. In experiments on horizontal plates, he used evenly distributed powder, which
formed regular patterns after induction of vibration. The powder accumulated along
the nodal lines, where no vertical displacements occurred. J. Bernoulli [3] attempted
to justify theoretically the results of these acoustic experiments. Bernoulli’s solution
was based on the previous work resulting in the Euler–D.Bernoulli’s bending beam
theory. J. Bernoulli presented a plate as a system of mutually perpendicular strips at
right angles to one another, each strip regarded as functioning as a beam. But the
governing differential equation, as distinct from current approaches, did not contain
the middle term.

Fig. 1.4
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The French mathematician Germain developed a plate differential equation
that lacked the warping term [4]; by the way, she was awarded a prize by the Parisian
Academy in 1816 for this work. Lagrange, being one of the reviewers of this work,
corrected Germain’s results (1813) by adding the missing term [5]; thus, he was the
first person to present the general plate equation properly.

Cauchy [6] and Poisson [7] were first to formulate the problem of plate bending
on the basis of general equations of theory of elasticity. Expanding all the character-
istic quantities into series in powers of distance from a middle surface, they retained
only terms of the first order of smallness. In such a way they obtained the governing
differential equation for deflections that coincides completely with the well-known
Germain–Lagrange equation. In 1829 Poisson expanded successfully the Germain–
Lagrange plate equation to the solution of a plate under static loading. In this
solution, however, the plate flexural rigidity D was set equal to a constant term.
Poisson also suggested setting up three boundary conditions for any point on a free
boundary. The boundary conditions derived by Poisson and a question about the
number and nature of these conditions had been the subject of much controversy
and were the subject of further investigations.

The first satisfactory theory of bending of plates is associated with Navier [8],
who considered the plate thickness in the general plate equation as a function of
rigidity D. He also introduced an ‘‘exact’’ method which transformed the differential
equation into algebraic expressions by use of Fourier trigonometric series.

In 1850 Kirchhoff published an important thesis on the theory of thin plates
[9]. In this thesis, Kirchhoff stated two independent basic assumptions that are now
widely accepted in the plate-bending theory and are known as ‘‘Kirchhoff’s hypoth-
eses.’’ Using these assumptions, Kirchhoff simplified the energy functional of 3D
elasticity theory for bent plates. By requiring that it be stationary he obtained the
Germain-Lagrange equation as the Euler equation. He also pointed out that there
exist only two boundary conditions on a plate edge. Kirchhoff’s other significant
contributions are the discovery of the frequency equation of plates and the intro-
duction of virtual displacement methods in the solution of plate problems.
Kirchhoff’s theory contributed to the physical clarity of the plate bending theory
and promoted its widespread use in practice.

Lord Kelvin (Thomson) and Tait [10] provided an additional insight relative to
the condition of boundary equations by converting twisting moments along the edge
of a plate into shearing forces. Thus, the edges are subject to only two forces: shear
and moment.

Kirchhoff’s book was translated by Clebsh [11]. That translation contains
numerous valuable comments by de Saint-Venant: the most important being the
extension of Kirchhoff’s differential equation of thin plates, which considered, in a
mathematically correct manner, the combined action of bending and stretching.
Saint-Venant also pointed out that the series proposed by Cauchy and Poissons as
a rule, are divergent.

The solution of rectangular plates, with two parallel simple supports and the
other two supports arbitrary, was successfully solved by Levy [12] in the late 19th
century.

At the end of the 19th and the beginning of the 20th centuries, shipbuilders
changed their construction methods by replacing wood with structural steel. This
change in structural materials was extremely fruitful in the development of various
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plate theories. Russian scientists made a significant contribution to naval architec-
ture by being the first to replace the ancient trade traditions with solid mathematical
theories. In particular, Krylov [13] and his student Bubnov [14] contributed exten-
sively to the theory of thin plates with flexural and extensional rigidities. Bubnov laid
the groundwork for the theory of flexible plates and he was the first to introduce a
modern plate classification. Bubnov proposed a new method of integration of differ-
ential equations of elasticity and he composed tables of maximum deflections and
maximum bending moments for plates of various properties. Then, Galerkin devel-
oped this method and applied it to plate bending analysis. Galerkin collected numer-
ous bending problems for plates of arbitrary shape in a monograph [15].

Timoshenko made a significant contribution to the theory and application of
plate bending analysis. Among Timoshenko’s numerous important contributions are
solutions of circular plates considering large deflections and the formulation of
elastic stability problems [16,17]. Timoshenko and Woinowsky-Krieger published
a fundamental monograph [18] that represented a profound analysis of various
plate bending problems.

Extensive studies in the area of plate bending theory and its various applica-
tions were carried out by such outstanding scientists as Hencky [19], Huber [20], von
Karman [21,22], Nadai [23], Föppl [24].

Hencky [19] made a contribution to the theory of large deformations and the
general theory of elastic stability of thin plates. Nadai made extensive theoretical and
experimental investigations associated with a check of the accuracy of Kirchhoff’s
plate theory. He treated different types of singularities in plates due to a concen-
trated force application, point support effects, etc. The general equations for the
large deflections of very thin plates were simplified by Föppl who used the stress
function acting in the middle plane of the plate. The final form of the differential
equation of the large-deflection theory, however, was developed by von Karman. He
also investigated the postbuckling behavior of plates.

Huber, developed an approximate theory of orthotropic plates and solved
plates subjected to nonsymmetrical distributed loads and edge moments. The
bases of the general theory of anisotropic plates were developed by Gehring [25]
and Boussinesq [26]. Lekhnitskii [27] made an essential contribution to the develop-
ment of the theory and application of anisotropic linear and nonlinear plate analysis.
He also developed the method of complex variables as applied to the analysis of
anisotropic plates.

The development of the modern aircraft industry provided another strong
impetus toward more rigorous analytical investigations of plate problems. Plates
subjected to in-plane forces, postbuckling behavior, and vibration problems (flutter),
stiffened plates, etc., were analyzed by various scientists and engineers.

E. Reissner [28] developed a rigorous plate theory which considers the defor-
mations caused by the transverse shear forces. In the former Soviet Union the works
of Volmir [29] and Panov [30] were devoted mostly to solution of nonlinear plate
bending problems.

The governing equation for a thin rectangular plate subjected to direct com-
pressive forces Nx was first derived by Navier [8]. The buckling problem for a simply
supported plate subjected to the direct, constant compressive forces acting in one
and two directions was first solved by Bryan [31] using the energy method. Cox [32],
Hartmann [33], etc., presented solutions of various buckling problems for thin
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rectangular plates in compression, while Dinnik [34], Nadai [35], Meissner [36], etc.,
completed the buckling problem for circular compressed plates. An effect of the
direct shear forces on the buckling of a rectangular simply supported plate was
first studied by Southwell and Skan [37]. The buckling behavior of a rectangular
plate under nonuniform direct compressive forces was studied by Timoshenko and
Gere [38] and Bubnov [14]. The postbuckling behavior of plates of various shapes
was analyzed by Karman et al. [39], Levy [40], Marguerre [41], etc. A comprehensive
analysis of linear and nonlinear buckling problems for thin plates of various shapes
under various types of loads, as well as a considerable presentation of available
results for critical forces and buckling modes, which can be used in engineering
design, were presented by Timoshenko and Gere [38], Gerard and Becker [42],
Volmir [43], Cox [44], etc.

A differential equation of motion of thin plates may be obtained by applying
either the D’Alambert principle or work formulation based on the conservation of
energy. The first exact solution of the free vibration problem for rectangular plates,
whose two opposite sides are simply supported, was achieved by Voight [45]. Ritz
[46] used the problem of free vibration of a rectangular plate with free edges to
demonstrate his famous method for extending the Rayleigh principle for obtaining
upper bounds on vibration frequencies. Poisson [7] analyzed the free vibration equa-
tion for circular plates. The monographs by Timoshenko and Young [47], Den
Hartog [48], Thompson [49], etc., contain a comprehensive analysis and design con-
siderations of free and forced vibrations of plates of various shapes. A reference
book by Leissa [50] presents a considerable set of available results for the frequencies
and mode shapes of free vibrations of plates could be provided for the design and for
a researcher in the field of plate vibrations.

The recent trend in the development of plate theories is characterized by a
heavy reliance on modern high-speed computers and the development of the most
complete computer-oriented numerical methods, as well as by introduction of more
rigorous theories with regard to various physical effects, types of loading, etc.

The above summary is a very brief survey of the historical background of the
plate bending theory and its application. The interested reader is referred to special
monographs [51,52] where this historical development of plates is presented in detail.

1.3 GENERAL BEHAVIOR OF PLATES

Consider a load-free plate, shown in Fig.1.3, in which the xy plane coincides with the
plate’s midplane and the z coordinate is perpendicular to it and is directed down-
wards. The fundamental assumptions of the linear, elastic, small-deflection theory of
bending for thin plates may be stated as follows:

1. The material of the plate is elastic, homogeneous, and isotropic.
2. The plate is initially flat.
3. The deflection (the normal component of the displacement vector) of the

midplane is small compared with the thickness of the plate. The slope of
the deflected surface is therefore very small and the square of the slope is
a negligible quantity in comparison with unity.

4. The straight lines, initially normal to the middle plane before bending,
remain straight and normal to the middle surface during the deformation,

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



and the length of such elements is not altered. This means that the vertical
shear strains �xz and �yz are negligible and the normal strain "z may also
be omitted. This assumption is referred to as the ‘‘hypothesis of straight
normals.’’

5. The stress normal to the middle plane, �z, is small compared with the
other stress components and may be neglected in the stress–strain rela-
tions.

6. Since the displacements of a plate are small, it is assumed that the middle
surface remains unstrained after bending.

Many of these assumptions, known as Kirchhoff’s hypotheses, are analogous to
those associated with the simple bending theory of beams. These assumptions result
in the reduction of a three-dimensional plate problem to a two-dimensional one.
Consequently, the governing plate equation can be derived in a concise and straight-
forward manner. The plate bending theory based on the above assumptions is
referred to as the classical or Kirchhoff’s plate theory. Unless otherwise stated, the
validity of the Kirchhoff plate theory is assumed throughout this book.

1.4 SURVEY OF ELASTICITY THEORY

The classical theories of plates and shells are an important application of the theory
of elasticity, which deals with relationships of forces, displacements, stresses, and
strains in an elastic body. When a solid body is subjected to external forces, it
deforms, producing internal strains and stresses. The deformation depends on the
geometrical configuration of the body, on applied loading, and on the mechanical
properties of its material. In the theory of elasticity we restrict our attention to linear
elastic materials; i.e., the relationships between stress and strain are linear, and the
deformations and stresses disappear when the external forces are removed. The
classical theory of elasticity assumes the material is homogeneous and isotropic,
i.e., its mechanical properties are the same in all directions and at all points.

The present section contains only a brief survey of the elasticity theory that will
be useful for the development of the plate theory. All equations and relations will be
given without derivation. The reader who desires to review details is urged to refer to
any book on elasticity theory – for example [53–55].

1.4.1 Stress at a point: stress tensor

Consider an elastic body of any general shape subjected to external loads which are
in equilibrium. Then, consider a material point anywhere in the interior of the body.
If we assign a Cartesian coordinate frame with axes x, y, and z, as shown in Fig. 1.5,
it is convenient to assign an infinitesimal element in the form of parallelepiped
(dx; dy; dz), with faces parallel to the coordinate planes. Stresses acting on the
faces of this element describe the intensity of the internal forces at a point on a
particular face. These stresses can be broken down into a normal component (normal
stress) and tangent component (shear stress) to the particular face. As a result, the
three stress components, denoted by �xx; �xy; �xz; . . . ; will act on each face of the
element. The subscript notation for the stress components is interpreted as follows:
the first subscript indicates the direction of an outer normal to the face on which the
stress component acts; the second subscript relates to the direction of the stress itself.
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Repeated subscripts will be omitted in the future, i.e., the normal stresses will have
only one subscript indicating the stress direction. The following sign convention will
be adapted for the stress components: the positive sign for the normal stress will
correspond to a tensile stress, while the negative sign will correspond to a compres-
sive stress. The sign agreement for the shear stresses follows from the relationship
between the direction of an outer normal drawn to a particular face and the direction
of the shear stress component on the same face. If both the outer normal and the
shear stress are either in positive or negative directions relative to the coordinate
axes, then the shear stress is positive. If the outer normal points in a positive direc-
tion while the stress is in a negative direction (or vice versa), the shear stress is
negative. On this basis, all the stress components shown in Fig. 1.5 are positive.
On any one face these three stress components comprise a vector, called a surface
traction. The above-mentioned set of the stress components acting on the faces of the
element forms the stress tensor, TS, i.e.,

TS ¼
�x�xy�xz

�yx�y�yz

�zx�zy�z

0
B@

1
CA; ð1:1Þ

which is symmetric with respect to the principal diagonal because of the reciprocity
law of shear stresses, i.e.,

�xy ¼ �yx; �xz ¼ �zx; �yz ¼ �zy: ð1:2Þ
Thus, only the six stress components out of nine in the stress tensor (1.1) are inde-
pendent. The stress tensor, TS, completely characterizes the three-dimensional state
of stress at a point of interest.

For elastic stress analysis of plates, the two-dimensional state of stress is of
special importance. In this case, �z ¼ �yz ¼ �xz ¼ 0; thus, the two-dimensional stress
tensor has a form

TS ¼ �x�xy
�yx�y

� �
; where �xy ¼ �yx ð1:3Þ

Fig. 1.5
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1.4.2 Strains and displacements

Assume that the elastic body shown in Fig. 1.6 is supported in such a way that rigid
body displacements (translations and rotations) are prevented. Thus, this body
deforms under the action of external forces and each of its points has small elastic
displacements. For example, a point M had the coordinates x; y, and z in initial
undeformed state. After deformation, this point moved into position M 0and its
coordinates became the following x 0 ¼ xþ u; y 0 ¼ yþ v, z 0 ¼ z 0 þ w, where u, v,
and w are projections of the displacement vector of point M, vector MM

0, on the
coordinate axes x, y and z. In the general case, u, v, and w are functions of x, y, and
z.

Again, consider an infinitesimal element in the form of parallelepiped enclosing
point of interest M. Assuming that a deformation of this parallelepiped is small, we
can represent it in the form of the six simplest deformations shown in Fig. 1.7. The
first three deformations shown in Fig. 1.7a, b, and c define the elongation (or con-
traction) of edges of the parallelepiped in the direction of the coordinate axes and
can be defined as

"x ¼ �ðdxÞ
dx

; "y ¼
�ðdyÞ
dy

; "z ¼
�ðdzÞ
dz

; ð1:4Þ

and they are called the normal or linear strains. In Eqs (1.4), the increments �dx can
be expressed by the second term in the Taylor series, i.e., �dx ¼ ð@u=@xÞdx, etc.; thus,
we can write

"x ¼ @u

@x
; "y ¼

@v

@y
; "z ¼

@w

@z
: ð1:5aÞ

The three other deformations shown in Fig. 1.7d, e, and f are referred to as shear
strains because they define a distortion of an initially right angle between the edges of
the parallelepiped. They are denoted by �xy, �xz, and �yz. The subscripts indicate the
coordinate planes in which the shear strains occur. Let us determine, for example,
the shear strain in the xy coordinate plane. Consider the projection of the paralle-
lepiped, shown in Fig. 1.7d, on this coordinate plane. Figure 1.8 shows this projec-

Fig. 1.6
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tion in the form of the rectangle before deformation (ABCD) and after deformation
(A 0B 0C 0D 0). The angle BAD in Fig. 1.8 deforms to the angle B 0A 0D 0, the deforma-
tion being the angle � 0 þ � 00; thus, the shear strain is

�xy ¼ � 0 þ � 00 ðaÞ
or it can be determined in terms of the in-plane displacements, u and v, as follows:

�xy ¼
@v
@xdx

dxþ @u
@x dx

þ
@u
@y dy

dyþ @v
@y dy

¼
@v
@x

1þ @u
@x

þ
@u
@y

1þ @v
@y

:

Since we have confined ourselves to the case of very small deformations, we may
omit the quantities @u=@x and @v=@y in the denominator of the last expression, as
being negligibly small compared with unity. Finally, we obtain

Fig. 1.7

Fig. 1.8
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�xy ¼
@v

@x
þ @u
@y
: ðbÞ

Similarly, we can obtain �xz and �yz. Thus, the shear strains are given by

�xy ¼
@u

@y
þ @v

@x
; �xz ¼

@u

@z
þ @w
@x
; �yz ¼

@v

@z
þ @w
@y
: ð1:5bÞ

Similar to the stress tensor (1.1) at a given point, we can define a strain tensor as

TD ¼

"x
1

2
�xy

1

2
�xz

1

2
�yx "y

1

2
�yz

1

2
�zx

1

2
�zy "z

0
BBBBB@

1
CCCCCA: ð1:6Þ

It is evident that the strain tensor is also symmetric because of

�xy ¼ �yx; �xz ¼ �zx; �yz ¼ �zy ð1:7Þ

1.4.3 Constitutive equations

The constitutive equations relate the stress components to strain components. For
the linear elastic range, these equations represent the generalized Hooke’s law. In the
case of a three-dimensional isotropic body, the constitutive equations are given by
[53].

"x ¼ 1

E
�x � � �y þ �z

� �� �
; "y ¼

1

E
�y � � �x þ �zð Þ� �

; "z ¼
1

2
�z � � �y þ �x

� �� �
;

ð1:8aÞ

�xy ¼
1

G
�xy; �xz ¼

1

G
�xz; �yz ¼

1

G
�yz; ð1:8bÞ

where E, �, and G are the modulus of elasticity, Poisson’s ratio, and the shear
modulus, respectively. The following relationship exists between E and G:

G ¼ E

2ð1þ �Þ ð1:9Þ

1.4.4 Equilibrium equations

The stress components introduced previously must satisfy the following differential
equations of equilibrium:

@�x
@x

þ @�xy
@y

þ @�xz
@z

þ Fx ¼ 0;

@�y
@y

þ @�yx
@x

þ @�yz
@z

þ Fy ¼ 0;

@�z
@z

þ @�zx
@x

þ @�zy
@y

þ Fz ¼ 0;

ð1:10Þ
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where Fx; Fy; and Fz are the body forces (e.g., gravitational, magnetic forces). In
deriving these equations, the reciprocity of the shear stresses, Eqs (1.7), has been
used.

1.4.5 Compatibility equations

Since the three equations (1.10) for six unknowns are not sufficient to obtain a
solution, three-dimensional stress problems of elasticity are internally statically inde-
terminate. Additional equations are obtained to express the continuity of a body.
These additional equations are referred to as compatibility equations. In Eqs (1.5) we
have related the six strain components to the three displacement components.
Eliminating the displacement components by successive differentiation, the follow-
ing compatibility equations are obtained [53–55]:

@2"x
@y2

þ @
2"y

@x2
¼ @2�xy
@x@y

;

@2"y

@z2
þ @

2"z
@y2

¼ @2�yz
@y@z

; ð1:11aÞ

@2"z
@x2

þ @
2"x
@z2

¼ @2�xz
@x@z

;

@

@z

@�yz
@x

þ @�xz
@y

� @�xy
@z

� �
¼ 2

@2"z
@x@y

;

@

@x

@�xz
@y

þ @�xy
@z

� @�yz
@x

� �
¼ 2

@2"x
@y@z

; ð1:11bÞ

@

@y

@�xy
@z

þ @�yz
@x

� @�xz
@y

� �
¼ 2

@2"y
@x@z

:

For a two-dimensional state of stress (�z ¼ 0, �xz ¼ �yz ¼ 0), the equilibrium condi-
tions (1.10) become

@�x
@x

þ @�xy
@y

þ Fx ¼ 0;

@�y
@y

þ @�yx
@x

þ Fy ¼ 0;

ð1:12Þ

and the compatibility equation is

@2"x
@y2

þ @
2"y

@x2
¼ @2�xy
@x@y

�xz ¼ �yz ¼ "z ¼ 0
� �

: ð1:13Þ

We can rewrite Eq. (1.13) in terms of the stress components as follows

@2

@x2
þ @2

@y2

 !
�x þ �y
� � ¼ 0: ð1:14Þ
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This equation is called Levy’s equation. By introducing Airy’s stress function � x; yð Þ
which satisfies

�x ¼
@2�

@y2
; �y ¼

@2�

@x2
; �xy ¼ � @2�

@x@y
; ð1:15Þ

Eq. (1.14) becomes

r2r2� ¼ 0; ð1:16Þ
where

r2 � @2

@x2
þ @2

@y2
ð1:17Þ

is the two-dimensional Laplace operator.

SUMMARY

For an elastic solid there are 15 independent variables: six stress components, six
strain components, and three displacements. In the case where compatibility is satis-
fied, there are 15 equations: three equilibrium equations, six constitutive relations,
and six strain-displacement equations.
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2

The Fundamentals of the Small-
Deflection P late Bending Theory

2.1 INTRODUCTION

The foregoing assumptions introduced in Sec. 1.3 make it possible to derive the basic
equations of the classical or Kirchhoff’s bending theory for stiff plates. It is conve-
nient to solve plate bending problems in terms of displacements. In order to derive
the governing equation of the classical plate bending theory, we will invoke the three
sets of equations of elasticity discussed in Sec. 1.4.

2.2 STRAIN–CURVATURE RELATIONS (KINEMATIC EQUATIONS)

We will use common notations for displacement, stress, and strain components
adapted in elasticity (see Sec. 1.4). Let u; v; and w be components of the displacement
vector of points in the middle surface of the plate occurring in the x; y, and z
directions, respectively. The normal component of the displacement vector, w (called
the deflection), and the lateral distributed load p are positive in the downward
direction. As it follows from the assumption (4) of Sec. 1.3

"z ¼ 0; �yz ¼ 0; �xz ¼ 0: ð2:1Þ
Integrating the expressions (1.5) for "z; �yz; and �xz and taking into account Eq.
(2.1), we obtain

wz ¼ w x; yð Þ; uz ¼ �z
@w

@x
þ u x; yð Þ; vz ¼ �z

@w

@y
þ v x; yð Þ; ð2:2Þ

where uz; vz, and wz are displacements of points at a distance z from the middle
surface. Based upon assumption (6) of Sec. 1.3, we conclude that u ¼ v ¼ 0. Thus,
Eqs (2.2) have the following form in the context of Kirchhoff’s theory:
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wz ¼ w x; yð Þ; uz ¼ �z
@w

@x
; vz ¼ �z

@w

@y
: ð2:3Þ

As it follows from the above, the displacements uz and vz of an arbitrary horizontal
layer vary linearly over a plate thickness while the deflection does not vary over the
thickness.

Figure 2.1 shows a section of the plate by a plane parallel to Oxz; y ¼ const:,
before and after deformation. Consider a segment AB in the positive z direction. We
focus on an arbitrary point B which initially lies at a distance z from the undeformed
middle plane (from the point A). During the deformation, point A displaces a dis-
tance w parallel to the original z direction to point A1. Since the transverse shear
deformations are neglected, the deformed position of point B must lie on the normal
to the deformed middle plane erected at point A1(assumption (4)). Its final position is
denoted by B1. Due to the assumptions (4) and (5), the distance z between the above-
mentioned points during deformation remains unchanged and is also equal to z.

We can also represent the displacement components uz and vz, Eqs (2.2), in the
form

uz ¼ �z#x; vz ¼ �z#y; ð2:4Þ

where

#x ¼ @w

@x
; #y ¼

@w

@y
ð2:5Þ

are the angles of rotation of the normal (normal I–I in Fig. 2.1) to the middle surface
in the Oxz and Oyz plane, respectively. Owing to the assumption (4) of Sec. 1.3, #x
and #y are also slopes of the tangents to the traces of the middle surface in the above-
mentioned planes.

Substitution of Eqs (2.3) into the first two Eqs (1.5a) and into the first Eq.
(1.5b), yields

"zx ¼ �z
@2w

@x2
; "zy ¼ �z

@2w

@y2
; �zxy ¼ �2z

@2w

@x@y
; ð2:6Þ

Fig. 2.1
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where the superscript z refers to the in-plane strain components at a point of the
plate located at a distance z from the middle surface. Since the middle surface
deformations are neglected due to the assumption (6), from here on, this superscript
will be omitted for all the strain and stress components at points across the plate
thickness.

The second derivatives of the deflection on the right-hand side of Eqs. (2.6)
have a certain geometrical meaning. Let a section MNP represent some plane curve
in which the middle surface of the deflected plate is intersected by a plane y ¼ const.
(Fig. 2.2).

Due to the assumption 3 (Sec. 1.3), this curve is shallow and the square of the
slope angle may be regarded as negligible compared with unity, i.e., (@w=@xÞ2 � 1.
Then, the second derivative of the deflection, @2w=@x2 will define approximately the
curvature of the section along the x axis, �x. Similarly, @2w=@y2 defines the curvature
of the middle surface �y along the y axis. The curvatures �x and �y characterize the
phenomenon of bending of the middle surface in planes parallel to the Oxz and Oyz
coordinate planes, respectively. They are referred to as bending curvature and are
defined by

�x ¼
1

�x
¼ � @

2w

@x2
; �y ¼

1

�y
¼ � @

2w

@y2
ð2:7aÞ

We consider a bending curvature positive if it is convex downward, i.e., in the
positive direction of the z axis. The negative sign is taken in Eqs. (2.7a) since, for
example, for the deflection convex downward curve MNP (Fig. 2.2), the second
derivative, @2w=@x2 is negative.

The curvature @2w=@x2 can be also defined as the rate of change of the angle
#x ¼ @w=@x with respect to distance x along this curve. However, the above angle
can vary in the y direction also. It is seen from comparison of the curves MNP and
M1N1P1 (Fig. 2.2), separated by a distance dy. If the slope for the curve MNP
is @w=@x then for the curve M1N1P1 this angle becomes equal to
@w

@x
� @

@y

@w

@x

� �
dy

� �
or

@w

@x
� @2w

@x@y
dy

 !
. The rate of change of the angle @w=@x per

unit length will be ð�@2w=@x@y). The negative sign is taken here because it is assumed

Fig. 2.2
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that when y increases, the slope angle of the tangent to the curve decreases (by
analogy with the sign convention for the bending curvatures �x and �y). Similarly,
can be convinced that in the perpendicular section (for the variable x), the rate of
change of the angle @w=@y is characterized by the same mixed derivative
ð�@2w=@x@yÞ. By analogy with the torsion theory of rods, the derivative @2w=@x@y
defines the warping of the middle surface at a point with coordinates x and y is called
the twisting curvature with respect to the x and y axes and is denotes by �xy. Thus,

�xy ¼ �yx ¼ 1

�xy
¼ � @2w

@x@y
ð2:7bÞ

Taking into account Eqs (2.7) we can rewrite Eqs (2.6) as follows

"x ¼ z�x; "y ¼ z�y; �xy ¼ 2z�xy: ð2:8Þ

2.3 STRESSES, STRESS RESULTANTS, AND STRESS COUPLES

In the case of a three-dimensional state of stress, stress and strain are related by the
Eqs (1.8) of the generalized Hooke’s law. As was mentioned earlier, Kirchhoff’s
assumptions of Sec. 1.3 brought us to Eqs (2.1). From a mathematical standpoint,
this means that the three new equations (2.1) are added to the system of governing
equations of the theory of elasticity. So, the latter becomes overdetermined and,
therefore, it is necessary to also drop three equations. As a result, the three relations
out of six of Hookes’ law (see Eqs (1.8)) for strains (2.1) are discarded. Moreover, the
normal stress component �z ¼ 0: Solving Eqs (1.8) for stress components �x, �y, and
�xy, yields

�x ¼
E

1� �2 "x þ �"y
� �

; �y ¼
E

1� �2 "y þ �"x
� �

; �xy ¼ G�xy: ð2:9Þ

The stress components are shown in Fig. 2.3a. The subscript notation and sign
convention for the stresses were given in Sec. 1.4.

Fig. 2.3
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Introducing the plate curvatures, Eqs (2.7) and using Eqs (2.8), the above
equations appear as follows:

�x ¼ Ez

1� �2 ð�x þ ��yÞ ¼ � Ez

1� �2
@2w

@x2
þ � @

2w

@y2

 !
;

�y ¼
Ez

1� �2 ð�y þ ��xÞ ¼ � Ez

1� �2
@2w

@y2
þ � @

2w

@x2

 !
;

�xy ¼
Ez

1þ � �xy ¼ � Ez

1þ �
@2w

@x@y
:

ð2:10Þ

It is seen from Eqs. (2.10) that Kirchhoff’s assumptions have led to a completely
defined law of variation of the stresses through the thickness of the plate. Therefore,
as in the theory of beams, it is convenient to introduce, instead of the stress compo-
nents at a point problem, the total statically equivalent forces and moments applied
to the middle surface, which are known as the stress resultants and stress couples. The
stress resultants and stress couples are referred to as the shear forces, Qx and Qy, as
well as the bending and twisting moments Mx; My, and Mxy, respectively. Thus,
Kirchhoff’s assumptions have reduced the three-dimensional plate straining problem
to the two-dimensional problem of straining the middle surface of the plate.
Referring to Fig. 2.3, we can express the bending and twisting moments, as well
as the shear forces, in terms of the stress components, i.e.,

Mx

My

Mxy

8><
>:

9>=
>; ¼

ðh=2
�h=2

�x

�y

�xy

8><
>:

9>=
>;zdz ð2:11Þ

and

Qx

Qy

( )
¼

ðh=2
�h=2

�xz

�yz

( )
dz: ð2:12Þ

Because of the reciprocity law of shear stresses (�xy ¼ �yx), the twisting moments on
perpendicular faces of an infinitesimal plate element are identical, i.e., Myx ¼ Mxy.

The sign convention for the shear forces and the twisting moments is the same
as that for the shear stresses (see Sec. 1.4). A positive bending moment is one which
results in positive (tensile) stresses in the bottom half of the plate. Accordingly, all
the moments and the shear forces acting on the element in Fig. 2.4 are positive.

Note that the relations (2.11) and (2.12) determine the intensities of moments
and shear forces, i.e., moments and forces per unit length of the plate midplane.
Therefore, they have dimensional units as [force � length=length� or simply ½force� for
moments and ½force=length� for shear forces, respectively.

It is important to mention that while the theory of thin plates omits the effect
of the strain components �xz ¼ �xz=G and �yz ¼ �yz=G on bending, the vertical shear
forces Qx and Qy are not negligible. In fact, they are necessary for equilibrium of the
plate element.
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Substituting Eqs (2.10) into Eqs (2.11) and integrating over the plate thickness,
we derive the following formulas for the stress resultants and couples in terms of the
curvatures and the deflection:

Mx ¼ D �x þ ��y
� � ¼ �D

@2w

@x2
þ � @

2w

@y2

 !
;

My ¼ D �y þ ��x
� � ¼ �D

@2w

@y2
þ � @

2w

@x2

 !
;

Mxy ¼ Myx ¼ Dð1� �Þ�xy ¼ �Dð1� �Þ @
2w

@x@y
;

ð2:13Þ

where

D ¼ Eh3

12ð1� �2Þ ð2:14Þ

is the flexural rigidity of the plate. It plays the same role as the flexural rigidity EI in
beam bending. Note that D > EI ; hence, a plate is always stiffer than a beam of the
same span and thickness. The quantities �x; �y and �xy are given by Eqs (2.7).

Solving Eqs (2.13) for the second derivatives of the deflection and substituting
the above into Eqs (2.10), we get the following expressions for stresses

�x ¼ � 12Mx

h3
z; �y ¼ � 12My

h3
z; �xy ¼

12Mxy

h3
z: ð2:15Þ

Determination of the remaining three stress components �xz; �yz; and �z
through the use of Hooke’s law is not possible due to the fourth and fifth assump-
tions (Sec. 1.3), since these stresses are not related to strains. The differential equa-

Fig. 2.4
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tions of equilibrium for a plate element under a general state of stress (1.10) (assum-
ing that the body forces are zero) serve well for this purpose, however. If the faces of
the plate are free of any tangent external loads, then �xz and �yz are zero for
z ¼ �h=2. From the first two Eqs (1.10) and Eqs (2.9) and (2.10), the shear stresses
�xz (Fig. 2.3(b)) and �yz are

�xz ¼ �
ðh=2

�h=2

@�x
@x

þ @�xy
@y

� �
dz ¼ E z2 � h2=4

� �
2 1� �2� � @

@x
r2w;

�yz ¼ �
ðh=2

�h=2

@�y
@y

þ @�yx
@x

� �
dz ¼ E z2 � h2=4

� �
2 1� �2� � @

@y
r2w;

ð2:16Þ

where r2ð Þ is the Laplace operator, given by

r2w ¼ @2w

@x2
þ @

2w

@y2
: ð2:17Þ

It is observed from Eqs (2.15) and (2.16) that the stress components �x; �y;
and �xy (in-plane stresses) vary linearly over the plate thickness, whereas the shear
stresses �xz and �yz vary according to a parabolic law, as shown in Fig. 2.5.

The component �z is determined by using the third of Eqs (1.10), upon sub-
stitution of �xz and �yz from Eqs (2.16) and integration. As a result, we obtain

�z ¼ � E

2ð1� �2Þ
h3

12
� h2z

4
þ z3

3

 !
r2r2w: ð2:18Þ

Fig. 2.5
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2.4 GOVERNING EQUATION FOR DEFLECTION OF PLATES IN
CARTESIAN COORDINATES

The components of stress (and, thus, the stress resultants and stress couples) gen-
erally vary from point to point in a loaded plate. These variations are governed by
the static conditions of equilibrium.

Consider equilibrium of an element dx	 dy of the plate subject to a vertical
distributed load of intensity pðx; yÞ applied to an upper surface of the plate, as shown
in Fig. 2.4. Since the stress resultants and stress couples are assumed to be applied to
the middle plane of this element, a distributed load p x; yð Þ is transferred to the
midplane. Note that as the element is very small, the force and moment components
may be considered to be distributed uniformly over the midplane of the plate ele-
ment: in Fig. 2.4 they are shown, for the sake of simplicity, by a single vector. As
shown in Fig. 2.4, in passing from the section x to the section xþ dx an intensity of
stress resultants changes by a value of partial differential, for example, by
@Mx ¼ @Mx

@x dx. The same is true for the sections y and yþ dy. For the system of
forces and moments shown in Fig. 2.4 , the following three independent conditions
of equilibrium may be set up:

(a) The force summation in the z axis gives

@Qx

@x
dxdyþ @Qy

@y
dxdyþ pdxdy ¼ 0;

from which

@Qx

@x
þ @Qy

@y
þ p ¼ 0: ð2:19Þ

(b) The moment summation about the x axis leads to

@Mxy

@x
dxdyþ @My

@y
dxdy�Qydxdy ¼ 0

or

@Mxy

@x
þ @My

@y
�Qy ¼ 0: ð2:20Þ

Note that products of infinitesimal terms, such as the moment of the load
p and the moment due to the change in Qy have been omitted in Eq.
(2.20) as terms with a higher order of smallness.

(c) The moment summation about the y axis results in

@Myx

@y
þ @Mx

@x
�Qx ¼ 0: ð2:21Þ

It follows from the expressions (2.20) and (2.21), that the shear forces Qx and Qy can
be expressed in terms of the moments, as follows:

Qx ¼ @Mx

@x
þ @Mxy

@y
ð2:22aÞ
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Qy ¼
@Mxy

@x
þ @My

@y
ð2:22bÞ

Here it has been taken into account thatMxy ¼ Myx: Substituting Eqs (2.22) into Eq.
(2.19), one finds the following:

@2Mx

@x2
þ 2

@2Mxy

@x@y
þ @

2My

@y2
¼ �pðx; yÞ: ð2:23Þ

Finally, introduction of the expressions for Mx; My; and Mxy from Eqs (2.13) into
Eq. (2.23) yields

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ p

D
: ð2:24Þ

This is the governing differential equation for the deflections for thin plate bending
analysis based on Kirchhoff’s assumptions. This equation was obtained by Lagrange
in 1811. Mathematically, the differential equation (2.24) can be classified as a linear
partial differential equation of the fourth order having constant coefficients [1,2].

Equation (2.24) may be rewritten, as follows:

r2ðr2wÞ ¼ r4w ¼ p

D
; ð2:25Þ

where

r4ð Þ � @4

@x4
þ 2

@4

@x2@y2
þ @4

@y4
ð2:26Þ

is commonly called the biharmonic operator.
Once a deflection function wðx; yÞ has been determined from Eq. (2.24), the

stress resultants and the stresses can be evaluated by using Eqs (2.13) and (2.15). In
order to determine the deflection function, it is required to integrate Eq. (2.24) with
the constants of integration dependent upon the appropriate boundary conditions.
We will discuss this procedure later.

Expressions for the vertical forces Qx and Qy, may now be written in terms of
the deflection w from Eqs (2.22) together with Eqs (2.13), as follows:

Qx ¼ �D
@

@x

@2w

@x2
þ @

2w

@y2

 !
¼ �D

@

@x
ðr2wÞ;

Qy ¼ �D
@

@y

@2w

@x2
þ @

2w

@y2

 !
¼ �D

@

@y
ðr2wÞ:

ð2:27Þ

Using Eqs (2.27) and (2.25), we can rewrite the expressions for the stress components
�xz; �yz; and �z, Eqs (2.16) and (2.18), as follows

�xz ¼
3Qx

2h
1� 2z

h

� �2
" #

; �yz ¼
3Qy

2h
1� 2z

h

� �2
" #

;
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�z ¼ � 3p

4

2

3
� 2z

h
þ 1

3

2z

h

� �3
" #

: ð2:28Þ

The maximum shear stress, as in the case of a beam of rectangular cross section,
occurs at z ¼ 0 (see Fig. 2.5), and is represented by the formula

max :�xz ¼
3

2

Qx

h
; max :�yz ¼

3

2

Qy

h
:

It is significant that the sum of the bending moments defined by Eqs (2.13) is
invariant; i.e.,

Mx þMy ¼ �Dð1þ �Þ @2w

@x2
þ @

2w

@y2

 !
¼ �Dð1þ �Þr2w

or

Mx þMy

1þ � ¼ �Dr2w ð2:29Þ

Letting M denote the moment function or the so-called moment sum,

M ¼ Mx þMy

1þ � ¼ �Dr2w; ð2:30Þ

the expressions for the shear forces can be written as

Qx ¼ @M

@x
; Qy ¼

@M

@y
ð2:31Þ

and we can represent Eq. (2.24) in the form

@2M

@x2
þ @

2M

@y2
¼ �p;

@2w

@x2
þ @

2w

@y2
¼ �M

D
:

ð2:32Þ

Thus, the plate bending equation r4w ¼ p=D is reduced to two second-order partial
differential equations which are sometimes preferred, depending upon the method of
solution to be employed.

Summarizing the arguments set forth in this section, we come to the conclusion
that the deformation of a plate under the action of the transverse load pðx; yÞ applied
to its upper plane is determined by the differential equation (2.24). This deformation
results from:

(a) bending produced by bending moments Mx and My, as well as by the
shear forces Qx and Qy;

(b) torsion produced by the twisting moments Mxy ¼ Myz.

Both of these phenomena are generally inseparable in a plate. Indeed, let us replace
the plate by a flooring composed of separate rods, each of which will bend under the
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action of the load acting on it irrespective of the neighboring rods. Let them now be
tied together in a solid slab (plate). If we load only one rod, then, deflecting, it will
carry along the adjacent rods, applying to their faces those shear forces which we
have designated here by Qx and Qy. These forces will cause rotation of the cross
section, i.e., twisting of the rod. This approximation of a plate with a grillage of rods
(or beams) is known as the ‘‘grillage, or gridwork analogy’’ [3].

2.5 BOUNDARY CONDITIONS

As pointed out earlier, the boundary conditions are the known conditions on the
surfaces of the plate which must be prescribed in advance in order to obtain the
solution of Eq. (2.24) corresponding to a particular problem. Such conditions
include the load pðx; yÞ on the upper and lower faces of the plate; however, the
load has been taken into account in the formulation of the general problem of
bending of plates and it enters in the right-hand side of Eq. (2.24). It remains to
clarify the conditions on the cylindrical surface, i.e., at the edges of the plate,
depending on the fastening or supporting conditions. For a plate, the solution of
Eq. (2.24) requires that two boundary conditions be satisfied at each edge. These
may be a given deflection and slope, or force and moment, or some combination of
these.

For the sake of simplicity, let us begin with the case of rectangular plate whose
edges are parallel to the axes Ox and Oy. Figure 2.6 shows the rectangular plate one
edge of which (y ¼ 0) is built-in, the edge x ¼ a is simply supported, the edge x ¼ 0 is
supported by a beam, and the edge y ¼ b is free.

We consider below all the above-mentioned boundary conditions:
(1) Clamped, or built-in, or fixed edge y ¼ 0
At the clamped edge y ¼ 0 the deflection and slope are zero, i.e.,

w ¼ 0jy¼0 and #y �
@w

@y
¼ 0

				
y¼0

: ð2:33Þ

(2) Simply supported edge x ¼ a
At these edges the deflection and bending moment Mx are both zero, i.e.,

w ¼ 0jx¼a; Mx ¼ �D
@2w

@x2
þ � @

2w

@y2

 !
¼ 0

					
x¼a

: ð2:34Þ

The first of these equations implies that along the edge x ¼ a all the derivatives
of w with respect to y are zero, i.e., if x ¼ a and w ¼ 0, then @w

@y ¼ @2w
@y2

¼ 0.
It follows that conditions expressed by Eqs (2.34) may appear in the following

equivalent form:

w ¼ 0jx¼a;
@2w

@x2
¼ 0

					
x¼a

: ð2:35Þ

(3) Free edge y ¼ b
Suppose that the edge y ¼ b is perfectly free. Since no stresses act over this

edge, then it is reasonable to equate all the stress resultants and stress couples
occurring at points of this edge to zero, i.e.,
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My ¼ 0
		
y¼b
; Qy ¼ 0

		
y¼b
; Myx ¼ 0

		
y¼b

ð2:36Þ

and this gives three boundary conditions. These conditions were formulated by
Poisson.

It has been mentioned earlier that three boundary conditions are too many to
be accommodated in the governing differential equation (2.24). Kirchhoff suggested
the following way to overcome this difficulty. He showed that conditions imposed on
the twisting moment and shear force are not independent for the presented small-
deflection plate bending theory and may be reduced to one condition only. It should
be noted that Lord Kelvin (Thomson) gave a physical explanation of this reduction
[4].

Figure 2.7a shows two adjacent elements, each of length dx belonging to the
edge y ¼ b. It is seen that, a twisting moment Myxdx acts on the left-hand element,
while the right-hand element is subjected to Myx þ @Myx=@x

� �
dx

� �
dx. These

moments are resultant couples produced by a system of horizontal shear stresses
�yx. Replace them by couples of vertical forces Myx and Myx þ @Myx

@x dx with the

Fig. 2.6
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moment arm dx having the same moment (Fig. 2.7b), i.e., as if rotating the above-
mentioned couples of horizontal forces through 90
.

Such statically equivalent replacement of couples of horizontal forces by cou-
ples of vertical forces is well tolerable in the context of Kirchhoff’s plate bending
theory. Indeed, small elements to which they are applied can be considered as abso-
lutely rigid bodies (owing to assumption (4)). It is known that the above-mentioned
replacement is quite legal for such a body because it does not disturb the equilibrium
conditions, and any moment may be considered as a free vector.

Forces Myx and Myx þ @Myx

@x dx act along the line mn (Fig. 2.7b) in opposite
directions. Having done this for all elements of the edge y ¼ b we see that at the
boundaries of two neighboring elements a single unbalanced force ð@Myx=@xÞdx is
applied at points of the middle plane (Fig. 2.7c).

Thus, we have established that the twisting momentMyx is statically equivalent
to a distributed shear force of an intensity @Myx=@x along the edge y ¼ b, for a
smooth boundary. Proceeding from this, Kirchhoff proposed that the three bound-
ary conditions at the free edge be combined into two by equating to zero the bending
moment My and the so-called effective shear force per unit length Vy. The latter is
equal to the sum of the shear force Qy plus an unbalanced force @Myx=@x, which
reflects the influence of the twisting moment Myx (for the edge y ¼ b). Now we arrive
at the following two conditions at the free edge:

My ¼ 0
		
y¼b
; Vy ¼ 0

		
y¼b

ð2:37Þ

where

Vy ¼ Qy þ
@Mxy

@x
: ð2:38Þ

The effective shear force Vy can be expressed in terms of the deflection w using Eqs
(2.13) and (2.27). As a result, we obtain

Fig. 2.7
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Vy ¼ �D
@

@y

@2w

@y2
þ ð2� �Þ @

2w

@x2

" #
: ð2:39aÞ

In a similar manner, we can obtain the effective shear force at the edge parallel
to the x axis, i.e.,

Vx ¼ �D
@

@x

@2w

@x2
þ ð2� �Þ @

2w

@y2

" #
ð2:39bÞ

Finally, the boundary conditions (2.37) may be rewritten in terms of the deflec-
tion as follows

@2w

@y2
þ � @

2w

@x2
¼ 0

					
y¼b

and� @

@y

@2w

@y2
þ ð2� �Þ @

2w

@x2

" #
¼ 0

					
y¼b

: ð2:40Þ

Similarly, the boundary conditions for the free edge parallel to the x axis can be
formulated. This form of the boundary conditions for a free edge is conventional.

It should be noted that transforming the twisting moments – as it was men-
tioned above – we obtain not only continuously distributed edge forces Vx and Vy

but, in addition, also nonvanishing, finite concentrated forces at corner points (on
each side of a corner) of a rectangular plate. These are numerically equal to the value
of the corresponding twisting moment (Fig. 2.8). The direction and the total magni-
tude of the corner forces can be established by analyzing boundary conditions of a
plate and the deflection surface produced by a given loading.

The concept of the corner forces is not limited to the intersection of two free
boundaries, where they obviously must vanish. In general, any right angle corner
where at least one of the intersecting boundaries can develop Mxy and Myx will have
a corner force. Consider, as an example, the case of symmetrically loaded, simply
supported rectangular plate, as shown in Fig. 2.9.

At the corners, x ¼ a and y ¼ b, the above-discussed action of the twisting
moments (because Mxy ¼ Myx) results in

Fig. 2.8
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S ¼ 2Mxy ¼ �2D 1� �ð Þ @
2w

@x@y

					
x¼a;y¼b

: ð2:41Þ

Thus, the distributed twisting moments are statically equivalent to the distributed
edge forces @Myx=@x and @Mxy=@y over the plate boundary, as well as to the con-
centrated corner forces, S ¼ 2Mxy for a given rectangular plate. Note that the direc-
tions of the concentrated corner forces, S, are shown in Fig. 2.9 for a symmetrical
downward directed loading of the plate. At the origin of the coordinate system,
taking into account the nature of torsion of an adjacent element, we obtain for
the moment Mxy and, consequently, for the force S, the minus sign. If we rotate
the twisting moment Mxy < 0 through 90
, then we obtain at this corner point
(x ¼ 0; y ¼ 0) a downward force S ¼ 2Mxy. At other corner points the signs of
Mxy will alternate, but the above-mentioned corner forces will be directed downward
everywhere for a symmetrical loading of a plate.

The concentrated corner force for plates having various boundary conditions
may be determined similarly. In general, any right angle corner where at least one of
the intersecting boundaries can develop Mxy or Myx will have a corner force. For
instance, when two adjacent plate edges are fixed or free, we have S ¼ 0, since along
these edges no twisting moments exist. If one edge of a plate is fixed and another one
(perpendicular to the fixed edge) is simply supported, then S ¼ Mxy. The case of
non-right angle intersections will be examined later.

It is quite valid to utilize the above replacement of the shear force Qy and
twisting moment Mxy by the effective shear force Vy in the context of the
approximate Kirchhoff’s theory of plate bending, as it was mentioned earlier.
But with respect to a real plate, equating of the effective shear force to zero
does not mean that both the shear force and twisting moment are necessarily
equal to zero. Hence, according to Kirchhoff’s theory, we obtain such a solution
when along a free edge, e.g., y ¼ const, some system of shear stresses �yz (corre-
sponding to Qy) and �yx (corresponding to Myx) is applied (of course, such a
system of stresses and corresponding to them the stress resultants and stress
couples appear on this free edge). This system is mutually balanced on the
edge y ¼ const and it causes an additional stress field. The latter, however, due

Fig. 2.9
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to Saint-Venant’s principle, decays rapidly as we move away from this edge into
the interior of the plate. The above-mentioned additional stress field cannot be
determined by using the governing differential equation (2.24). Corrections can be
obtained using the plate bending equations with regard to the shear strains �xz
and �yz and will be discussed in Sec. 7.3. These corrections, as a rule, are neg-
ligible for solid isotropic plates.

(4) Edge x ¼ 0 supported by a beam
The boundary conditions of the type (2.33), (2.35), and (2.37) are called homogeneous
boundary conditions. Nonhomogeneous boundary conditions are commonly used in
many important engineering structures – for example, when a plate is supported by
an edge beam.

Assume that the cross section of the edge beam is symmetrical with respect to
the middle surface of the plate and the edge beam has flexural and torsional rigid-
ities. Since the edge beam and the plate are built monotonically (Fig. 2.10), they must
have the same displacements and slopes.

wb ¼ w
		
x¼0

and #b ¼ #
		
x¼0

or
@w

@x

� �
b

¼ @w

@x

				
x¼0

; ð2:42Þ

where the subscript b refers to the edge beam, and quantities relating to the plate
have no subscripts.

Consider an element dy of the edge beam as a free body, as shown in Fig. 2.10.
Equilibrium conditions of this element result in the following equations:X

Fz ¼ 0:�Qb � VxdyþQb þ
dQb

dy
dy ¼ 0

X
My ¼ 0:þ T þMxdy� T þ dT

dy
dy

� �
¼ 0 or

Vx ¼
dQb

dy
ð0; yÞ; Mx ¼

dT

dy
ð0; yÞ ðaÞ

where T is the twisting moment in the beam.
As it follows from the beam theory [5]

Fig. 2.10
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dQb

dy
ð0; yÞ ¼ � EIð Þb

@4wb

@y4
ð0; yÞ and ðbÞ

Tð0; yÞ ¼ � GJð Þb
d#b
dy

ð0; yÞ ¼ � GJð Þb
@2wb

@x@y
ð0; yÞ; ðcÞ

where ðEIÞb and ðGJÞb are the flexural rigidity and the torsional stiffness of the beam
cross section, respectively.

Substituting (b) and (c) into Eq. (a) and taking into account the compatibility
conditions (2.42), gives the boundary conditions for the plate edge x ¼ 0 supported
by the beam:

Vx ¼ � EIð Þb
@4wb

@y4

					
x¼0

; Mx ¼ � GJð Þb
@3wb

@x@y2

					
x¼0

ð2:43aÞ

Using the expressions for Mx and Vx, Eqs. (2.13), (2.39b), and Eqs (2.42), we can
rewrite the boundary conditions (2.43a) in terms of w, as follows:

D
@3w

@x3
þ ð2� �Þ @

3w

@x@y2

" #
¼ EIð Þb

@4w

@y4

					
x¼0

; D
@2w

@x2
þ � @

2w

@y2

" #
¼ GJð Þb

@3w

@x@y2

					
x¼0

:

ð2:43bÞ
Similar expressions can be written for edges y ¼ 0; b.

Let us study the boundary conditions on skew edges. Consider a vertical sec-
tion of the plate whose normal n makes an angle 	 with the x axis (Fig. 2.11a). Take
the origin of the Cartesian coordinate system n (outward normal to the edge) and t
(tangent to the edge) at some point of the edge. In a general case, the normal bending
Mn and twisting Mnt moments, as well the transverse shear force Qn will act at this
section. Figure 2.11b shows the state of stress of a layer of the plate with the
coordinate z > 0. The above moments at any point of the skew edge are

Fig. 2.11
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Mn ¼
ðh=2

�h=2

�nzdz; Mnt ¼
ðh=2

�h=2

�ntzdz: ð2:44Þ

The relationship between the stress components shown in Fig. 2.11b is given by [6,7]

�n ¼ �x cos
2 	þ �y sin2 	þ 2�xy cos	 sin 	;

�nt ¼ �xy cos 2	� ð�x � �yÞ sin 	 cos	:

Substituting the above into Eqs (2.44), integrating over the plate thickness and
taking into account Eqs (2.11), one obtains the following relationships

Mn ¼ Mx cos
2 	þMy sin

2 	þMxy sin 2	;

Mnt ¼ Mxy cos 2	� ðMx �MyÞ sin 	 cos	:
ð2:45Þ

The shear force Qn acting at a section of the edge having a normal n can be evaluated
from condition of equilibrium of the plate element shown in Fig. 2.11a, as follows:

Qnds�Qxdy�Qydx ¼ 0; from which

Qn ¼ Qx cos	þQy sin 	:
ð2:46Þ

The effective shear force at a point of the skew edge can be determined similarly to
(2.38), i.e.,

Vn ¼ Qn þ
@Mnt

@t
; ð2:47Þ

where @=@t denotes a differentiation with respect to the tangent of the skew edge.
The boundary conditions discussed above for rectilinear edge can be general-

ized to some curvilinear edge. Let n and t be the outward normal making the angle 	
with the x axis and tangent to the curvilinear edge at a point of interest (Fig. 2.12).
Then the prescribed boundary conditions (2.33), (2.35), and (2.37), taking into
account (2.47), can be rewritten at an arbitrary point of the above curvilinear
edge, as follows:

Fig. 2.12
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(1) Built-in curvilinear edge

w ¼ 0;
@w

@n
¼ 0: ð2:48aÞ

(2) Simply supported edge

w ¼ 0; Mn ¼ 0: ð2:48bÞ

(3) Free curvilinear edge

Mn ¼ 0;Vn ¼ Qn þ
@Mnt

@s
¼ 0: ð2:48cÞ

(4) Curvilinear edge is elastically fixed

wþ 
1Vn ¼ 0;
@w

@n
þ 
2Mn ¼ 0; ð2:48dÞ

where Mn and Vn are the normal bending moment and the normal effective shear
force, respectively, defined by expressions (2.45) and (2.47). They can also be
expressed in terms of the deflection w using Eqs (2.45)–(2.47) and Eqs (2.13) and
(2.27). In Eqs (2.48) 
1 and 
2 are some coefficients that characterize a support
compliance.

If adjacent edges of a plate have slopes of the normals 	1 and 	2 (Fig. 2.13),
then the concentrated force S at a common corner point will be equal to

S ¼ Mntð Þ	1� Mntð Þ	2 : ð2:49Þ

When 	1 ¼ 0 and 	2 ¼ �=2 we will obtain the expression (2.41).
It is observed from the above that the boundary conditions are of the two basic

kinds: geometric or kinematic boundary conditions describe edge constraint pertaining
to deflection or slope; static or natural boundary conditions impose some restrictions
on the internal forces and moments at the edges of the plate. Accordingly, in Eq.
(2.48a) both conditions are kinematic; in Eq. (2.48c) they are both static; and in Eq.
(2.48b) the boundary conditions are mixed.

Fig. 2.13
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2.6 VARIATIONAL FORMULATION OF PLATE BENDING PROBLEMS

It is known from the theory of elasticity that governing equations for stresses,
strains, and displacements can be represented in the differential form. However,
this is not a unique possible formulation of the problem for finding the stress–strain
field of an elastic body. The problem of determining stresses, strains, and displace-
ments can be reduced to some definite integral of one or another type of these
functions called functionals. Then, the functions themselves (stresses, strains, and
displacements) reflecting a real state of a body can be found from conditions of
extremum for this functional. The mathematical techniques of such an approach is
studied in the division of mathematics called the calculus of variation. Therefore,
some postulates and statements that formulate properties of these functionals in the
theory of elasticity are referred to as variational principles. The latter represent some
basic theorems expressed in the form of integral equalities connecting stresses,
strains, and displacements throughout the volume of a body and based on the
properties of the work done by external and internal forces. A variety of powerful
and efficient approximate methods for analysis of various linear and nonlinear pro-
blems of solid mechanics are based on the variational principles. Some of these
methods will be described further in Chapter 6.

2.6.1 Strain energy of plates

A functional is a scalar quantity depending on some function or several functions, as
from independent variables. The functional can be treated as a function of an infinite
number of independent variables. The subject matter of the calculus of variation is
searching of unknown functions fiðx; y; zÞ that give a maximum (minimum) or sta-
tionary value of a functional. For example,

� ¼
ð ð
V

ð
F f1ðx; y; zÞ; f2ðx; y; zÞ; . . . ; fnðx; y; zÞ; f 0

1 ðx; y; zÞ; . . . ;
�

f 0
n ðx; y; zÞ; x; y; z

�
dV:

The above-mentioned functions for which the functional is maximum (minimum) or
stationary are referred to as extremals of the given functional [8–11].

Let us consider a functional expressing the total potential energy of a deformed
elastic body and the loads acting on it. The total potential energy, �, consists of the
strain energy of deformation (the potential of internal forces), U, and the potential
energy of external forces (the potential of external forces), �, i.e.,

� ¼ U þ�: ð2:50Þ

By convention, let us assume that the potential energy at the initial, undeformed
state, �0, is zero. Hence, the total energy � presents a variation of the energy of
internal and external forces in the transition from initial to deformed states. The
potential energy of a body is measured by the work done by external and internal
forces when this body returns from its final to an initial position (where it was
mentioned above, �0 ¼ 0).

Our study is mainly limited to linearly elastic bodies that dissipate no energy
and have only one equilibrium configuration. We also require that loads keep the
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same orientation in space as they move. Such loads are called conservative. A
mechanical system is called conservative if zero net work is done in carrying the
system around any closed path: that is, in arbitrary changing a configuration and
then restoring it. An extension of this study to nonlinear, or nonconservative, pro-
blems is possible.

First, let us set up an expression for the potential of the internal forces (strain
energy of deformation). This potential is equal to the negative work of the internal
forces, i.e., U ¼ �Wi. Since the work done by the internal forces, Wi, is always
negative (because displacements always occur in the opposite direction with respect
to applied internal forces), the strain energy is positive.

The strain energy stored in an elastic body for a general state of stress is given
by [6,7]

U ¼ 1

2

ð ð ð
V

�x"x þ �y"y þ �z"z þ �xy�xy þ �xz�xz þ �yz�yz
� �

dV: ð2:51Þ

The integration extends over the entire body volume V . Based upon the assumptions
of Kirchhoff’s small-deflection plate bending theory, the stress components �z; �xz;
and �yz may be omitted. Thus, introducing the generalized Hooke’s law, the above
expression reduces to the following form, involving only stresses and elastic con-
stants,

U ¼
ð ð ð
V

1

2E
�2x þ �2y � 2��x�y
� �þ 1þ �

E
�2xy

� �
dV : ð2:52Þ

Substituting for the stress components from Eq. (2.10) into Eq. (2.52) and integrat-
ing it over the thickness of the plate, we obtain

U ¼ 1

2

ð ð
A

D
@2w

@x2

 !2

þ @2w

@y2

 !2

þ 2�
@2w

@x2
@2w

@y2
þ 2ð1� �Þ @2w

@x@y

 !2
2
4

3
5dA ð2:53Þ

or alternatively

U ¼ 1

2

ð ð
A

D
@2w

@x2
þ @

2w

@y2

 !2

� 2ð1� �Þ @2w

@x2
@2w

@y2
� @2w

@x@y

 !2
2
4

3
5

8<
:

9=
;dA ð2:54Þ

where A is the area of the plate middle surface.
We can also rewrite the expression (2.53) for the strain energy in terms of the

bending and twisting moments, and the corresponding curvatures by the use of Eqs
(2.13). As a result, for plates of a constant thickness the strain energy is

U ¼ 1

2

ð ð
A

Mx�x þMy�y þ 2Mxy�xy
� �

dA: ð2:55Þ
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We observe from Eqs (2.53) and (2.54) that the strain energy is a nonlinear (quad-
ratic) function of deformations. Hence, the principle of superposition is therefore not
valid for the strain energy.

The expressions (2.53) and (2.54) are valid for plates of constant and variable
thickness. It should be noted that the following integral

ð ð
A

@2w

@x2
@2w

@y2
� @2w

@x@y

 !2
2
4

3
5dA ð2:56Þ

entering in Eq (2.54) is equal to zero for fixed supports and for simply supported
edges of plates, whose contour is traced by straight lines. This statement can be easily
proven by transforming the integral (2.56) over the plate surface into the line integral
over the plate boundary [3].

The potential of external forces, �, is defined as the work done by external
forces through the corresponding displacements, assuming that these forces remain
unchanged during the deformation. Further, when a positive displacement occurs, �
decreases, so the potential of the external forces is always negative and may be
evaluated as the product of these forces and the corresponding final displacement
components. Determine the potential, �p, of the distributed load pðx; yÞ and con-
centrated Pi andMj forces and moments applied to the middle surface of the plate as
follows:

�p ¼ �
ð ð
A

pðx; yÞwdA þ
X
i

Piwi þ
X
j

Mj#j

2
4

3
5; ð2:57Þ

where wi and #j are the deflection and the slope of the normal at the point of
application of the ith force and jth moment in the plane of the action of this moment,
respectively.

In the expression (2.57) the potential of edge loads, ��, is not included. These
loads have potentials only if compatible boundary displacements are permitted. In
such cases, the potentials of the edge moments mn;mt and the transverse edge forces
Vn can be expressed as

�� ¼ �
þ
�

Vnwþmn

@w

@n
þmnt

@w

@t

� �
ds; ð2:58Þ

where @w=@n and @w=@t are the derivatives of w with respect to the outward normal
and the tangent directions, respectively, along the plate boundary to the boundary �.

The total potential of the external loads applied to the plate surface and to its
boundary is

� ¼ �p þ��; ð2:59Þ

where �p and �� are given by the expressions (2.57) and (2.58).
Using expressions (2.50), (2.54), (2.57) and (2.58), we can write the total poten-

tial energy of the plate in bending in the Cartesian coordinates as follows
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� ¼ 1

2

ð ð
A

D
@2w

@x2
þ @

2w

@y2

 !2

� 2ð1� �Þ @2w

@x2
@2w

@y2
� @2w

@x@y

 !2
2
4

3
5

8<
:

9=
;dA

�
ð ð
A

pðx; yÞwdAþ
X
i

Pwi þ
X
j

Mj#jþ
2
4

þ
�

Vnwn þmn

@w

@n
þmnt

@w

@t

� �
ds

3
5;

ð2:60Þ

or alternatively

� ¼ 1

2

ð ð
A

Mx�x þMy�y þ 2Mxy�xy
� �

dA

�
ð ð
A

pðx; yÞwdAþ
X
i

Piwi þ
X
j

Mj#jþ
2
4

þ
�

Vnwn þmn

@w

@n
þmnt

@w

@t

� �
ds

3
5:

ð2:61Þ

As is seen from Eq. (2.58) that the value of the total potential energy of
bending of plates is determined by an assignment of deflection w as a function of
independent variables (x and y in the Cartesian coordinate system).

2.6.2 Variational principles

Let us consider some general concepts of the calculus of variation. A variation means
an infinitesimal increment of a function for fixed values of its independent variables.
The variation is designated by the symbol �. The variational symbol � may be treated
as the differential operator d. The only difference between them lies in the fact that
the symbol � refers to some possible variations of a given function while the symbol d
is associated with real variations of the same function. In what follows, only the
following three operations are needed:

dð�wÞ
dx

¼ �
dw

dx

� �
; �ðw2Þ ¼ 2wð�wÞ;

ð
ð�wÞdx ¼ �

ð
wdx:

Consider an elastic body in equilibrium. This means that the body subjected
to the maximum values of static (i.e., slowly piled-up) external forces has already
reached its final state of deformation. Now we disturb this equilibrium condition
by introducing small, arbitrary, but kinematically compatible, displacements.
These displacements need not actually take place and need not be infinitesimal.
Only one restriction is imposed on these displacements: they must be compatible
with the support conditions (as discussed later, there are cases when satisfaction
of geometric (or kinematic) boundary conditions is sufficient) and internal com-
patibility of the body. These displacements are called admissible virtual, because
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they are imagined to take place (i.e., hypothetical), with the actual loads acting at
their fixed values. The admissible virtual displacement produces an admissible
configuration of the body. It follows from the above that virtual displacements
cannot affect the equilibrium of the given system, when the full loads have been
applied. Neither external loads nor internal forces and moments are altered by a
virtual displacement [8–12, 14].

Now we can introduce the general variational principles of solid mechanics.

(a) The Principle of Conservation of Energy

This principle states that the strain energy stored in an elastic body is equal to the work
done by the applied external loads during the loading process, if we assume that there
are no thermal or inertial effects.

(b) The Principle of Virtual Work

The work done by actual forces through a virtual displacement of the actual con-
figuration is called virtual work. It is assumed that during the virtual displacements
all forces are held constant. The virtual work is designated by �W .

The principle of virtual work is formulated as follows:

An elastic body is in equilibrium if and only if the total virtual work done by external

and internal forces is zero for any admissible virtual displacements, i.e.,

�W ¼ �Wi þ �We ¼ 0 (2.62)

where �Wi and �We are the virtual works done by internal and external forces,
respectively. As mentioned earlier, �Wi is negative. This principle was first pro-
posed by J. Bernoulli in 1771. It can be interpreted as follows: if a body is in
equilibrium then its resultant force and resultant couple are both zero; so, they
produce no work.

(c) The Principle of Minimum Potential Energy

The principle of minimum potential energy may be looked upon as a specialization
of the principle of virtual work (2.62). Indeed, the potential energy of the internal
forces is equal to the negative work of the internal forces, i.e., U ¼ �Wi. On the
other hand, We ¼ ��. Therefore, we can write the equality (2.62), as follows:

�W ¼ ��U � �� ¼ 0; ð2:63Þ
where �U þ �� ¼ �ðU þ�Þ ¼ �� (because � can be treated as a differential of a
function) and �� is the variation in the total potential energy due to introducing
compatible virtual displacements and is given by Eq. (2.60) or Eq. (2.61). Finally, the
equality (2.63) can be written as

�� ¼ 0: ð2:64Þ
This equality expresses the principle of minimum potential energy proposed by
Lagrange.

From calculus, an equality df ¼ 0 means that the function f has an extremum
(or a value corresponding to a point of inflection). It can be shown [9,10] that a
variation of the total potential energy during any admissible virtual displacement
(variation of the displacement) is positive for any stable configuration of equili-
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brium. Hence, in this case, the total potential energy of a given system has a mini-
mum. From the uniqueness theorem [6,7], the problem of the theory of elasticity,
based on assumptions of small displacements and deformations defines only one
equilibrium configuration, and this configuration of equilibrium is stable. Thus, if
the small-deflection theory of an elastic body is being studied, then the potential
energy is a minimum in an equilibrium state. So, the principle of minimum potential
energy, proposed by Lagrange, can be formulated, as follows:

Among all admissible configurations of an elastic body, the actual configuration (that

satisfies static equilibrium conditions) makes the total potential energy, �, stationary

with respect to all small admissible virtual displacements. For stable equilibrium, � is a

minimum.

Notice that the above principle applies to a conservative system only.
It can be shown that the governing differential equation (2.24) and the bound-

ary conditions (2.48) can be deduced from Lagrange’s variational principle (2.64)
[3,8–12]. However, the key importance of the variational principles discussed above
is that they can be used to obtain approximate solutions of complicated problems of
solid mechanics, in particular, plate-shell bending problems. These are obtained
while avoiding mathematical difficulties associated with integration of differential
equations in partial derivatives. The corresponding methods, called variational meth-
ods and based on the above-mentioned principles, are discussed further in Chapter 6.
More complete information on the variational principles and their application in
mechanics is available in the literature [8–12].

PROBLEMS

2.1 Verify the result given by Eq. (2.18).

2.2 Derive the governing differential equation for deflections of a plate subjected to a

distributed moment load mxðx; yÞ and myðx; yÞ applied to the middle surface.

2.3 Show that at the corner of a polygonal simply supported plate, Mxy ¼ 0 unless the

corner is 90
.
2.4 If a lateral deflection w is a known function of x and y, what are the maximum slope

@w=@n and the direction of axis n with respect to the x axis in terms of @w=@x and

@w=@y?
2.5 Show that the sum of bending curvatures in any two mutually perpendicular directions,

n and t, at any point of the middle surface, is a constant, i.e.,

�x þ �y ¼ �n þ �t ¼ const:

2.6 Verify the expression given by Eq. (2.61).

2.7 Derive the expressions for the boundary quantities Mn;Mnt; and Vn in terms of the

deflection w at a regular (smooth) point of the curvilinear contour of the plate using:

(a) the local coordinates n and t where the coordinate n coincides with the direction of

the outward normal and t – with the tangent direction to the boundary; (b) the intrinsic

coordinates n and s, where s, is the arc length over the boundary.

Hint: use the following relations for part (b)

@n

@s
¼ 1

�
t;
@t

@s
¼ � 1

�
n

where n and t are the unit vectors of the intrinsic coordinate system directed along the

outward normal and tangent to the boundary, respectively.
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2.8 Derive Eq. (2.24) directly from the third equation of (1.10) by using the relations (2.16)

and (2.17).

2.9 Assume that shear stresses in the plate are distributed according to the parabolic law

for �h=2 � z � h=2. Show that when the expression �xz ¼ 6Qx=h
3

� �
h=2ð Þ2�z2

� �
is sub-

stituted into the first relation (2.12) an identity is obtained.

2.10 Prove that the integral (2.56) is equal to zero for fixed supports and for simply sup-

ported edges.
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3

Rectangular Plates

3.1 INTRODUCTION

We begin the application of the developed plate bending theory with thin rectangular
plates. These plates represent an excellent model for development and as a check of
various methods for solving the governing differential equation (2.24).

In this chapter we consider some mathematically ‘‘exact’’ solutions in the form
of double and single trigonometric series applied to rectangular plates with various
types of supports and transverse loads, plates on an elastic foundation, continuous
plates, etc.

3.2 THE ELEMENTARY CASES OF PLATE BENDING

Let us consider some elementary examples of plate bending of great importance for
understanding how a plate resists the applied loads in bending. In addition, these
elementary examples enable one to obtain closed-form solutions of the governing
differential equation (2.24).

3.2.1 Cylindrical bending of a plate

Consider an infinitely long plate in the y axis direction. Assume that the plate is
subjected to a transverse load which is a function of the variable x only, i.e., p ¼ pðxÞ
(Fig. 3.1a). In this case all the strips of a unit width parallel to the x axis and isolated
from the plate will bend identically. The plate as a whole is found to be bent over the
cylindrical surface w ¼ wðxÞ. Setting all the derivatives with respect to y equal zero in
Eq. (2.24), we obtain the following equation for the deflection:

d4w

dx4
¼ pðxÞ

D
: ð3:1Þ
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We have applied here the ordinary derivative notation since w depends now
only on the variable x. Equation (3.1) describes a cylindrical bending of thin plates. It
is seen that this equation coincides with the corresponding equation of bending of a
beam if we replace the flexural rigidity of the beam, EI , by the flexural rigidity of a
plate, D. Since D > EI , the strip of the unit width within the plate (it is cross-hatched
in Fig. 3.1a) is always stiffer than an isolated beam having the same span and
thickness.

An integration of Eq. (3.1) should present no problems. Let, for example,
p ¼ p0

x
a
, then the general solution of Eq. (3.1) is of the following form:

w ¼ wh þ wp ¼ C1 þ C2xþ C3x
2 þ C4x

3 þ p0x
5

120aD
; ð3:2Þ

where wh is a solution of homogeneous equation (3.1) and wp is a particular solution
depending on the right-hand side of Eq. (3.1), i.e., on a given type of the applied
loading.

The boundary conditions for the plate-strip can be written as follows (Fig.
3.1a)

w ¼ 0jx¼0;
dw

dx
¼ 0

				
x¼0

and w ¼ 0jx¼a;Mx ¼ �D
d2w

dx2
¼ 0

					
x¼a

: ð3:3Þ

The constants of integration Ci ði ¼ 1; 2; 3; 4Þ can be evaluated from the
boundary conditions (3.3). Substituting for w from (3.2) into (3.3), we obtain the
following:

C1 ¼ C2 ¼ 0;C3 ¼
7p0a

2

240D
; C4 ¼

9p0a

240D
:

Substituting the above into Eq. (3.2), yields Eq. (3.4), as shown below:

w ¼ p0a
4

240D
7
x2

a2
� 9

x3

a3
þ 2

x5

a5

 !
ð3:4Þ

This is the equation for the deflection of the plate in cylindrical bending.
The bending moments Mx and My may be obtained from Eqs (2.13) making

all the derivatives of w with respect to y equal zero, i.e.,

Fig. 3.1
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Mx ¼ �D
d2w

dx2
; My ¼ ��Dd2w

dx2
¼ �Mx; Mxy ¼ 0: ð3:5Þ

Substituting Eq. (3.4) into Eq. (3.5), we obtain

Mx ¼ � p0a
2

120
7� 27

x

a
þ 20

x3

a3

 !
: ð3:6Þ

The moment My ¼ �Mx is proportional to Mx.
A cylindrical bending of a plate with a finite size in the y direction is possible

only if the moment My will be applied to edges that are parallel to the x axis, as
shown for the strip isolated from an infinite plate of Fig. 3.1b. In the absence of these
moments, the surface of deflections will deviate from the cylindrical one over part of
the length along the y axis.

3.2.2 Pure bending of plates

Consider a rectangular plate with a free boundary and assume that this plate is
subjected to distributed bending moments over its edgesMx ¼ m1 ¼ const andMy ¼
m2 ¼ const (Fig. 3.2). In this particular case, the governing differential equation
(2.24) becomes

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ 0: ð3:7Þ

This equation will be satisfied if we make

w ¼ 0:5 C1x
2 þ C2y

2
� �

: ð3:8Þ
The constants of integration C1 and C2 may be evaluated from the following bound-
ary conditions:

Mx ¼ m1 and My ¼ m2: ð3:9Þ

Fig. 3.2
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Using Eqs (2.13), (3.8), and (3.9), we obtain

C1 ¼
�m2 �m1

Dð1� �2Þ ; C2 ¼
�m1 �m2

Dð1� �2Þ :

Substituting the above into Eq. (3.8) yields the deflection surface, as shown below:

w ¼ 1

2Dð1� �2Þ ð�m2 �m1Þx2 þ ð�m1 �m2Þy2
� � ð3:10Þ

Hence, in all sections of the plate parallel to the x and y axes, only the constant
bending moments Mx ¼ m1 and My ¼ m2 will act. Other stress resultants and stress
couples are zero, i.e.,

Mxy ¼ Qx ¼ Qy ¼ 0:

This case of bending of plates may be referred to as a pure bending.
Let us consider some particular cases of pure bending of plates.

(a) Let m1 ¼ m2 ¼ m.
Then,

w ¼ � m

2Dð1þ �Þ ðx
2 þ y2Þ: ð3:11Þ

This is an equation of the elliptic paraboloid of revolution. The curved plate in this
case represents a part of a sphere because the radii of curvature are the same at all
the planes and all the points of the plate.

(b) Let m1 ¼ m;m2 ¼ 0 (Fig. 3.3).
Then,

w ¼ m

2Dð1� �2Þ �x2 þ �y2� �
: ð3:12Þ

A surface described by this equation has a saddle shape and is called the hyperbolic
paraboloid of revolution (Fig. 3.3). Horizontals of this surface are hyperbolas, asymp-
totes of which are given by the straight lines x

y
¼ � ffiffiffi

�
p

. As is seen, due to the Poisson
effect the plate bends not only in the plane of the applied bending moment Mx ¼
m1 ¼ m but it also has an opposite bending in the perpendicular plane.

Fig. 3.3
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(c) Let m1 ¼ m;m2 ¼ �m (Fig. 3.4a).
Then

w ¼ m

2Dð1� �Þ ð�x2 þ y2Þ: ð3:13Þ

This is an equation of an hyperbolic paraboloid with asymptotes inclined at 45
 to the
x and y axes.

Let us determine the moments Mn and Mnt from Eqs (2.45) in skew sections
that are parallel to the asymptotes. Letting 	 ¼ 45
, we obtain

Mn ¼ 0; Mnt ¼ �m:

Thus, a part of the plate isolated from the whole plate and equally inclined to the x
and y axes will be loaded along its boundary by uniform twisting moments of
intensity m. Hence, this part of the plate is subjected to pure twisting (Fig. 3.4b).
Let us replace the twisting moments by the effective shear forces V	, rotating these
moments through 90
 (see Sec. 2.4). Along the whole sides of the isolated part we
obtain V	 ¼ 0, but at the corner points the concentrated forces S ¼ 2m are applied.
Thus, for the model of Kirchhoff’s plate, an application of self-balanced concen-
trated forces at corners of a rectangular plate produces a deformation of pure torsion
because over the whole surface of the plate Mnt ¼ m ¼ const:

Remark

Since the plate described above in pure bending has no supports, its deflections
have been determined with an accuracy of the displacements of an absolutely rigid
body.

3.3 NAVIER’S METHOD (DOUBLE SERIES SOLUTION)

In 1820, Navier presented a paper to the French Academy of Sciences on the solu-
tion of bending of simply supported plates by double trigonometric series [1].

Fig. 3.4
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Consider a rectangular plate of sides a and b, simply supported on all edges and
subjected to a uniform load pðx; yÞ: The origin of the coordinates is placed at the
upper left corner as shown in Fig. 3.5.

The boundary conditions for a simply supported plate are the following (see
Eqs (2.35):

w ¼ 0jx¼0;a;
@2w

@x2
¼ 0

					
x¼0;a

and w ¼ 0jy¼0;b;
@2w

@y2
¼ 0

					
y¼0;b

: ð3:14Þ

In this case, the solution of the governing differential equation (2.24), i.e., the expres-
sions of the deflection surface, wðx; yÞ, and the distributed surface load, pðx; yÞ, have
to be sought in the form of an infinite Fourier series (see Appendix B), as follows:

wðx; yÞ ¼
X1
m¼1

X1
n�1

wmn sin
m�x

a
sin

n�y

b
; ð3:15aÞ

pðx; yÞ ¼
X1
m¼1

X1
n¼1

pmn sin
m�x

a
sin

n�y

b
; ð3:15bÞ

where wmn and pmn represent coefficients to be determined. It can be easily verified
that the expression for deflections (3.15a) automatically satisfies the prescribed
boundary conditions (3.14).

Let us consider a general load configuration. To determine the Fourier coeffi-
cients pmn, each side of Eq. (3.15b) is multiplied by sin l�x

a
sin k�y

b
and integrated twice

between the limits 0;a and 0;b, as follows (see Appendix B):

ða
0

ðb
0

pðx; yÞ sin l�x
a

sin
k�y

b
dxdy ¼

X1
m¼1

X1
n¼1

pmn

ða
0

ðb
0

sin
m�x

a
sin

n�y

b
sin

l�x

a
sin

k�y

b
dxdy:

ðaÞ

Fig. 3.5
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It can be shown by direct integration that

ða
0

sin
m�x

a
sin

l�x

a
dx ¼

0 ifm 6¼ l

a=2 if m ¼ l

8<
:

and

ðb
0

sin
n�y

b
sin

k�y

b
dy ¼

0 if n 6¼ k

b=2 if n ¼ k:

8<
:

ð3:16Þ

The coefficients of the double Fourier expansion are therefore the following:

pmn ¼
4

ab

ða
0

ðb
0

pðx; yÞ sinm�x
a

sin
n�y

b
dxdy: ð3:17Þ

Since the representation of the deflection (3.15a) satisfies the boundary conditions
(3.14), then the coefficients wmn must satisfy Eq. (2.24). Substitution of Eqs (3.15)
into Eq. (2.24) results in the following equation:

X1
m¼1

X1
n¼1

wmn

m�

a

� �4
þ 2

m�

a

� �2 n�

b

� �2
þ n�

b

� �4� �
� pmn

D

 �
sin

m�x

a
sin

n�y

b
¼ 0:

This equation must apply for all values of x and y. We conclude therefore that

wmn�
4 m2

a2
þ n2

b2

 !2

� pmn

D
¼ 0;

from which

wmn ¼
1

�4D

pmn

ðm=aÞ2 þ ðn=bÞ2� �2 : ð3:18Þ

Substituting the above into Eq. (3.15a), one obtains the equation of the deflected
surface, as follows:

wðx; yÞ ¼ 1

�4D

X1
m¼1

X1
n¼1

pmn

ðm=aÞ2 þ ðn=bÞ2� �2 sinm�xa sin
n�y

b
; ð3:19Þ

where pmn is given by Eq. (3.17). It can be shown, by noting that sinm�x=aj � 1
		 and

jsin n�y=bj � 1 for every x and y and for every m and n, that the series (3.19) is
convergent.

Substituting wðx; yÞ into the Eqs (2.13) and (2.27), we can find the bending
moments and the shear forces in the plate, and then using the expressions (2.15),
determine the stress components. For the moments in the plate, for instance, we
obtain the following:
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Mx ¼ 1

�2

X1
m¼1

X1
n¼1

pmn

½ðm=aÞ2 þ �ðn=bÞ2�
½ðm=aÞ2 þ ðn=bÞ2�2 sin

m�x

a
sin

n�y

b
;

My ¼
1

�2

X1
m¼1

X1
n¼1

pmn

½ðn=bÞ2 þ �ðm=aÞ2�
½ðm=aÞ2 þ ðn=bÞ2�2 sin

m�x

a
sin

n�y

b
;

Mxy ¼ � 1�
�2

X1
m¼1

X1
n¼1

pmn

mn

ab½ðm=aÞ2 þ ðn=bÞ2�2 cos
m�x

a
cos

n�y

b
:

ð3:20Þ

The infinite series solution for the deflection (3.19) generally converges quickly; thus,
satisfactory accuracy can be obtained by considering only a few terms. Since the
stress resultants and couples are obtained from the second and third derivatives of
the deflection wðx; yÞ, the convergence of the infinite series expressions of the internal
forces and moments is less rapid, especially in the vicinity of the plate edges. This
slow convergence is also accompanied by some loss of accuracy in the process of
calculation. The accuracy of solutions and the convergence of series expressions of
stress resultants and couples can be improved by considering more terms in the
expansions and by using a special technique for an improvement of the convergence
of Fourier’s series (see Appendix B and Ref. [2]).

Example 3.1

A rectangular plate of sides a and b is simply supported on all edges and subjected to
a uniform pressure p x; yð Þ ¼ p0, as shown in Fig 3.5. Determine the maximum deflec-
tion, moments, and stresses.

Solution

The coefficients pmn of the double Fourier expansion of the load are obtained from
Eq. (3.17). Substituting pðx; yÞ ¼ p0 ¼ const and integrating, yields the following

pmn ¼
4p0
�2mn

ð1� cosm�Þð1� cos n�Þ or pmn ¼
16p0
�2mn

ðm; n ¼ 1; 3; 5; . . .Þ: ðaÞ

It is observed that because pmn ¼ 0 for even values of m and n, these integers assume
only for odd values.

Substituting for pmn from (a) into Eqs (3.19) and (3.20), we can obtain the
expressions for deflections and moments. We obtain the following:

w ¼ 16p0
D�6

X1
m¼1;3;...

X1
n¼1;3;...

sin
m�x

a
sin

n�y

b

mn ðm=aÞ2 þ ðn=bÞ2� �2; ð3:21aÞ

Mx ¼ 16p0
�4

X1
m¼1;3;...

X1
n¼1;3;...

ðm=aÞ2 þ �ðn=bÞ2
mn ðm=aÞ2 þ ðn=bÞ2� �2 sinm�xa sin

n�y

b
; ð3:21bÞ

My ¼
16p0
�4

X1
m¼1;3;...

X1
n¼1;3;...

�ðm=aÞ2 þ ðn=bÞ2

mn ðm=aÞ2 þ ðn=bÞ2� �2 sinm�xa sin
n�y

b
; ð3:21cÞ

Mxy ¼ � 16ð1� �Þ
�4ab

X1
m

X1
n

1

½ðm=aÞ2 þ ðn=bÞ2�2 cos
m�x

a
cos

m�y

b
: ð3:21dÞ
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Based upon physical considerations and due to the symmetry of the plate and
boundary conditions, the maximum deflection occurs at the center of the plate
(x ¼ a=2; y ¼ b=2) and its value is shown next:

wmax ¼
16p0
�6D

X1
m¼1;3;...

X1
n¼1;3;...

ð�1Þmþn
2 �1

mn ðm=aÞ2 þ ðn=bÞ2� �2: ðbÞ

Here, sinm�=2 and sin n�=2 are replaced by ð�1Þm�1=2 and ð�1Þn�1=2, respectively. It
can be observed that this series converges very rapidly, and the consideration of two
terms gives an accuracy sufficient for all practical purposes. In particular, for the
case of a square plate (a ¼ b), we obtain

wmax ¼
16p0a

4

�6D

1

4
þ 1

100
þ 1

100
þ . . .

� �
� 4a4p0
�6D

¼ 0:00416
p0a

4

D
;

or substituting for D ¼ Eh3

12ð1��2Þ and making � ¼ 0:3, we obtain

wmax � 0:0454
p0a

4

Eh3
:

The error of this result compared with an exact solution is about 2.5% [3].
It is observed that the series for the bending and twisting moments given by

Eqs (3.21) do not converge as rapidly as that of the series for the deflections. The
maximum bending moments, found at the center of the plate, are determined by
applying Eqs (3.21b) and (3.21c). The first term of this series for a square plate for
� ¼ 0:3 yields

Mx;max ¼ My;max ¼ 0:0534p0a
2: ðcÞ

The exact solution for the bending moments at the center of the square plate for � ¼
0:3 is the following [3]:

Mx;max ¼ My;max ¼ 0:0479p0a
2: ðdÞ

The error of solution (c) is about 11.5 per;, and that is worse than that for the
deflections.

The maximum normal stress at the center of the square plate produced by the
moments of Eq. (d), by application of Eqs (2.15) is determined to be �x;max ¼ �y;max

¼ 0:287 p0a
2

h2
.

Let us study the essential characteristics of the transverse shear forces as
applied to the simply supported rectangular plate of Example 3.1. To simplify our
analysis, we use only a single harmonic approximation of a uniformly distributed
loading and solution also. However, the general conclusions will be valid for any
harmonic approximations of the solution. From Eq. (a), we compute the following
for m ¼ n ¼ 1:

p11 ¼
16p0
�2

and p ¼ 16p0
�2

sin
�x

a
sin
�y

b
:

Retaining also only one term in the series (a), we obtain the following expression for
the deflection:
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w ¼ 16p0
D�6

sin
�x

a
sin
�y

b

1=a2 þ 1=b2
� �2 : ðeÞ

The transverse shear forces, Qx and Qy, and effective shear forces, Vx and Vy, may be
found by substituting for w from Eq. (e) into Eqs (2.27) and (2.39). We obtain

Qx ¼ 16p0
�3

cos
�x

a
sin
�y

b
a 1=að Þ2þ 1=bð Þ2� � ; Qy ¼

16p0
�3

sin
�x

a
cos

�y

b
b 1=að Þ2þ 1=bð Þ2� �

Vx ¼ 16p0
�3

1=a2 þ 2� �ð Þ1=b2� �
a 1=a2 þ 1=b2
� �2 cos

�x

a
sin
�y

b
;

Vy ¼
16p0
�3

2� �ð Þ1=a2 þ 1=b2
� �
b 1=a2 þ 1=b2
� �2 sin

�x

a
cos

�y

b

ðfÞ

The resultant of the external distributed load carrying by the plate is

Rp ¼
ða
0

ðb
0

pdxdy ¼ 16p0
�2

ða
0

ðb
0

sin
�x

a
sin
�y

b
dxdy or Rp ¼ 64p0

�4
ab: ðgÞ

which acts in the positive z direction (downward). Determine the resultant of the
transverse effective shear forces, RV, acting on the plate edges, as follows

RV ¼ �
ðb
0

Vx 0; yð Þ		 		þ Vx a; yð Þ		 		� �
dy�

ða
0

Vy x; 0ð Þ		 		þ Vy x; bð Þ		 		� �
dx: ðhÞ

The negative sign on the right-hand side of Eq. (h) indicates that the resultant of the
effective shear forces points in the negative z direction. Evaluating these integrals
yields

RV ¼ � 64p0
�4

ab

a2 þ b2
� �2 a4 þ 2 2� �Þa2b2 þ b4

� �
:

� ðiÞ

Adding Rp and RV given by Eqs (g) and (i), results in the following:

Rp þ RV ¼ �128
p0 1� �ð Þ
�4

a3b3

a2 þ b2
� �2 ðjÞ

as an apparently unbalanced force. However, we must include the corner forces
given by Eqs (2.41) in the total equilibrium condition according to the classical
plate theory. From Eq. (3.21d) for m ¼ n ¼ 1, we have the following

Mxy ¼ � 16 1� �ð Þ
�4ab

cos
�x

a
cos

�y

b

1=a2 þ 1=b2
� �2 : ðkÞ
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As explained in Sec. 2.4, all the corner concentrated forces, S, for the simply sup-
ported rectangular plate that is subjected to a downward directed uniform load p0,
act downward also, i.e., in the positive z direction. Each such a force is given by Eq.
(2.41), i.e.,

S ¼ 2 Mxy

		 		 ¼ 2
16 1� �ð Þ
�4ab

a3b3

a2 þ b2
� �2

" #
:

Thus, a total force due to the corner forces acts in the positive z direction and is given
by the following:

RS ¼ 4S ¼ 128
p0 1� �ð Þ
�4

a3b3

a2 þ b2
� �2 : ðlÞ

Now, adding Eqs (j) and (l), we get

Rp þ RV þ RS ¼ 0:

The effective shear force distributions and concentrated corner forces are shown in
Fig. 2.9. Thus, we have demonstrated the contribution of the corner forces to the
overall equilibrium of the rectangular simply supported plate.

It is interesting to note that the boundary transverse shear forces, Qx and Qy,
balance the external distributed load p0. Indeed, let us compute the resultant RQ of
the shear forces on the boundary of the plate, as follows:

RQ ¼ �
ðb
0

Qx 0; yð Þ		 		þ Qx a; yð Þ		 		� �
dy�

ða
0

Qy x; 0ð Þ		 		þ Qy x; bð Þ		 		� �
dx:

Substituting for Qx and Qy from the first two equations (f) into the above, we obtain

RQ ¼ � 64p0
�4

ab; ðmÞ

where the negative sign indicates that RQ points in the negative z direction, i.e., in the
upward direction. Adding Eqs (g) and (m) results in

Rp þ RQ ¼ 0:

However, following the logic of Kirchhoff’s plate theory, the transverse shear force
alone cannot be treated as the edge supporting reaction. Only the effective shear
force may represent such a reaction. This result will also be discussed in detail later,
in Sec. 7.3.

Example 3.2

A rectangular wall panel is taken to be simply supported on all edges and subjected
to a patch load of intensity p0 ¼ const: as shown in Fig. 3.6. Determine the deflected
surface.

Solution

The constants of the Fourier expansion of the load are
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pmn ¼
4p0
uv

ð�þu=2

��u=2

ðþv=2

�v=2

sin
m�x

a
sin

n�y

b
dxdy

¼ 16p0
�2mn

sin
m��

a
sin

n�

b
sin

m�u

2a
sin

n�v

2b
:

ð3:22Þ

Inserting the above into Eqs (3.19), yields the double series expression of the follow-
ing deflected surface

wðx; yÞ ¼ 16p0
�6D

X1
m¼1

X1
n¼1

sin
m��

a
sin

n�

b
sin

m�u

2a
sin

n�v

2b
sin

m�x

a
sin

n�y

b

mn ðm=aÞ2 þ ðn=bÞ2� �2 : ð3:23Þ

The convergence of this solution is relatively fast if the dimensions u and v are not
too small. The deflection can be obtained with sufficient accuracy by taking the first
four terms of the series.

3.4 RECTANGULAR PLATES SUBJECTED TO A CONCENTRATED
LATERAL FORCE P

Let us consider a rectangular plate simply supported on all edges of sides a and b and
subjected to concentrated lateral force P applied at x ¼ � and y ¼ , as shown in Fig.
3.7.

Assume first that this force is uniformly distributed over the contact area of
sides u and v (Fig. 3.6) i.e., its load intensity is defined as

p0 ¼
P

uv
:

Substituting the above into Eq. (3.22), one obtains

pmn ¼
16P

�2mnuv
sin

m��

a
sin

n�

b
sin

m�u

2a
sin

n�v

2b
: ð3:24Þ

Fig. 3.6
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Now we must let the contact area approach zero by permitting u ! 0 and v ! 0. In
order to be able to use the limit approach first, Eq. (3.24) must be put in a more
suitable form. For this purpose, the right-hand side is multiplied and divided by ab,
giving the following:

pmn ¼ lim
u!0;v!0

4P

ab
sin

m��

a
sin

n�

b

sin
m�u

2a
sin

n�v

2b
ðm�u=2aÞðn�v=2bÞ

2
4

3
5 : ð3:25Þ

Knowing that lim
	!0

sin 	

	
¼ 1, Eq. (3.25) becomes

pmn ¼
4P

ab
sin

m��

a
sin

n�

b
; ð3:26Þ

and the deflection of the plate subjected to a concentrated force is obtained from Eq.
(3.19), as follows:

wðx; yÞ ¼ 4P

�4Dab

X1
m¼1

X1
n¼1

sin
m��

a
sin

n�

b

ðm=aÞ2 þ ðn=bÞ2� �2 sinm�xa sin
n�y

b
: ð3:27Þ

The convergence of this series is fairly rapid. Let � ¼ a=2 and  ¼ b=2; then for even
m and n, all the numbers pmn are zero. For odd numbers, we derive the following
from (3.27):

pmn ¼
4P

ab
sin

m�

2
sin

n�

2
:

The deflected middle surface equation (3.27) in this case becomes

wðx; yÞ ¼ 4P

�4Dab

X1
m¼1;3;...

X1
n¼1;3;...

sin
m�

2
sin

n�

2
ðm=aÞ2 þ ðn=bÞ2� � sinm�x

a
sin

n�y

b
: ð3:28Þ

Furthermore, if the plate is square (a ¼ b), the maximum deflection, which occurs at
the center, is obtained from Eq. (3.28), as follows:

wmax ¼
4Pa2

�4D

X1
m¼1;3;...

X
n¼1;3;...

1

ðm2 þ n2Þ2:

Fig. 3.7
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Retaining the first nine terms of this series (m ¼ 1, n ¼ 1; 3; 5; m ¼ 3, n ¼ 1; 3; 5;
m ¼ 5, n ¼ 1; 3; 5) we obtain

wmax ¼
4Pa2

�4D

1

4
þ 2

100
þ 1

324
þ 2

625
þ 2

1156
þ 1

2500

� �
¼ 0:01142

Pa2

D
:

The ‘‘exact’’ value is wmax ¼ 0:01159
Pa2

D
and the error is thus 1.5% [3].

This very simple Navier’s solution, Eq. (3.28), converges sufficiently rapidly for
calculating the deflections. However, it is unsuitable for calculating the bending
moments and stresses because the series for the second derivatives @2w=@x2 and
@2w=@y2 obtained by differentiating the series (3.28) converge extremely slowly.
These series for bending moment, and consequently for stresses as well as for the
shear forces, diverge directly at a point of application of a concentrated force, called
a singular point. Thus, to calculate stress components in the vicinity of a concen-
trated force, it is necessary to use a more efficient technique, especially since the
maximum stresses occur in the immediate vicinity of the singular point. Therefore,
the problem of determining a correct stress distribution near such types of singular
points is of practical interest.

We now consider one approach for determining the bending moment distribu-
tion near the above-mentioned singular point. Let us write the solution (3.27) in the
form

w ¼ 4Pb3

�4a

X1
m¼1

Sm sin
m��

a
sin

m�x

a
; ð3:29aÞ

where

Sm ¼ 1

2

X1
n¼1

cos
n�

b
ðy� Þ � cos

n�

b
ðyþ Þ

m2b2=a2 þ n2
� �2 : ð3:29bÞ

The series (3.29b) can be summed using the formula [4]:

X1
n¼1

cos nz

ð	2 þ n2Þ2 ¼� 1

2	4
þ �

4	3
cosh	ð�� zÞ

sin�	
� �ð�� zÞ

4	2
� sinh 	ð�� zÞ

sinh�	

þ �2

4	2
cosh	ð�� zÞ cosh�	

sin h2�	
:

ðaÞ

Using the above formula, we can represent the deflection surface (3.28) as

wðx; yÞ ¼ Pa2

�3D

X1
m¼1

1þ 
m coth 
m � 
my1
b

coth

my1
b

� 
m
b

coth

m

b

� �

	
sinh


m

b
sin h


my1
b

sin
m��

a
sin

m�x

a
m3 sinh 
m

;

ð3:30Þ

where 
m ¼ m�b
a; y1 ¼ b� y; and y � . If y < , then the values y1 and  must be

replaced by y and 1 ¼ b� , respectively.
Let us use an infinitely long (in the y-direction) plate loaded by a concentrated

force P applied at x ¼ � and y ¼ 0, as shown in Fig. 3.8, to illustrate the above-
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mentioned approach. The deflection of such a plate-strip can be easily obtained from
Eq. (3.30) by letting b ! 1. Then, taking into account the following approximate
equalities,

tanh 	m � 1; cosh 	m � 1

2
e	m ; sinh

	m
b
ðb� 2yÞ � cosh

	m
b
ðb� 2yÞ

� 1

2
e 	m=bð Þ b�2yð Þ;

ð3:31Þ

we obtain the following expression for the deflection surface of the above-mentioned
plate-strip:

w ¼ Pa2

2�3D

X1
m¼1

1

m3
sin

m��

a
sin

m�x

a
1þm�y

a

� �
e�

m�y
a : ð3:32Þ

Differentiating the above expression twice in accordance with Eqs (2.13), we obtain
the following expressions for the bending moments

Mx ¼ P

2�

X1
m¼1

1

m
sin

m��

a
sin

m�x

a
1þ �þ ð1� �Þm�y

a

h i
e�

m�y
a ; ð3:33aÞ

My ¼
P

2�

X1
m¼1

1

m
sin

m��

a
sin

m�x

a
1þ �� ð1� �Þm�y

a

h i
e�

m�y
a : ð3:33bÞ

Series in Eqs (3.33) can be summed up by using the formula [4]:

X1
m¼1

1

m
sin

m�x

a
sin

m��

a
e�

m�y
a ¼ 1

4�
ln
cosh

�y

a
� cosh

�

a
ðxþ �Þ

cosh
�y

a
� cos

�

a
ðx� �Þ

: ð3:34Þ

Fig. 3.8
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Let us present the equations for the bending and twisting moments for points that
are in the immediate vicinity from the point of application of force P but necessarily
lying on the x axis. In this case, the values ðx� �Þ and y are very small and the
following approximate equalities hold:

cos
�ðx� �Þ

a
� 1� �

2ðx� �Þ2
2a2

; cosh
�y

a
� 1þ �

2y2

2a2
: ð3:35Þ

Applying the expression (3.34) and the above approximate equalities to Eqs (3.33),
we obtain the following equations for the bending moments:

Mx

My

�
¼ P

4�
ð1þ �Þ ln

2a sin
��

a
�r

� ð1� �Þy2
r2

8><
>:

9>=
>;; r2 ¼ ðx� �Þ2 þ y2: ð3:36Þ

As seen from Eqs (3.36), the bending moments and, consequently, shear forces
are unbounded at r ¼ 0, i.e., at a point where a concentrated force is applied. This is
an evident reason of divergence of the Fourier series at the singular points. An
occurrence of infinite stress resultants and stress couples can be physically explained.
First, in reality there is no concentrated force. A load is always distributed over some
finite area. It can be easily shown that a finite value of a concentrated force cannot
balance the intensities of the shear forces and bending moments in the vicinity of a
point of application of P. Indeed, let us cut from the square plate subjected to a
center force P, a differential element of sides �x and �y surrounding this singular
point (Fig. 3.9). Then, from a static equilibrium condition – namely, the force
summation into the z direction is zero – we obtain

P� 2Qx�x� 2Qy�y ¼ 0;

Fig. 3.9

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



or for square plates loaded by a centrally applied concentrated force, Qx ¼ Qy in the
vicinity of the singular point, and for �x ¼ �y, we have Qx ¼ P

4�x
. If �x ! 0; the

intensity of Qx ! 1:
Secondly, if a concentrated force P is replaced by a distributed load over a

small area of radius c, surrounding a point of application of the above force, then it
was shown that if c < h, the Kirchhoff hypotheses do not hold. A more accurate
stress analysis in the vicinity of the above-mentioned loaded zone can be carried out
with the use of three-dimensional (3D) elasticity theory (i.e., without Kirchhoff’s
assumptions). Such a rigorous treatment of stress distribution showed [3] that the
classical plate bending theory based on Kirchhoff’s assumptions determines stresses
with sufficient high degree of accuracy if c � 2h. However, if c < h, then, near the
loaded plate surface, the high local compressive vertical normal and transverse shear
stresses occur. Both the above stresses were assumed to be negligible in the Kirchhoff
plate theory.

Thus, the ‘‘defect’’ of the Kirchhoff theory can be removed if we replace a
concentrated force by a distributed load over some small but finite area, say, over a
circular region of radius c and c � 2h. It should also be noted that a replacement of a
real load distributed over a small area by a concentrated force, or by a moment (the
resultants of this load) represents a very suitable idealization.

The deflection surface of a plate due to the concentrated force can be used for
calculating the deflections and stresses caused by an arbitrary load pðx; yÞ, as dis-
cussed later. Such singular solutions may also be convenient in analyzing the stress
distribution near stress raisers of various nature. However, in the case of concen-
trated loads, the solutions in the form of series should be avoided for calculating
stresses. Here, the closed-form solutions are desirable.

The expressions for bending moments in the long plate-strip loaded uniformly
over a circular area of small radius c are given in [5]. Neglecting small terms of order
c2=a2 for points near the center of a circular loading zone, these expressions have the
following form

Mx¼
P

4�
�ð1þ �Þ ln c

a0
þ 1

� �
� Pð1� �Þ

4�
; My ¼

P

4�
�ð1þ �Þ ln c

a0
þ 1

� �
; ð3:37Þ

where a0 ¼ 2a
� sin

��
a .

Now we can consider the expressions for bending moments in the vicinity of
the point of application of a concentrated force P for rectangular plates of finite
length. These solutions can be obtained by adding the boundary moments which
satisfy new boundary conditions: namely,

w ¼ 0jy¼�b=2; Mx ¼ 0
		
y¼�b=2

:

Adding the solution obtained above for a long plate-strip with a new one, we obtain
the following expressions of bending moments for points in the vicinity of an appli-
cation of concentrated force P:

Mx ¼ � 1þ �
4�

P ln
r

a0
þ �1

P

4�
þ 1� �

4�
P
y2

r2
;

My ¼ � 1þ �
4�

P ln
r

a0
þ �2

P

4�
þ 1� �

4�
P
y2

r2
;

ð3:38Þ
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where �1 and �2 are some coefficients depending on the plate dimensions. They are
presented below in Table 3.1 [3].

Let us turn back to the expression (3.27) and write it in the following form

w ¼ Gðx; y; �; Þ ¼ 4

�4abD

X1
m¼1

X1
n¼1

sin
m��
a sin

n�
b

sinm�xa sin
n�y
b

ðm=aÞ2 þ ðn=bÞ2� �2 : ð3:39Þ

This is the equation of the deflected surface of the plate produced by a unit con-
centrated force P ¼ 1 and it is denoted by Gðx; y; �; Þ. It is seen that Gðx; y; �; Þ
depends on two sets of coordinates: (a) the point of observation, ðx; yÞ and (b) the
point of application of the applied unit force, ð�; Þ. This function is defined as
Green’s function and represents a deflection at the point of observation, ðx; yÞ, due
to a unit force at the point of application, ð�; Þ or vice versa, because this function is
symmetrical with respect to these coordinate sets, i.e., Gðx; y; �; Þ ¼ Gð�; ; x; yÞ.
The latter immediately follows from the well-known reciprocity theorem.
Sometimes, Gðx; y; �; Þ is referred to as an influence function. Once Green’s function
is established for a plate, one can determine readily the deflection at any point of
observation due to prescribed surface loading pð�; Þ. Then, by superposition, we
have the following:

wðx; yÞ ¼
ð ð

S

pð�; ÞGðx; y; �; Þd�d:

The Green’s function approach is widely used in mechanics [6,7].

3.5 LEVY’S SOLUTION (SINGLE SERIES SOLUTION)

In the preceding sections it was shown that the calculation of bending moments and
shear forces using Navier’s solution is not very satisfactory because of slow conver-
gence of the series.

In 1900 Levy developed a method for solving rectangular plate bending pro-
blems with simply supported two opposite edges and with arbitrary conditions of
supports on the two remaining opposite edges using single Fourier series [8]. This
method is more practical because it is easier to perform numerical calculations for
single series that for double series and it is also applicable to plates with various
boundary conditions.

Levy suggested the solution of Eq. (2.24) be expressed in terms of complemen-
tary, wh; and particular, wp, parts, each of which consists of a single Fourier series
where unknown functions are determined from the prescribed boundary conditions.
Thus, the solution is expressed as follows:

Table 3.1

b=a 1.0 1.2 1.4 1.6 1.8 2.0 1

�1 �0:565 �0:350 �0:211 �0:125 �0:073 �0:042 0

�2 0.135 0.115 0.085 0.057 0.037 0.023 0
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w ¼ wh þ wp: ð3:40Þ
Consider a plate with opposite edges, x ¼ 0 and x ¼ a, simply supported, and two
remaining opposite edges, y ¼ 0 and y ¼ b, which may have arbitrary supports.

The boundary conditions on the simply supported edges are

w ¼ 0jx¼0;x¼a and Mx ¼ �D
@2w

@x2
þ � @

2w

@y2

 !
¼ 0

					
x¼0;x¼a

: ð3:41aÞ

As mentioned earlier, the second boundary condition can be reduced to the follow-
ing form:

@2w

@x2
¼ 0

					
x¼0;x¼a

ð3:41bÞ

The complementary solution is taken to be

wh ¼
X1
m¼1

fmðyÞ sin
m�x

a
; ð3:42Þ

where fmðyÞ is a function of y only; wh also satisfies the simply supported boundary
conditions (3.41). Substituting (3.42) into the following homogeneous differential
equation

r2r2w ¼ 0 ð3:43Þ
gives

m�

a

� �4
fmðyÞ � 2

m�

a

� �2d2fmðyÞ
dy2

þ d4fmðyÞ
dy4

" #
sin

m�x

a
¼ 0;

which is satisfied when the bracketed term is equal to zero. Thus,

d4fmðyÞ
dy4

� 2
m�

a

� �2d2fmðyÞ
dy2

þ m�

a

� �4
fmðyÞ ¼ 0 ð3:44Þ

The solution of this ordinary differential equation can be expressed as

fmðyÞ ¼ e�y: ð3:45Þ
Substituting the above into Eq. (3.44), gives the following characteristic equation:

�4 � 2
m2�2

a2
�2 þm4�4

a4
¼ 0; ð3:46Þ

which has the two following two double roots

�1;2 ¼
m�

a
; �3;4 ¼ �m�

a
: ð3:47Þ

According to the obtained values of the characteristic exponents, the solution of the
homogeneous equation can be expressed in terms of either exponential functions

fmðyÞ ¼ A 0
me

m�y=a þ B 0
me

�m�y=a þm�y

a
C 0

me
m�y=a þD 0

me
�m�y=a

� � ð3:48Þ

or hyperbolic functions
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fmðyÞ ¼ Am sinh
m�y

a
þ Bm cosh

m�y

a
þm�y

a
Cm sinh

m�y

a
þDm cosh

m�y

a

� �
:

ð3:49Þ

The second form, Eq. (3.49), is more convenient for calculations.
The complementary solution given by Eq. (3.42) becomes

wh ¼
X1
m¼1

Am sinh
m�y

a
þ Bm cosh

m�y

a

h

þm�y

a
Cm sinh

m�y

a
þDm cosh

m�y

a

� �i
sin

m�x

a
;

ð3:50Þ

where the constants Am;Bm;Cm; and Dm are obtained from the boundary conditions
on the edges y ¼ 0 and y ¼ b:

The particular solution, wp, in Eq. (3.40), can also be expressed in a single
Fourier series as

wpðx; yÞ ¼
X1
m¼1

gmðyÞ sin
m�x

a
: ð3:51Þ

The lateral distributed load pðx; yÞ is taken to be the following (see Appendix B):

pðx; yÞ ¼
X1
m¼1

pmðyÞ sin
m�x

a
; ð3:52Þ

where

pmðyÞ ¼
2

a

ða
0

pðx; yÞ sinm�x
a

dx: ð3:53Þ

Substituting Eqs (3.51) and (3.52) into Eq. (3.44), gives

d4gmðyÞ
dy4

� 2
m�

a

� �2d2gmðyÞ
dy2

þ m�

a

� �4
gmðyÞ ¼

pmðyÞ
D

: ð3:54Þ

Solving this equation, we can determine gmðyÞ and, finally, find the particular solu-
tion, wpðx; yÞ.

The complementary components of the stress resultants and stress couples,
Mxh;Myh;Mxyh; and Vxh;Vyh; can be expressed in terms of fmðyÞ by substituting
Eq. (3.50) into Eqs (2.13) and (2.39), as follows:
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Mxh ¼ D
X1
m¼1

m2�2

a2
fm � � d

2fm
dy2

 !
sin

m�x

a
;

Myh ¼ D
X1
m¼1

�
m2�2

a2
fm � d2fm

dy2

 !
sin

m�x

a
;

Mxyh ¼ �Dð1� �Þ
X1
m¼1

m�

a

dfm
dy

cos
m�x

a
;

Vxh ¼ D
X1
m¼1

m�

a

� �3
fm �m�

a
ð2� �Þ d

2fm
dy2

" #
cos

m�x

a
;

Vyh ¼ D
X1
m¼1

� d3fm
dy3

þ ð2� �Þ m�

a

� �2dfm
dy

" #
sin

m�x

a
:

ð3:55Þ

These homogeneous stress resultants and stress couple components must be com-
plemented with particular ones.

Example 3.3

The rectangular simply supported plate on all edges and having dimensions a and b
(Fig. 3.10) is subjected to a uniform load p0. Determine the deflections and bending
moments.

Solution

Since the boundary conditions are identical for all the edges of the plate and the load
is constant, then we make the x axis coincident with the axis of symmetry of the
plate. It will be shown later that this location of the x axis simplifies considerably the
computational procedure.

For pðx; yÞ ¼ p0, Eq. (3.53) upon integration, becomes

pm ¼ 2p0
a

ða
0

sin
m�x

a
dx ¼ 4p0

m�
ðm ¼ 1; 3; 5; . . .Þ: ðaÞ

Substituting the above into Eq. (3.54), one obtains

Fig. 3.10
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d4gm
dy4

� 2
m�

a

� �2d2gm
dy2

þ m�

a

� �4
gm ¼ 4p0

m�D
: ðbÞ

Since the right-hand side of this equation is a constant, the particular solution
of Eq. (b) will also be a constant. Setting, for example,

gm ¼ A; ðcÞ
and substituting the above into Eq. (b), gives

A ¼ a

m�

� �4 4p0
m�D

: ðdÞ

So, using Eqs (c), (d), and (3.51), the particular solution is of the following form:

wpðx; yÞ ¼
4p0a

4

�5D

X1
m¼1;3;5;...

1

m5
sin

m�x

a
: ð3:56aÞ

This series can be summed, and we obtain

wpðx; yÞ ¼
4p0a

4

�5D

X1
m¼1;3;5;...

1

m5
sin

m�x

a
¼ p0

24D
x4 � 2ax3 þ a3x
� �

: ð3:56bÞ

The expression (3.56b) represents the equation for deflections of a uniformly loaded
simply supported strip of unit width parallel to the x axis.

Due to the symmetry of the boundary conditions and applied loading, we can
conclude that the plate deflection will be also symmetrical about the x axis, i.e.,
wðx; yÞ ¼ wðx;�yÞ. This condition is satisfied by Eq. (3.50) if we let Am ¼ Bm ¼ 0.
Then, combining Eqs (3.50) and (3.56), we obtain

w ¼
X1

m¼1;3;5;...

Bm cosh
m�y

a
þ Cm

m�y

a
sinh

m�y

a
þ 4p0a

4

m5�5D

 !
sin

m�x

a
; ð3:57aÞ

or alternatively, using expression (3.56b),

w ¼ p0
24D

x4 � 2ax3 þ a3x
� �

þ
X1

m¼1;3;5;...

Bm cosh
m�y

a
þ Cm

m�y

a
sinh

m�y

a

� �
sin

m�x

a
:

ð3:57bÞ

Equations (3.57) exactly satisfy Eq. (2.24) and the boundary conditions (3.41) at
x ¼ 0 and x ¼ a. The remaining boundary conditions are, as follows:

w ¼ 0jy¼�b
2
;
@2w

@y2
¼ 0

					
y¼�b

2

: ð3:58Þ

Application of the above to w leads to two equations for determining Bm and Cm.
Solving these equations, one obtains

Bm ¼ � 2p0a
4 	m sinh 	m þ 2 cosh	mð Þ
�5m5D cosh2 	m

; Cm ¼ 2p0a
4

�5m5D cosh	m
; ðeÞ
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where 	m ¼ m�b=2a.
The deflection of the plate surface, Eq. (3.57a), may thus be expressed

w ¼ 4p0a
4

�5D

X1
m¼1;3;::

1

m5
1� 	m tanh	m þ 2

2 cosh	m
cosh

2	my

b
þ 	m
2 cosh 	m

2y

b

�

sinh
2	my

b

�
sin

m�x

a
:

ð3:59Þ

The maximum deflection is obtained at the plate center (x ¼ a=2; y ¼ 0), where

wmax ¼
4p0a

4

�5D

X1
m¼1;3;...

ð�1Þm�1
2

m5
1� 	m tanh	m þ 2

2 cosh 	m

� �
:

Since

X1
m¼1;3;...

ð�1Þm�1
2

m5
¼ 5�5

29ð3Þ :

we can write the following expression for the maximum deflection of the plate:

wmax ¼
5p0a

4

384D
� 4p0a

4

�5D

X1
m¼1;3;...

ð�1Þm�1
2 	m tanh	m þ 2ð Þ
2 cosh	m m5

: ð3:60Þ

The first term above represents the deflection wmax of the middle of a uniformly
loaded, simply supported strip. The second term is a very rapidly converging series.
For example, in the case of a square plate (a ¼ b and 	m ¼ m�=2), the maximum
deflection is given as

wmax ¼
5p0a

4

384D
� 4p0a

4

�5D
0:68562� 0:00025 þ . . .ð Þ ¼ 0:00406

p0a
4

D
:

It is seen that the second term of the series in parentheses is negligible and that by
taking only the first term (m ¼ 1), the formula for deflection is obtained correct to
three significant figures.

Substituting the expression (3.57b) into the first and second equations (3.55),
we obtain the following expressions for bending moments:

Mx ¼
p0xða� xÞ

2
þ ð1� �Þp0a2�2

X1
m¼1;3;...

m2 Bm cosh
m�y

a

h

þCm

m�y

a
sinh

m�y

a
� 2�

1� � cosh
m�y

a

� ��
sin

m�x

a
;

My ¼ �
p0xða� xÞ

2
� ð1� �Þp0a2�2

X1
m¼1;3;...

m2 Bm cosh
m�y

a

h

þCm

m�y

a
sinh

m�y

a
þ 2

1� � cosh
m�y

a

� ��
sin

m�x

a
;

ð3:61Þ

where Bm and Cm are given by Eqs (e).
Both series in Eqs (3.61) converge rapidly. At the center (x ¼ a=2; y ¼ 0) of the

square plate the bending moments are given as
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Mx ¼ My ¼ 0:0479p0a
2:

If b=a � 1 (the plate-strip), then Mx ¼ p0a
2=8;My ¼ �Mx. The series for the effec-

tive shear forces Vx and Vy are also convergent.

Example 3.4

For the simply supported plate subjected to hydrostatic loading (pðxÞ ¼ p0
x
a
), as

shown in Fig. 3.11, determine the deflection and bending moment equations.

Solution

Determine the coefficients pm from Eq. (3.53). We have

pm ¼ 2

a

ða
0

pðx; yÞ sinm�x
a

dx ¼ 2p0
a

ða
0

x

a
sin

m�x

a
dx

¼ 2p0
m�

ð�1Þmþ1; m ¼ 1; 2; 3 . . . :

ðaÞ

The given loading is a constant along the y axis. Hence, the function gm will be also a
constant. Substituting the expression (a) into the right-hand side of Eq. (3.54), we
obtain

gm ¼ 2p0a
4

m5�5D
ð�1Þmþ1: ðbÞ

Inserting (b) into Eq. (3.51), we obtain the particular solution of the following form:

wpðx; yÞ ¼
2p0a

4

�5D

X1
m¼1;2;...

ð�1Þmþ1

m5
sin

m�x

a
: ðcÞ

Using Eqs (3.50) and (c), and letting Am ¼ Dm ¼ 0 (because of the symmetry of the
loading and boundary conditions about the x axis), we obtain the equation of the
plate deflection in the following form:

Fig. 3.11
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wðx; yÞ ¼
X1

m¼1;2;...

Bm cosh
m�y

a
þ Cm

m�y

a
sinh

m�y

a
þ 2p0a

4

�5D

ð�1Þmþ1

m5

 !
sin

m�x

a
;

ðdÞ
where the constants of integration Bm and Cm are evaluated from the boundary
conditions on edges y ¼ �b=2: namely,

w ¼ 0jy¼�b=2 and
@2w

@y2
¼ 0

					
y¼�b=2

: ðeÞ

Application of the above to w, Eq. (d), leads to two equations. Solving them for Bm

and Cm yields

Bm ¼ � 2þ 	m tanh 	mð Þ �1ð Þmþ1

�5m5 cosh 	m
; Cm ¼ �1ð Þmþ1

�5m5 cosh 	m
; ðfÞ

where 	m ¼ m�b=2a.
The deflection of the plate along the x axis is

wð Þy¼0 ¼ p0a
4

D

X1
m¼1

2 �1ð Þmþ1

�5m5
þ Am

" #
sin

m�x

a
:

For a square plate we have a ¼ b, from which one obtains the following:

wð Þy¼0¼
p0a

4

D
0:002055 sin

�x

a
� 0:000177 sin

2�x

a
þ 0:000025 sin

3�x

a
� . . .

� �
:

ðgÞ
The center deflection is given as

wð Þx¼a=2;y¼0 ¼ 0:00203
p0a

4

D
: ðhÞ

As expected, this result is about one-half of the deflection of a uniformly laded plate
(see Example 3.1). Equating the first derivative of the expression (g) to zero, we can
find that the maximum deflection occurs at a point x ¼ 0:557a and that
wmax ¼ 0:00206ðp0a4=DÞ.

The bending moments can be found by substitution of Eq. (d) for deflection
into Eq. (2.13). For example, the bending moment equation Mx along the x axis, i.e.,
for y ¼ 0, has the form

Mxð Þy¼0 ¼ p0a
2
X1
m¼1

2ð�1Þmþ1

�3m3
sin

m�x

a

þ p0a
2�2

X1
m¼1

m2 ð1� �ÞBm � 2�Cm½ � sinm�x
a
;

where the constants Bm and Cm are given by the expressions (f). These series con-
verge rapidly and several first terms give a sufficiently accurate result for Mx:
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Example 3.5

Derive expressions for the deflected surface and the bending moments in a floor
plate-strip subjected to a uniformly distributed load q0 along line y ¼ 0, as shown
in Fig. 3.12a. Assume the edges x ¼ 0 and x ¼ a are simply supported.

Solution

If a plate is strongly lengthened in one direction – for example, in the y direction –
then such a plate in some problems can be considered as an infinite one in this
direction. Levy’s solution can be applied advantageously with some modifications
to obtain the expressions for the deflections and bending moments.

The solution of the governing differential equation (2.24) is sought in the form
of Eq. (3.48). At the same time, since for y ! 1 deflections cannot approach infi-
nity, then the terms containing em�y=a should be equated to zero because these terms
and their derivatives do not vanish at y ! 1. Hence, wh can be represented as
follows:

wh ¼
X1
m¼1

B 0
m þm�y

a
D 0

m

� �
e�m�y=a sin

m�x

a
: ðaÞ

The above satisfies Eq. (2.24) and the boundary conditions on the edges x ¼ 0 and
x ¼ a.

Let us consider the lower part of the plate where y � 0. The constants B 0
m and

D 0
m can be evaluated from the conditions of symmetry of the plate and loading at

y ¼ 0. First, due to the symmetry of the deflected middle surface of the plate with
respect to the x axis, the derivative @w=@y is zero at y ¼ 0; this condition is satisfied if
B 0
m ¼ D 0

m. Therefore, Eq. (a) becomes (for the lower part of the plate)

Fig. 3.12
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wh ¼
X1
m¼1

B 0
m 1þm�y

a

� �
e�m�y=a sin

m�x

a
: ðbÞ

Secondly, the effective (Kirchhoff’s) shear force at the section just below the x
axis is numerically equal to one-half the line load qðxÞ. Taking into account the sign,
this condition leads to the following:

Vy

		
y¼þ0

¼ � 1

2
qðxÞ: ðcÞ

If the line load is uniformly distributed along the x axis, it can be expanded into a
sine series in accordance with Eq. (3.52). The coefficients qm of the single Fourier
expansion are obtained from Eq. (3.53), as follows (for a uniformly distributed load
q0)

qm ¼ 2

a

ða
0

qðxÞ sinm�x
a

dx ¼ 4q0
m�

for m ¼ 1; 3; 5; . . . : ðdÞ

Thus, the load is expressed as

q ¼ 4q0
�

X1
m¼1;3;...

1

m
sin

m�x

a
: ðeÞ

Now using the expression (c) and Eqs (3.55) and (e), we obtain

Vy

� �
y¼0

¼ �D
@

@y
r2wh ¼ � 2q0

�

X1
m¼1;3;...

1

m
sin

m�x

a
: ðfÞ

Substitution of Eq. (b) in the left-hand side of Eq. (f) gives

B 0
m ¼ q0a

3

�4m4D
ðm ¼ 1; 3; 5; . . .Þ: ðgÞ

Since the plate at y > 0 and y < 0 carries no load, the particular solution of Eq.
(2.24) is zero. Thus, the expression of the deflection surface of the plate becomes

w ¼ wh ¼ q0a
3

�4D

X1
m¼1;3;...

1

m4
1þm�y

a

� �
e�m�y=a sin

m�x

a
: ðhÞ

When the above is inserted into Eqs (3.55), the expressions for bending moments will
be obtained in the following form:

Mx ¼
q0a

�2

X1
m¼1;3;...

1

m2
1þ �þ ð1� �Þm�y

a

h i
e�m�y=a sin

m�x

a
;

My ¼
q0a

�2

X1
m¼1;3;...

1

m2
1þ �� ð1� �Þm�y

a

h i
e�m�y=a sin

m�x

a
:

ðiÞ

The maximum values of the deflections and bending moments occur at the plate
center, i.e., at y ¼ 0 and x ¼ a=2
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wmax ¼
q0a

3

�4D

X1
m¼1;3;...

ð�1Þm�1
2

m4
¼ 5q0�a

3

1536D
;

Mx;max ¼ My;max ¼
q0að1þ �Þ

�2

X1
m¼1;3;::

ð�1Þm�1
2

m2
¼ 0:91853q0að1þ �Þ

�2
:

For y ¼ a the factor e�y=a ¼ e�� � 0:045 and it is possible to consider that the
bending moments and deflections vanish practically at a distance y � a. The deflec-
tion and bending moment diagrams are shown in Fig. 3.12b.

Example 3.6

A simply supported rectangular plate shown in Fig. 3.13 is loaded by an edge
moment mx ¼ f ðxÞ along edge x ¼ 0: Determine the equation for deflections of
the plate middle surface.

Solution

We expand the given moment function f ðxÞ into the following Fourier series:

mx ¼ f ðxÞ ¼
X1
n¼1

Fn sin
n�y

b
; ðaÞ

where Fn are the constants of the Fourier expansion. Since a lateral load pðx; yÞ is
zero, the solution must satisfy the homogeneous differential equation (3.43). The
solution of this homogeneous equation may be taken in the form

w ¼
X1
n¼1

1


2n
C1n cosh
nxþ C2n
nx sinh 
nxð

þ C3n sinh 
nxþ C4n
nx cosh
nxÞ sin 
ny;
ðbÞ

where 
n ¼ n�=b. The constants of integration Cin ði ¼ 1; 2; 3; 4Þ can be evaluated
from the prescribed boundary conditions on edges of the plate: namely,

w ¼ 0jx¼0;a; Mx ¼ mx

		
x¼0
; Mx ¼ 0

		
x¼a
; ðcÞ

w ¼ 0jy¼0;b; My ¼ 0
		
y¼0;b

; ðdÞ

Fig. 3.13
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w in the form of Eq. (b) satisfies Eq. (3.43) and the boundary conditions (d) exactly.
Using the relations (2.12) and Eq. (a), the boundary conditions (c) can be rewritten,
as follows

w ¼ 0jx¼0;a; �D
@2w

@x2
þ � @

2w

@y2

 !" #					
x¼0

¼ Fn sin 
ny and
@2w

@x2
þ � @

2w

@y2

 !					
x¼a

¼ 0:

ðeÞ
Substitution of Eqs (b) into (e) and solving the obtained equations for Cin, one
obtains

C1n ¼ 0;C2n ¼ � Fn

2D
;C3n ¼

Fn

2D
1� coth2 
na
� �


na;C4n ¼
Fn

2D
coth
na: ðfÞ

Inserting the above into Eq. (f) yields the following:

w ¼
X1
n¼1

Fn

2D
2n sinh 
na

nx cosh 
nða� xÞ � 
na

sinh 
nx

sinh 
na

� �
sin 
ny: ð3:62Þ

As it follows from the above, in order to obtain a particular solution for plates
subjected to various types of load distribution pðx; yÞ ¼ p0 � f ðxÞ it is necessary to
determine the coefficients pm (see Eq. (3.53)). Table 3.2 furnishes the values of pm for
various types of load distributions.

3.6 CONTINUOUS PLATES

When a uniform plate extends over a support and has more than one span along its
length or width, it is termed continuous. Such plates are of considerable practical
interest.

Continuous plates are externally statically indeterminate members (note that a
plate itself is also internally statically indeterminate). So, the well-known methods
developed in structural mechanics can be used for the analysis of continuous plates.
In this section, we consider the force method which is commonly used for the analysis
of statically indeterminate systems. According to this method, the continuous plate is
subdivided into individual, simple-span panels between intermediate supports by
removing all redundant restraints. It can be established, for example, by introducing
some fictitious hinges above the intermediate supports. In this way, the redundant
moments acting along the intermediate supports are eliminated. Similar fictitious
hinges can be used at the ends if those are fixed. The simple-span panel obtained
in such a way is referred to as a primary plate. In order to restore the rejected
restraints, the unknown redundant moments are applied to the primary plate.
These moments can be determined from the solution of simultaneous algebraic
equations expressing the compatibility of the slopes between the adjoining panels
produced by both external loads and unknown redundant moments.

In our further discussion we assume that the supports are unyielding. For the
sake of simplicity, we confine ourselves to a rectangular plate continuous in one
direction only and having the same flexural rigidity. Obviously, the general proce-
dure of the force method discussed below can be applied to plates continuous in both
directions.
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Table 3.2

No.

Load Geometry

pðx; yÞ ¼P
m pm sin m�x

a

Expansion coefficient pm
[determined from Eq. (3.53)]

1 Uniform loading, p0 ¼ const

pm ¼ 4p0
m�

ðm ¼ 1; 3; 5; . . .Þ

2 Hydrostatic loading,

pðxÞ ¼ p0
x

a

pm ¼ 2p0
m�

ð�1Þmþ1

ðm ¼ 1; 2; . . .Þ

3 Line load p0 at x ¼ �

pm ¼ 2p0
a

sin
m��

a

ðm ¼ 1; 2; 3; . . .Þ

4 Uniform load from ð� � eÞ to
ð� þ eÞ

pm ¼ 4p0
m�

sin
m��

a
sin

m�e

a

ðm ¼ 1; 2; . . .Þ

5 Triangular load

pðxÞ ¼ 2p0
x

a
if x � a=2

pðxÞ ¼ 2p0
a� x

a
if x � a=2

pm ¼ 8p0
m2�2

ð�1Þm�1
2

ðm ¼ 1; 3; . . .Þ
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Consider the three-span simply supported continuous plate. The plate is sub-
jected to a uniform load of intensities p1; p2, and p3 as shown in Fig. 3.14a. Figure
3.14b illustrates the primary plate obtained by introducing the fictitious hinges above
the intermediate supports; �1ðyÞ and �2ðyÞ are the redundant, unknown distributed
moments replacing the removed restraints at the intermediate supports. These
unknown bending moments may be represented by the following Fourier series:

�1ðyÞ ¼
X1

m¼1;3;...

�1m sin �my; �2ðyÞ ¼
X1

m¼1;3;...

�2m sin �my; �m ¼ m�

b
: ð3:63Þ

Since the deflection is symmetric with respect to the line y ¼ b=2, the numbers
m in the expansions (3.63) must be odd only. It is seen from Fig. 3.14b that the

Fig. 3.14
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primary plate consists of individual simple-span panels subjected to a given loading
and the distributed edge moments �1ðyÞ and �2ðyÞ, as shown in Fig. 3.14c.

The deflected surface of each simply supported individual panel may be
obtained by application of Levy’s method. The general solution for individual panels
simply supported on all edges is given by Eqs (3.50) and (3.56a) if y is replaced by xi,
x by y, and a by b. We have the following:

wi ¼
X1

m¼1;3;...

AðiÞ
m sinh �mxi þ BðiÞ

m cosh �mxi þ CðiÞ
m �mxi sinh �mxi

�

þDðiÞ
m �mxi cosh �mxi þ

4pib
4

m5�5D

!
sin �my; i ¼ 1; 2; 3:

ð3:64Þ

The boundary conditions of each panel as well as the compatibility of deformations
between any two panels across a common boundary (slopes continuity at the inter-
mediate supports) are used to determine the constants in the solution (3.64) and the
coefficients in the Fourier series (3.63). The boundary conditions for the plates 1, 2,
and 3 are represented as follows:

w1 ¼ 0jx1¼0;c1 ;
@2w1

@x21
¼ 0

					
x1¼0

; �D
@2w1

@x21
¼

X1
m¼1;3;...

�1m sin �my

					
x1¼c1

; ðaÞ

w2 ¼ 0jx2¼0;c2 ;�D
@2w2

@x22
¼

X1
m¼1;3;...

�1m sin �my

					
x2¼0

;

�D
@2w2

@x22
¼

X1
m¼1;3;...

�2m sin �my

					
x2¼c2

ðbÞ

w3 ¼ 0jx3¼0;c3 ;
@2w3

@x23
¼ 0

					
x3¼c3

; �D
@2w3

@x23
¼

X1
m¼1;3;...

�2m sin �my

					
x3¼0

: ðcÞ

The compatibility conditions are expressed as follows

@w1

@x1

� �
x1¼c1

¼ @w2

@x2

� �
x2¼0

;
@w2

@x2

� �
x2¼c2

¼ @w3

@x3

� �
x3¼0

: ðdÞ

Let us consider the middle panel 2 (Fig. 3.14c). Application of the edge conditions
(b) to Eq. (3.64) for i ¼ 2 leads to the following values of the constants

Að2Þ
m ¼ 1

D sinh �mc2

4p2b
4

m5�5
cosh �mc2 � 1ð Þ 1þ 0:5�m csch �mc2ð Þ

"

þ c2
2�m

�1m csch �mc2 � �2m coth �mc2ð Þ
�
;

Bð2Þ
m ¼ � 4p2b

4

m5�5D
;Cð2Þ

m ¼ 2p2b
4

m5�5D
� �1m

2D�2m
;

Dð2Þ
m ¼ 1

2D sinh �mc2

4p2b
4

m5�5
1� cosh �mc2ð Þ � 1

�2m
�2m � �1m cosh �mc2ð Þ

" #
:

ðeÞ
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The coefficients Að1Þ
m ;B

ð1Þ
m ;C

ð1Þ
m ; and Dð1Þ

m are also given by Eqs (e) if p2 is replaced by
p1; c2 by c1; �2m by �1m and letting �1m ¼ 0. Similarly, the coefficients Að3Þ

m ;B
ð3Þ
m ;C

ð3Þ
m ;

and Dð3Þ
m can be obtained by replacing c2 by c3, p2 by p3, �1m by �2m and letting

�2m ¼ 0. Introducing Eqs (3.64) for i ¼ 1 and i ¼ 2 into the compatibility conditions
(d), we obtain the following two additional equations:

Að1Þ
m cosh �mc1 þ Bð1Þ

m sinh �mc1 þ Cð1Þ
m sinh �mc1 þ �mc1 cosh �mc1ð Þ

þDð1Þ
m cosh �mc1 þ �mc1 sinh �mc1ð Þ ¼ Að2Þ

m þDð2Þ
m ;

Að2Þ
m cosh �mc2 þ Bð2Þ

m sinh �mc2 þ Cð2Þ
m sinh �mc2 þ �mc2 cosh �mc2ð Þ

þDð2Þ
m cosh �mc2 þ �mc2 sinh �mc2ð Þ ¼ Að3Þ

m þDð3Þ
m :

ðfÞ

Having coefficients AðiÞ
m ;B

ðiÞ
m ;C

ðiÞ
m ; and DðiÞ

m ði ¼ 1; 2; 3Þ available, from Eqs (f) we
obtain the moment coefficients �1m and �2m. Equations (3.64) then give the deflec-
tion of the continuous plate from which the moments and stresses can also be
computed.

The foregoing approach may be extended to include the case of a long rectan-
gular plate with many supports (see Timoshenko and Woinowski-Krieger [3]).
However, as the number of panels increases, it becomes more tedious to find a
solution by the classical methods. A more practical approach for solving such plates
is to use the numerical methods introduced in Chapter 6.

Example 3.7

Determine the deflections and bending moments in the three-span, simply supported
continuous plate loaded as shown in Fig. 3.15.

Solution

Letting p1 ¼ p0; p2 ¼ p3 ¼ 0; and c1 ¼ c2 ¼ c3 ¼ b ¼ 2a, we can obtain coefficients
of integration AðiÞ

m ; B
ðiÞ
m ; C

ðiÞ
m ; and DðiÞ

m ði ¼ 1; 2; 3Þ and moment coefficients �1m and
�2m from Eqs (e) and (f), respectively. Equations (3.64) then give the deflection of the
continuous plate from which the bending moments are computed using Eqs (3.55).

Fig. 3.15
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The deflection w and bending moments Mx and My diagrams along the central
section y ¼ a of the three-span plate are shown in Fig. 3.16 for � ¼ 0:3:The max-
imum values of the deflection and bending moment are

wmax ¼ 0:64ð1� �2Þ p0a
4

Eh3
and Mxmax ¼ 0:177pa2:

3.7 PLATES ON AN ELASTIC FOUNDATION

Many problems of considerable practical importance can be related to the solution
of plates resting on an elastic foundation. Reinforced concrete pavements of high-
ways and airport runways, foundation slabs of buildings, etc., are well-known direct
application. However, an indirect application of this type of plate bending problem
is of equal importance. For example, the shallow shell bending problems may be
reduced to the solution of the problem for a plate on an elastic foundation; i.e., an
analogy exists between the governing differential equation of a shallow shell and that
of a plate on elastic foundation.

The key difficulty of this type of problem is in the correct mathematical
description of a real elastic foundation. There exist a lot of various hypotheses –
models of elastic foundations. The simplest of them has been suggested by Winkler
[11]. It is based on the assumption that the foundation’s reaction qðx; yÞ can be
described by the following relationship:

qðx; yÞ ¼ kw; ð3:65Þ
where k is a constant termed the foundation modulus, which has the dimensions of
force per unit surface area of the plate per unit deflection, e.g. ðlb=in2Þð1=inÞ in US
units or ðN=m2Þð1=mÞ in SI units. Values of k for various soils are given in numerous
references such as [9,12]. In Eq. (3.65) qðx; yÞ is the resisting pressure of the founda-
tion and w is the deflection of the plate.

When the plate is supported by a continuous elastic foundation, the external
load acting in the lateral direction consists of the surface load pðx; yÞ and of the

Fig. 3.16
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reaction of the elastic foundation qðx; yÞ. Thus, the differential equation of the plate
(2.24) becomes the following:

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ 1

D
pðx; yÞ � qðx; yÞ½ �: ð3:66Þ

In this differential equation, the reactive force, qðx; yÞ, exerted by the elastic founda-
tion is also unknown, because it depends on the deflection, wðx; yÞ, of the plate.
Substituting Eq. (3.65) into (3.66), the governing differential equation of the plate
on an elastic foundation, given by the Winkler model, can be written as

Dr2r2wþ kw ¼ p: ð3:67Þ
This equation can be solved for rectangular plates by the classical methods discussed
earlier.

3.7.1 Application of Navier’s solution

Let us consider a simply supported rectangular plate of sides a	 b on an elastic
foundation (Fig. 3.17). The deflection wðx; yÞ and a given loading pðx; yÞ can be
expressed in the form of a double trigonometric series in the form of the expressions
(3.15), as follows. Substituting the above expressions into the governing differential
equation of the problem (3.67), we obtain the unknown amplitudes of the deflec-
tions, wmn, for a specific set of m and n values, as follows:

wmn ¼
pmn

D�4 m2=a2 þ n2=b2
� �2þk

; ð3:68Þ

Fig. 3.17
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which substituted into Eq. (3.15a) yields

wðx; yÞ ¼
X1
n¼1

X1
m¼1

pmn sin
m�x

a
sin

n�y

b

D�4 m2=a2 þ n2=b2
� �2þk

: ð3:69Þ

If a plate is subjected to a uniform load of intensity p0, then Eq. (3.69) becomes

w ¼ 16p0
�2

X1
n¼1

X1
m¼1

sin
m�x

a
sin

n�y

b

mn �4Dðm2=a2 þ n2=b2Þ2 þ k
� �: ð3:70Þ

If a plate is loaded by a concentrated force P applied at a point (�; ), then the
deflected surface equation of the plate can be represented by the following form:

w ¼ 4P

ab

X1
n¼1

X1
m¼1

sin
m��

a
sin

n�

b
�4Dðm2=a2 þ n2=b2Þ2 þ k

sin
m�x

a
sin

n�y

b
: ð3:71Þ

Having the deflection of the plate produced by a concentrated force, the deflection
produced by any kind of lateral loading is obtained by the method of superposition.

3.7.2 Application of Levy’s method

If any two opposite edges of the plate on an elastic foundation are simply supported,
say, the edges x ¼ 0 and x ¼ a, then Levy’s solution presented earlier in Sec. 3.5 can
be applied advantageously. The general solution of the governing differential equa-
tion of the plate on an elastic foundation, Eq. (3.67), may be represented again in the
form of the sum of particular and complementary solutions, i.e.,

w ¼ wp þ wh: ð3:72Þ
Expressing the complementary solution by the Fourier series, yields

wh ¼
X1
m¼1

fmðyÞ sin
m�x

a
: ð3:73Þ

Substituting the above into the homogeneous part of Eq. (3.66) and solving it for
fmðyÞ, we obtain

fmðyÞ ¼ Am sinh 	my sin 
myþ Bm sinh 	my cos
myþ Cm cosh 	my sin 
my

þDm cosh	my cos
my;

ð3:74Þ
where

	m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

m2�2

a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4�4

a4
þ k

D

s0
@

1
A

vuuut ; 
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�m2�2

a2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4�4

a4
þ k

D

s0
@

1
A

vuuut :

ð3:75Þ
Substituting (3.74) into (3.73), we can obtain the expression for complementary
solution wh. Similarly, if we express the particular solution as
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wp ¼
X1
m¼1

gmðyÞ sin
m�x

a
; ð3:76Þ

and the applied load as

p ¼
X1
m¼1

pmðyÞ sin
m�x

a
; ð3:77Þ

and then we substitute these equations into Eq. (3.66), we obtain

d4gm
dy4

� 2
m�

a

� �2d2gm
dy2

þ m4�4

a4
þ k

D

 !
gm ¼ pmðyÞ

D
: ð3:78Þ

Solving Eq. (3.78) for gm, we can find the particular solution wp. Therefore, Eq.
(3.76) together with Eqs (3.73) and (3.74) describes the deflected surface of the plate.

Example 3.8

Find the equation for the deflection of a rectangular plate, resting on a Winkler
foundation of modulus k and subjected to a uniform loading of intensity p0. Assume
that edges x ¼ 0 and x ¼ a are simply supported while edges y ¼ �b=2 are fixed.

Solution

For a uniform loading p, the right-hand side of Eq. (3.66) is constant. Thus, the
particular solution is also a constant and may be taken in the following form:

gm ¼ B; ðaÞ
and the expression for pm is given by (see Table 3.2)

pm ¼ 4p0
m�

: ðbÞ

Substitution of (a) and (b) into Eq. (3.78) results in the following particular solution:

gm ¼ 4p0
Dm�

1

m4�4

a4
þ k
D

� � : ðcÞ

Due to the symmetry of the deflection around the x axis, we can take Bm ¼ Cm ¼ 0
in Eq. (3.74) and the general solution for deflection becomes

w ¼
X1
m¼1

Am sinh 	my sin 
myþDm cosh 	my cos
myþ gmð Þ sinm�x
a
; ð3:79Þ

where Am and Bmare constants of integration. They have to be evaluated from the
boundary conditions on the edges y ¼ �b=2; namely,

w ¼ 0jy¼�b=2;
@w

@y
¼ 0

				
y¼�b=2

: ðdÞ

Substituting the expressions (3.79) into these boundary conditions, gives

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Am ¼ gm

�1 cosh 	m
b

2
cos
m

b

2

� � ; Dm ¼ �Am tanh	m
b

2
tanh
m

b

2

� gm

cosh	m
b

2
cos
m

b

2

ðeÞ

where

�1 ¼
�2 þ �3
�4 � �5

� tanh	m
b

2
tanh
m

b

2
;

�2 ¼ 	m cosh	m
b

2
sin 
m

b

2
; �3 ¼ 
m sinh 	m

b

2
cos
m

b

2
;

�4 ¼ 	m sinh 	m
b

2
cos
m

b

2
; �5 ¼ 
m cosh 	m

b

2
sin 
m

b

2
:

ðfÞ

Substituting the above into expression (3.79), we can obtain the deflection equation
for the plate under consideration.

The Winkler model introduced above is the simplest model of an elastic foun-
dation. It was based on the assumption that the subgrade of a foundation at some
point of its surface is proportional to the pressure between the plate and the sub-
grade at the same point. This is correct in the case of a floating plate, but in the case
of a coherent subgrade such a hypothesis approximates crudely the actual behavior
of the subgrade. A better approximation can be obtained using the model of a semi-
infinite elastic space, as shown in Fig. 3.18; the deflection of a semi-infinite space
surface due to the distributed loads can be determined with the use of Boussinesq’s
solution [13]. So, the deflection at a point ðxi; yiÞ of the semi-infinite space surface
caused by an elementary distributed load qdxdy applied at point ðx; yÞ using the
Boussinesq solution can be represented in the following form:

dwi ¼ K ðx� xiÞ; ðy� yiÞ½ �qdxdy;
where K½ � is an influence function (or Green’s function). It represents a deflection at
point ðxi; yiÞ of a semi-infinite space caused by a unit force P ¼ 1 applied at point
ðx; yÞ. This function K ½. . .� can be derived from Boussinesq’s solution. Then, an

Fig. 3.18
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arbitrary reaction load qðx; yÞ occurring over a plate base causes the following
deflection at point ðxi; yiÞ:

wðxi; yiÞ ¼
ða
0

ðb
0

K ðx� xiÞ; ðy� yiÞ½ �qðx; yÞdxdy: ð3:80Þ

The above-mentioned function K ½. . .� is given by the following [13]:

K ½. . .� ¼ 1� �2
�E

1

r
; ð3:81Þ

where r is the distance between the point of load application ðx; yÞ and point of
observation (xi; yi), r

2 ¼ ðx� xiÞ2 þ ðy� yiÞ2. With regard to expression (3.81) and
replacing a unit force by qdxdy, Eq. (3.80) may be rewritten as

wðxi; yiÞ ¼
1� �2
�E

ða
0

ðb
0

qðx; yÞdxdyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xiÞ2 þ ðy� yiÞ2

q : ð3:82Þ

For this model, the relationship between the deflection of the foundation w and the
foundation reaction q is much more complicated than for the Winkler model. Thus,
the problem of bending of a plate resting on a semi-infinite space becomes more
difficult. In the majority of cases, such plate bending problems can be solved numeri-
cally only.

3.8 PLATES WITH VARIABLE STIFFNESS

Let us consider bending of a rectangular plate having a variable thickness,
h ¼ hðx; yÞ. We assume that the above thickness varies gradually and there is no
abrupt variation in thickness so that the expressions for the bending and twisting
moments derived earlier for plates of constant thickness, Eqs (2.13), apply with
sufficient accuracy to this case also. Substituting the above equations for the bending
and twisting moments into the equation of static equilibrium (2.23) and taking into
account that D ¼ Dðx; yÞ. One obtains the following:

Dr2r2wþ 2
@D

@x

@

@x
ðr2wÞ þ 2

@D

@y

@

@y
ðr2wÞ þ r2Dðr2wÞ

� ð1� �Þ @2D

@x2
@2w

@y2
� 2

@2D

@x@y

@2w

@x@y
þ @

2D

@y2
@2w

@x2

 !
¼ p:

ð3:83Þ

This is the governing fourth-order partial differential equation with variable coeffi-
cients in w describing the bending of thin plates with variable thickness. A closed-
form solution of this equation is possible in very special cases only. Practically, plates
of variable thickness can be treated by approximate and numerical methods intro-
duced in Chapter 6. Among them, the variational (the Ritz method) and finite
element methods are widely used in practice. Analysis of plates with variable thick-
ness can be efficiently carried out by the small parameter method [3]. Let us illustrate
an application of this method to rectangular plates of variable stiffness.
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For simplicity, assume that the plate stiffness varies in one direction only, say,
in the y direction. So, the plate thickness, h, varies according to the law

h ¼ h0 1þ ��ðyÞ½ �; ð3:84Þ
where � is a constant and is in the range 0 < � < 1, �ðyÞ is a given function describ-
ing a variation of the plate thickness over the y cordinate, and h0 is some reference
plate thickness.

Thus,

D ¼ E hðyÞ½ �3
12ð1� �2Þ ¼ D0 1þ ��ðyÞ½ �3; D0 ¼

Eh30
12ð1� �2Þ : ð3:85Þ

The small parameter method introduces the value � as a parameter of a solution of
the given problem. Considering the deflection as a function of x; y; and �, represent
wðx; y; �) in the form

w ¼
X1
m¼0

wm�
m; ð3:86Þ

where wm ¼ wmðx; yÞ: Substituting the expressions (3.85) and (3.86) into Eq. (3.83)
and equating the coefficients for identical powers of � to zero, we obtain the follow-
ing sequence of differential equations:

r2r2w0 ¼
p

D0

;

r2r2w1 ¼ �3 �ðyÞr2r2w0 þ 2� 0ðyÞ @
@y

r2w0 þ� 00ðyÞ r2w0 � ð1� �Þ @
2w0

@x2

" #( )
;

r2r2w2 ¼ �3 �ðyÞr2r2w1 þ 2� 0ðyÞ @
@y

r2w1 þ� 00ðyÞ r2w1 � ð1� �Þ @
2w1

@x2

" #( )

� 3 �ðyÞ½ �2r2r2w0 þ 4�ðyÞ� 0ðyÞ @
@y

r2w0 þ 2



� 0ðyÞ� �2þ�ðyÞ� 00ðyÞ
h i

r2w0 � ð1� �Þ @
2w0

@x2

" #)
;

etc:

ð3:87Þ

where the prime notations indicate the derivatives of the function �ðyÞ with respect
to y. Assume for simplicity that the plate edges x ¼ 0 and x ¼ a are simply sup-
ported. Then, following the Levy method, solutions of Eqs (3.87) are sought in the
form of the following series:
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w0 ¼
X1
n¼1

w0n sin
n�x

a
;

w1 ¼
X1
n¼1

w1n sin
n�x

a
;

w2 ¼
X1
n¼1

w2n sin
n�x

a

etc . . . . . . . . . . . . . . .

ð3:88Þ

where the coefficients wmn ðm ¼ 0; 1; 2; . . .Þ are functions of the y only. Expand the
given loading in the series also, as follows:

pðx; yÞ ¼
X1
n¼1

pnðyÞ sin
n�x

a
: ð3:89Þ

Substituting the first expression (3.88) and Eq. (3.89) into the first equation (3.87)
and satisfying the boundary conditions prescribed on the plate edges y ¼ 0 and
y ¼ b, we can determine w0n. Then, substitution of the first and second expressions
(3.88) into the second equation (3.87) gives w1n. Similarly, each of the functions wm

can be found by substitution of w0;w1; . . . ;wm�1 into the corresponding differential
equation of the system (3.87) involving wm into the left-hand side. Finally, the
deflection surface of the plate is obtained by substituting for w0;w1;w2; . . . ;wm

from Eqs (3.88) into Eq. (3.86). The interested reader can find an application of
this and other methods to plates of variable thickness in Ref. [14].

Example 3.9

A rectangular plate of variable thickness in the y direction is simply supported on
edges x ¼ 0 and x ¼ a and is fixed on edges y ¼ 0 and y ¼ b. The plate thickness
varies according to the law h ¼ h0ð1þ �yÞ. The plate is subjected to a load
p ¼ p0 sin

n�x
a
sin m�y

b
. Find the deflections and bending moments in the plate.

Solution

This problem was solved numerically by using the above-presented general proce-
dure of the small-parameter method. The boundary conditions are found to be as
follows:

w ¼ @2w

@x2
¼ 0

					
x¼0;a

;w ¼ @w

@y
¼ 0

				
y¼0;b

:

For the plate under consideration, �ðyÞ � y. The values of the deflection and bend-
ing moment My at a plate section x ¼ a=2 are given in Table 3.3. These results were
obtained by using the three terms in the expansion (3.86) for a plate with the follow-
ing geometric and mechanical parameters: a ¼ b ¼ 1m; h0 ¼ 0:0625m; � ¼ 0:5; and
� ¼ 0:3.
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3.9 RECTANGULAR PLATES UNDER COMBINED LATERAL AND
DIRECT LOADS

To this point, it was assumed that a plate is bent by lateral load only and deflections
are so small that the plate middle surface was assumed to be unstrained. Thus, the
latter was considered as a neutral surface. Occasionally, however, direct forces (act-
ing in the plane of the middle surface of the plate) are applied directly at the bound-
aries or they arise due to temperature changes (Chapter 7). The latter forces and the
corresponding stresses are also referred to as the membrane or in-plane forces and the
membrane or in-plane stresses, respectively.

Attention will now be directed to situations in which lateral and direct forces
act on the plate simultaneously. We will distinguish two possible cases:

1. Stresses in the middle surface are small and, therefore, their influence on
the plate bending is negligible. So, the total stress may be obtained by
adding stresses caused by stretching and by bending of the plate middle
surface.

2. Direct stresses are not small and their effect on the plate bending
should be taken into account. These stresses may have a considerable
effect on the bending of the plate and must be considered in deriving
the corresponding differential equation of the deflection surface. The
midsurface is strained subsequent to combined loading and assumption
6 of the Kirchhoff theory (see Sec. 1.3) is no longer valid. However, w
is still regarded as small so that remaining assumptions of Sec. 1.3
hold, and yet large enough so that the products of the direct forces
or their derivatives and the derivatives of w are of the same order of
magnitude as the derivatives of the shear forces, Qx and Qy. Thus, as
before, the internal forces and moments are given by Eqs (2.13) and
(2.27).

We consider below the second case in detail. Let a plate element of sides dx and
dy be subjected to direct forces Nx;Ny; and Nxy ¼ Nyx which are functions of x and
y. The top and front views of such an element are shown in Fig. 3.19a and b,
respectively. The lateral load of intensity pðx; yÞ is applied to the element and the
moments, due to this load, acting on the element are shown in Fig. 2.4. We will
derive the differential equation of the plate straining due to the combined effect of
direct and lateral loads.

Table 3.3

yðmÞ
w

p0=E
My

1

�0

� �

0 0 �0:03510
0.2 15.851 0.00561

0.4 30.156 0.02321

0.6 26.04 0.02065

0.8 10.3432 �0:006025
1.0 0 �0:05646
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Consider the equilibrium of the element shown in Fig. 3.19, which is subjected
to the in-plane forces Nx;Ny; and Nxy, as well as to the lateral load pðx; yÞ. First, we
apply the condition

P
Fx ¼ 0. Referring to Fig. 3.19a, from the equilibrium of Nxdy

forces into the x-direction, we obtain the following:

Nx þ
@Nx

@x
dx

� �
dy cos
 0 �Nxdy cos
; ðaÞ

where 
 0 ¼ 
þ d
 ¼ 
þ @

@x dx. Noting that deflections are assumed to be very small

and, hence, for 
 small cos
 � 1, and that likewise, cos 
 0 � 1, Eq. (a) reduces to
@Nx

@x dxdy. The sum of the x components of Nxydx is treated in a similar way. Thus,
the force summation in the x direction leads to

@Nx

@x
þ @Nxy

@y
¼ 0: ð3:90aÞ

Furthermore, the condition
P

Fy ¼ 0 results in the following:

@Nxy

@x
þ @Ny

@y
¼ 0: ð3:90bÞ

Equations (3.90) are independent from the equilibrium equations of Sec. 2.3 and may
be studied separately.

Considering the projection of all the forces (direct and lateral) on the z axis, the
plate deflection must be taken into account. Due to the bending of the plate in the xz
plane, the z component of the normal force Nx is equal to (Fig. 3.19b)

�Nxdy sin 
þ Nx þ
@Nx

@x
dx

� �
dy sin 
 0 ðbÞ

Inasmuch as 
 and 
 0 are small, sin 
 � 
 � @w=@x and sin 
 0 � 
 0, where

 0 ¼ 
þ d
. The latter can be represented as


 0 � 
þ @

@x

dx ¼ @w

@x
þ @

2w

@x2
dx;

Fig. 3.19
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substituting the above into Eq. (b) gives

�Nxdy
@w

@x
þ Nx þ

@Nx

@x
dx

� �
@w

@x
þ @

2w

@x2
dx

 !
dy:

Neglecting higher-order terms in this equation yields

Nx

@2w

@x2
dxdyþ @Nx

@x

@w

@x
dxdy:

The z components of the in-plane shear forces Nxy on the x edges of the element are
determined as follows. The slopes of the deflection surface in the y direction on the x
edges are equal to @w=@y and @w=@yþ ð@2w=@x@yÞdx, respectively. The z directed
component of Nxyi s then

Nxy

@2w

@y@x
dxdyþ @Nxy

@x

@w

@y
dxdy:

An expression identical to the above is found for the z projection of the in-plane
shear forces Nyx acting on the y edges:

Nyx

@2w

@x@y
dxdyþ @Nyx

@y

@w

@x
dxdy:

Finally, for the forces in Figs 3.19 and 2.4, from
P

Fz ¼ 0, we have the following:

@Qx

@x
þ @Qy

@y
þ pþNx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y

þ @Nx

@x
þ @Nyx

@y

� �
@w

@x
þ @Nxy

@x
þ @Ny

@y

� �
@w

@y
¼ 0:

As is seen from Eqs (3.90), the terms within the parentheses in the above expression
vanish and we finally obtain the above equation in the following form:

@Qx

@x
þ @Qy

@y
þ pþNx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y
¼ 0: ð3:91Þ

As the direct forces do not result in any moment along the edges of the element, Eqs
(2.20) and (2.21), and, hence Eqs (2.27) are unchanged. Introduction of Eqs. (2.27)
into Eq. (3.91), yields

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ 1

D
pþNx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y

 !
: ð3:92Þ

Expressions (3.91) and (3.92) are governing differential equations for a thin plate
subjected to combined lateral and direct loads. It is observed that Eq. (2.24) is now
replaced by Eq. (3.92) to determine the deflection surface of the plate if the direct
loads Nx;Ny; and Nxy are not small. Either Navier’s or Levy’s methods may be
applied to obtain a solution.
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Example 3.10

A rectangular plate with simply supported edges is subjected to the action of a
combined uniform lateral load p and uniform tension N as shown in Fig. 3.20.
Derive the equation of the deflection surface.

Solution

The lateral load p can be represented by the double trigonometric series (Eq. (a) of
Example 3.1)

p ¼ 16p0
�2

X1
m¼1;3;5;...

X1
n¼1;3;5;...

1

mn
sin

m�x

a
sin

n�y

b
: ðaÞ

Inserting the above into Eq. (3.92), we obtain the following (letting Nx ¼ N):

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
�N

D

@2w

@x2
¼ 16p0

�2

X1
m¼1;3;5;...

X1
n¼1;3;5;...

1

mn
sin

m�x

a
sin

n�y

b
: ðbÞ

The boundary conditions of a simply supported plate will be satisfied if we take the
deflection w in the form of series

w ¼
X
m

X
n

wmn sin
m�x

a
sin

n�y

b
: ðcÞ

Substituting this series into Eq. (b), we find the following values for coefficients wmn:

wmn ¼
16p0

D�6mn m2=a2 þ n2=b2
� �2þ Nm2

�2Da2

" # ; m; n ¼ 1; 3; 5; . . . : ðdÞ

Hence, the deflection surface of the plate is given by

Fig. 3.20
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w ¼ 16p0
�6D

X1
m¼1;3;5;...

X1
n¼1;3;5;...

sin
m�x

a
sin

n�y

b

mn m2=a2 þ n2=b2
� �2þ Nm2

�2Da2

" #: ðeÞ

Comparing this result with the solution (3.21a), we conclude from the presence of the
term Nm2=�2Da2 in the brackets of the denominator that the deflection of the plate is
somewhat diminished by the action of the tensile forces N. This is as would be
expected.

3.10 BENDING OF PLATES WITH SMALL INITIAL CURVATURE

Let us assume that a plate has an initial curvature of its middle surface, i.e., there is
an initial deflection w0 at any point of the above surface. It is assumed that w0 is
small compared with the plate thickness. If the plate is subject to lateral load and
then an additional deflection w1 occurs, the total deflection is thus

w ¼ w0 þ w1: ð3:93Þ
Here w1 is the solution of Eq. (2.24) set up for the flat plate, i.e., without the above-
mentioned initial deflection. It will be valid if the small initial deflection, w0, is
considered as a result of the action of some fictitious lateral load. Then, applying
the superposition principle (recall that the above principle cannot be applied for
large deflections), it is possible to determine the total deflection.

If besides the lateral load, the direct forces are also applied to an initially
curved plate, then these forces produce bending also, which depends not only on
w1 but also on w0. In order to determine the total deflection, w, we introduce w ¼
w0 þ w1 into the right hand side of Eq. (3.92). The left-hand side of this equation
takes into account a change in curvature from the initial curved state due to the
given lateral load. Therefore, w1 has to be substituted for w on the left-hand side
of Eq. (3.92). Thus, Eq. (3.92) for the initially curved plate is of the following
form:

@4w1

@x4
þ 2

@4w1

@x2@y2
þ @

4w1

@y4
¼ 1

D
pþNx

@2ðw0 þ w1Þ
@x2

þNy

@2ðw0 þ w1Þ
@y2

"

þ2Nxy

@2ðw0 þ w1Þ
@x@y

#
:

ð3:94Þ

As mentioned previously, the influence of the initial curvature on the total deflection
of the plate is equivalent to the influence of some fictitious lateral load of intensity pf
equal to

pf ¼ Nx

@2w0

@x2
þNy

@2w0

@y2
þ 2Nxy

@2w0

@x@y
: ð3:95Þ

Hence, an initially curved plate will experience a bending under action of the direct
forces, lying in the plate middle surface only.
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Example 3.11

Consider a simply supported plate with sides a and b. Assume that the initial deflec-
tion is defined by the following equation:

w0 ¼ 	11 sin
�x

a
sin
�y

b
: ðaÞ

The plate edges x ¼ 0 and x ¼ a are subjected to an in-plane uniform compressive
force Nx ¼ �N, as shown in Fig. 3.21. Find the deflected surface of the plate.

Solution

The differential equation (3.94) together with Eq. (a) will take the following form for
the problem under consideration:

@4w1

@x4
þ 2

@4w1

@x2@y2
þ @

4w1

@y4
¼ N

D

	11�
2

a2
sin
�x

a
sin
�y

b
� @

2w1

@x2

 !
: ðbÞ

Let us represent a solution of the above equation in the form

w1 ¼ A sin
�x

a
sin
�y

b
; ðcÞ

where A is unknown parameter. This solution satisfies exactly the simply supported
boundary conditions. Inserting Eq. (c) into Eq. (b) yields

A ¼ 	11N

�2D
a2

1þ a2

b2

� �2

�N

: ðdÞ

Substituting for A from Eq. (d) into Eq. (c), one obtains the deflection w1, caused by
the compressive forces N. Adding this deflection to the initial deflection (a), gives the
following total deflection of the plate:

w ¼ w0 þ w1 ¼
	11
1� 
 sin

�x

a
sin
�y

b
; ðeÞ

Fig. 3.21
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where


 ¼ N

�2D
a2

1þ a2

b2

� �2
: ðfÞ

The maximum deflection occurs at the plate center. Setting x ¼ a=2 and y ¼ b=2, we
obtain

wmax ¼
	11
1� 
 : ðgÞ

In general case, a given initial deflection of the plate can be expanded into the
following Fourier series:

w0 ¼
X1

m¼1;3;...

X1
n¼1;3;...

	mn sin
m�x

a
sin

n�y

b
ðhÞ

Substituting the above into Eq. (b) and solving yields

w1 ¼
X1

m¼1;3;...

X1
n¼1;3;...

bmn sin
m�x

a
sin

n�y

b
; ðiÞ

where

bmn ¼
	mnN

�2D
a2

mþ n2a2

m2b2

� �2

�N

: ðkÞ

As follows from Eq. (k), the coefficients bmn are increased with an increase of the
force N.

To write the equation for a plate subjected to initial deflection and to in-plane
uniform tensile forces, it is required to change the sign of N in Eq. (b) of the fore-
going example only. By following the approach described above, the deflection of an
initially curved plate subjected to a simultaneous action of in-plane forces Nx;Ny;
and Nxymay also be readily obtained.

PROBLEMS

3.1 A rectangular plate with sides a and b (0 � x � a, 0 � y � b) is bent according to the

following equation w ¼ C sin�x=a sin�y=b. Clarify the type of loading and static

boundary conditions that correspond to the given deflection surface.

3.2 Given the deflection surface of the rectangular plate with sides a and b (0 � x � a,

0 � y � b) in the form w ¼ Axyðx� aÞðy� bÞ, specify the type of loading and kine-

matic boundary conditions corresponding to the given deflection surface of the plate.

3.3 A square plate is subjected to uniformly distributed twisting moments Mxy ¼ Myx

applied to all its four edges. Determine the expression for the deflection surface.

3.4 Formulate the conditions under which a cylindrical bending can occur.

3.5 A rectangular plate of sides a and b is subjected to uniformly distributed bending

moments m applied to all four edges of the plate (see Fig. 3.2, where m1 ¼ m2 ¼ m).

Its curved middle surface should present a portion of a sphere because the radii of

curvature are identical in all planes and at all points of the plate. However, as follows
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from Eq. (3.11), the deflection surface of the above plate under the given moment

loading m represents a paraboloid of revolution. Explain this discrepancy.

3.6 Consider a simply supported plate with sides a and b (0 � x � a, 0 � y � b). If the

applied load is represented by Eq. (3.15b) find the expressions for the coefficients pmn

for the following load distributions:

(a) hydrostatic pressure given by the law pðx; yÞ ¼ p0x=a;
(b) uniform line load p0 distributed over the line x ¼ �;
(c) uniform load p0 distributed over a half of the rectangular plate middle surface,

i.e., 0 � � � a=2 and 0 �  � b, where � and  are coordinates of a point of

application of applied loading.

3.7 A steel door 2 m long, 1.2 m wide, and 20 mm thick is subjected is subjected to a

uniform pressure p0. The plate is simply supported at all edges. Using the Navier

approach and retaining only the first four terms in the series expansion, determine:

(a) the limiting value of p0 that can be applied to the plate without causing yielding; (b)

the maximum deflection w and bending moments Mx and My that would be produced

when the pressure reaches its limiting value. Use E ¼ 210GPa; � ¼ 0:3; �YS ¼ 240MPa

3.8 A rectangular wall panel is subjected to a uniform patch load of intensity p0. The plate

is regarded as simply supported (Fig. 3.6). Using the Navier approach and retaining the

first four terms in the series solution, determine: (a) the maximum deflection w; (b) the

maximum bending moment Mx. Take a ¼ b ¼ 2m; h ¼ 2	 10�2 m; � ¼  ¼ a=2, u ¼
v ¼ 0:5m; v ¼ 0:3, E ¼ 200 GPa. Express w and Mx in terms of p0.

3.9 Consider a simply supported square plate with side a and subjected to a concentrated

load P applied at its center (Fig. 3.7). Find the corner points and indicate their direc-

tions.

3.10 Verify Eq. (3.36).

3.11 A semi-infinite plate-strip (0 � y <1) is simply supported on the edges x ¼ 0 and

x ¼ a. The edge y ¼ 0 is given by the following displacement and rotation:

wðx; 0Þ ¼ A sin
�x

a
;
@w

@y
ðx; 0Þ ¼ B sin

�x

a
:

Determine the bending moment My and the effective shear force Vy on the edge y ¼ 0:
3.12 An infinite plate-strip (�1 < y <1) is simply supported at x ¼ 0 and x ¼ a. A uni-

form line load q acts along the line y ¼ 0. Determine the deflection w and bending

moment My at the plate center, x ¼ a=2; y ¼ 0.

3.13 Consider a rectangular plate with two opposite sides (x ¼ 0 and x ¼ aÞ simply sup-

ported; the third edge (y ¼ 0) is built-in, and the fourth edge (y ¼ bÞ free. The plate is
subjected to a uniform pressure of intensity p0. Retaining only the first two terms of the

Levy’s solution, determine the deflection at the midpoint of the free edges and the

bending moments at the midpoint of the clamped edge. Take a ¼ 2m; b ¼ 3:5m, h ¼
0:15m; E ¼ 210GPa; � ¼ 0:3.

3.14 A rectangular plate with two opposite sides y ¼ �b=2 fixed and the sides x ¼ 0 and x ¼
a simply supported is subjected to a hydrostatic loading, as shown in row 2 of Table

3.2. Derive the expressions for the deflections w and the reactional bending moments

My along the clamped edges y ¼ �b=2.
3.15 Consider a simply supported rectangular plate 0 � x � a and 0 � y � b. The plate is

loaded by the edge moments mx along the edges x ¼ 0 and x ¼ a and the edge moment

my along the edges y ¼ 0 and y ¼ b. Applying the Levy approach, derive the expression

for the deflection surface w.

3.16 Consider a three-span simply supported continuous plate shown in Fig. 3.15. The

second span is subjected to a uniform load of intensity p0. Draw the diagrams of the
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deflections and bending moments along the central section y ¼ a. Take a ¼ 1m; h ¼
10mm; E ¼ 200GPa; � ¼ 0:3; p0 ¼ 25MPa.

3.17 A rectangular plate with two simply supported edges x ¼ 0 and x ¼ a and two clamped

edges y ¼ �b=2 rests on an elastic foundation of the Winkler type. The plate is sub-

jected to a uniform lateral surface load p0. Determine the maximum deflection, wmax,

and the maximum bending moment, My, at the clamped edges. Take a ¼ 1:5m; b ¼
2:0m; h ¼ 12mm; p0 ¼ 20MPa; k ¼ 1:04 MPA/m, E ¼ 210GPa; � ¼ 0:3.

3.18 A rectangular plate has a small initial deviation of the middle surface wiðx; yÞ. The plate
is subjected to a lateral surface load p and in-plane forces Nx;Ny; and Nxy. Show that

the governing differential equation of that initially curved plate under the above load

and forces has the form

@4w1

@x4
þ 2

@4w1

@x2@y2
þ @

4w1

@y4
¼ 1

D
pþNx:

@2ðwi þ w1Þ
@x2

þ 2Nxy

@2ðwi þ w1Þ
@x@y

"

þ:Ny

@2ðwi þ w1Þ
@y2

# ðP3:1Þ

3.19 A simply supported rectangular plate with sides a and b (0 � x � a, 0 � y � b) has an

initial deflection wi ¼ C sin �x
a
sin �y

b
and uniform in-plane compression forces Nx

applied to the edges x ¼ 0 and x ¼ a. With reference to Eq. (P3.1), show that the

deflection surface of that plate is given by

w1 ¼ wi þ w1 ¼
C

1� 	 sin
�x

a
sin
�y

b
; where 	 ¼ Nx

�2D=a2 1þ a2=b2
� �

x

:

3.20 Verify Eqs (3.87).

3.21 A simply supported rectangular plate with sides a and b has an initial deflection

w0ðx; yÞ, defined by Eq. (a) in Example 3.11. The plate is subject to uniform biaxial

compressive forces Nx and Ny. Determine the maximum deflection for a ¼ b and

Nx ¼ Ny ¼ �N.

3.22 A flat plate is subjected to lateral distributed load p and direct (in-plane) forces Nx;Ny;
and Nxy. In addition, body forces Fx and Fy act in the middle plane of the plate. Show

that the governing differential equation for deflections becomes

r2r2w ¼ 1

D
pþNx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y
� Fx

@w

@x
� Fy

@w

@y

 !
: ðP3:2Þ
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4

Circular Plates

4.1 INTRODUCTION

Circular plates are common in many structures such as nozzle covers, end closures in
pressure vessels, pump diaphragms, turbine disks, and bulkheads in submarines and
airplanes, etc. When circular plates are analyzed, it is convenient to express the
governing differential equation (2.24) in polar coordinates. This can be readily
accomplished by a coordinate transformation. An alternative approach based on
the procedure presented in Chapter 3 for rectangular plates to derive the basic
relationships for the lateral deflections of circular plates may be used also.

4.2 BASIC RELATIONS IN POLAR COORDINATES

As mentioned earlier, we use the polar coordinates r and ’ in solving the bending
problems for circular plates. If the coordinate transformation technique is used, the
following geometrical relations between the Cartesian and polar coordinates are
applicable (see Fig. 4.1a):

x ¼ r cos ’; y ¼ r sin ’ and r2 ¼ x2 þ y2; ’ ¼ tan�1 y

x
: ð4:1Þ

Referring to the above

@r

@x
¼ x

r
¼ cos ’;

@r

@y
¼ y

r
¼ sin ’;

@’

@x
¼ � y

r2
¼ � sin ’

r
;

@’

@y
¼ x

r2
¼ cos ’

r
:

ð4:2Þ

Inasmuch as the deflection is a function of r and ’, the chain rule together with the
relations (4.2) lead to the following
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@w

@x
¼ @w

@r

@r

@x
þ @w
@’

@’

@x
¼ @w

@r
cos ’� 1

r

@w

@’
sin ’: ð4:3Þ

To evaluate the expression @2w=@x2, we can repeat the operation (4.3) twice. As a
result, we obtain

@2w

@x2
¼ cos ’

@

@r

@w

@x

� �
� 1

r
sin ’

@

@’

@w

@x

� �

¼ @2w

@r2
cos2 ’� @2w

@’@r

sin 2’

r
þ @w
@r

sin2 ’

r
þ @w
@’

sin 2’

r2
þ @

2w

@’2
sin2 ’

r2
:

ð4:4aÞ

Similarly,

@2w

@y2
¼ @2w

@r2
sin2 ’þ @2w

@r@’

sin 2’

r
þ @w
@r

cos2 ’

r
� @w
@’

sin 2’

r2
þ @

2w

@’2
cos2 ’

r2
; ð4:4bÞ

@2w

@x@y
¼ @2w

@r2
sin 2’

2
þ @2w

@r@’

cos 2’

r
� @w
@’

cos 2’

r2
� @w
@r

sin 2’

2r
� @

2w

@’2
sin 2’

2r2
: ð4:4cÞ

Adding term by term the relations (4.4a) and (4.4b), yields

r2
r w � @2w

@x2
þ @

2w

@y2
¼ @2w

@r2
þ 1

r

@w

@r
þ 1

r2
@2w

@’2
: ð4:5Þ

After repeating twice the operation r2
r , the governing differential equation for the

plate deflection (2.26) in polar coordinates becomes

r4
r w � @2

@r2
þ 1

r

@

@r
þ 1

r2
@2

@’2

 !
@2w

@r2
þ 1

r

@w

@r
þ 1

r2
@2w

@’2

 !
¼ p

D
; ð4:6aÞ

or in the expended form

@4w

@r4
þ 2

r

@3w

@r3
� 1

r2
@2w

@r2
þ 1

r3
@w

@r
þ 2

r2
@4w

@r2@’2
� 2

r3
@3w

@’2@r
þ 4

r4
@2w

@’2
þ 1

r4
@4w

@’4
¼ p

D
:

ð4:6bÞ

Let us set up the relationships between moments and curvatures. Consider now the
state of moment and shear force on an infinitesimal element of thickness h, described
in polar coordinates, as shown in Fig. 4.1b. Note that, to simplify the derivations, the
x axis is taken in the direction of the radius r, at ’ ¼ 0 (Fig. 4.1b). Then, the radial
Mr, tangential Mt, twisting Mrt moments, and the vertical shear forces Qr;Qt will
have the same values as the moments Mx;My; and Mxy, and shears Qx;Qy at the
same point in the plate. Thus, transforming the expressions for moments (2.13) and
shear forces (2.27) into polar coordinates, we can write the following:
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Mr ¼ �D
@2w

@r2
þ � 1

r

@w

@r
þ 1

r2
@2w

@’2

 !" #
; Mt ¼ �D

1

r

@w

@r
þ 1

r2
@2w

@’2
þ � @

2w

@r2

" #
;

Mrt ¼ Mtr ¼ �Dð1� �Þ 1

r

@2w

@r@’
� 1

r2
@w

@’

 !
; ð4:7aÞ

Qr ¼ �D
@

@r
r2
r w

� �
;Qt ¼ �D

1

r

@

@’
r2
r w

� �
: ð4:7bÞ

Similarly, the formulas for the plane stress components, from Eqs (2.15), are written
in the following form:

�r ¼
12Mr

h3
z; �t ¼

12Mt

h3
z; �rt ¼ �tr ¼

12Mtr

h3
z; ð4:8Þ

where Mr;Mt and Mtr are determined by Eqs (4.7). Clearly the maximum stresses
take place on the surfaces z ¼ �h=2 of the plate.

Similarly, transforming Eqs (2.38) and (2.39) into polar coordinates gives the
effective transverse shear forces. They may be written for an edge with outward
normal in the r and ’ directions, as follows:

Vr ¼ Qr þ
1

r

@Mrt

@’
¼ �D

@

@r
ðr2

r wÞ þ
1� �
r

@

@’

1

r

@2w

@r@’
� 1

r2
@w

@’

 !" #
;

Vt ¼ Qt þ
@Mrt

@r
¼ �D

1

r

@

@’
ðr2

r wÞ þ ð1� �Þ @
@r

1

r

@2w

@r@’
� 1

r2
@w

@’

 !" #
:

ð4:9Þ

The boundary conditions at the edges of a circular plate of radius a may readily be
written by referring to Eqs. (2.48), namely:

(a) Clamped edge r ¼ a

w ¼ 0jr¼a;
@w

@r
¼ 0

				
r¼a

: ð4:10Þ

(b) Simply supported edge r ¼ a

Fig. 4.1
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w ¼ 0jr¼a;Mr ¼ 0
		
r¼a
: ð4:11Þ

(c) Free edge r ¼ a

Mr ¼ 0
		
r¼a
;Vr ¼ 0

		
r¼a
: ð4:12Þ

If we use the transformations given by Eqs (4.1)–(4.4), the strain energy for a circular
plate is

U ¼ 1

2

ð ð
S

D
@2w

@r2
þ 1

r

@w

@r
þ 1

r2
@2w

@’2

 !2

�2ð1� �Þ @
2w

@r2
1

r

@w

@r
þ 1

r2
@2w

@’2

 !2
4

þ2ð1� �Þ 1

r

@2w

@r@’
� 1

r2
@w

@’

 !2
3
5rdrd’:

ð4:13Þ

4.3 AXISYMMETRIC BENDING OF CIRCULAR PLATES

When an applied loading and end restraints of the circular plate are independent of
the angle ’, then the deflection of the plate and the stress resultants and stress
couples will depend upon the radial position r only. Such a bending of the circular
plate is referred to as axially symmetrical and the following simplifications can be
made:

@kð Þ
@’k

¼ Mrt ¼ Qt ¼ 0; k ¼ 1; 2; 3; 4:

The previous equations for the bending of a circular plate can therefore be simplified
to

Mr ¼ �D
d2w

dr2
þ �

r

dw

dr

 !
;Mt ¼ �D

1

r

dw

dr
þ � d

2w

dr2

 !
;

Qr ¼ �D
d

dr

d2w

dr2
þ 1

r

dw

dr

 !
¼ �D

d

dr

1

r

d

dr
r
dw

dr

� �� �
:

ð4:14Þ

The differential equation of the deflected surface of the circular plate, Eq. (4.6a),
reduces now to

r4
r w � d2

dr2
þ 1

r

d

dr

 !
d2w

dr2
þ 1

r

dw

dr

 !
¼ p

D
; ð4:15aÞ

and in the extended form

d4w

dr4
þ 2

r

d3w

dr3
� 1

r2
d2w

dr2
þ 1

r3
dw

dr
¼ p

D
: ð4:15bÞ

The formulas for stress components are given by Eq. (4.8), setting �r� ¼ 0, where Mr

and M� can be determined from relations (4.14). Introducing the identity

r2
r w � d2w

dr2
þ 1

r

dw

dr
¼ 1

r

d

dr
r
dw

dr

� �
; ð4:16Þ
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Eq. (4.15a) appears in the form

1

r

d

dr
r
d

dr

1

r

d

dr
r
dw

dr

� �� � �
¼ p

D
: ð4:17Þ

The rigorous solution of Eqs (4.15) or Eq. (4.17) is obtained as the sum of the
complementary solution of the homogeneous differential equation, wh, and the
particular solution, wp, i.e.,

w ¼ wh þ wp: ð4:18Þ
The complementary solution of Eqs (4.15) or Eq. (4.17) is given by

wh ¼ C1 ln rþ C2r
2 ln rþ C3r

2 þ C4; ð4:19Þ

where Ciði ¼ 1; 2; 3; 4Þ are constants that can be evaluated from the boundary con-
ditions.

The particular solution, wp, is obtained by successive integration of Eq. (4.17):

wp ¼
ð
1

r

ð
r

ð
1

r

ð
rpðrÞ
D

drdrdrdr: ð4:20Þ

If the plate is under a uniform loading p ¼ p0 ¼ const, the particular solution is

wp ¼
p0r

4

64D
: ð4:21Þ

For purposes of calculation, the following quantities are given explicitly:

w ¼ C1 ln rþ C2r
2 ln rþ C3r

2 þ C4 þ
p0r

4

64D
;

dw

dr
¼ C1

1

r
þ C2 2r ln rþ rð Þ þ 2C3rþ

p0r
3

16D
;

Mr ¼ �D �C1

1� �
r2

þ 2C2ð1þ �Þ ln rþ C2ð3þ �Þ þ 2C3ð1þ �Þ
�

þ p0r
2

16D
ð3þ �Þ

#
;

Mt ¼ �D C1

1� �
r2

þ 2C2ð1þ �Þ ln rþ C2ð1þ 3�Þ þ 2C3ð1þ �Þ
�

þ p0r
2

16D
ð1þ 3�Þ

#
;

Qr ¼ �4D C2

1

r
þ p0r

8D

� �
:

ð4:22Þ

Let us consider some solutions for axially symmetrical circular plates.

4.3.1 Solid plates

Consider a solid plate of radius a under an axisymmetric load pðrÞ. Take the origin of
the coordinate system at a plate center. The solution of the governing differential
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equation (4.17) is given by the expressions (4.18)–(4.20). For the solid plate, which
contains no concentrated loads at r ¼ 0, it is easy to see that the terms involving the
logarithms in Eq. (4.19) yield an infinite displacement and bending moment, and the
shear force for all values of C1 and C2, except zero; therefore, C1 ¼ C2 ¼ 0. Thus, for
a solid circular plate subjected to an axisymmetric distributed load with arbitrary
boundary conditions, the deflection surface is given by

w ¼ C3r
2 þ C4 þ wp: ð4:23Þ

The constants of integration C3 and C4 in this equation are determined from bound-
ary conditions specified at boundary r ¼ a. Let us consider some particular cases of
plates and loadings that are commonly encountered in practice.

(a) Plate with simply supported edge under a uniform load p0 (Fig. 4.2a).

The boundary conditions are

w ¼ 0jr¼a;Mr ¼ 0
		
r¼a
: ðaÞ

Substituting for wp from Eq. (4.21) into Eq. (4.23), we obtain the equation for the
deflected surface:

w ¼ C3r
2 þ C4 þ

p0r
4

64D
; ð4:24Þ

and the expression for Mr may be obtained from Eq. (4.22) by making C1 ¼ C2 ¼ 0:

Mr ¼ �D 2C3ð1þ �Þ þ
p0r

2

16D
ð3þ �Þ

" #
: ð4:25Þ

Introducing Eqs (4.24) and (4.25) into the boundary conditions (a), one obtains the
system of two algebraic equations in C3 and C4. Solving the above system, yields

C3 ¼ � p0a
2

32D

3þ �ð Þ
1þ �ð Þ ;C4 ¼

p0a
4 5þ �ð Þ

64D 1þ �ð Þ : ðbÞ

Substituting the above into Eq. (4.24) gives the plate deflection in the form

Fig. 4.2
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w ¼ p0ða2 � r2Þ
64D

5þ �
1þ � a

2 � r2
� �

: ð4:26Þ

The maximum deflection, which occurs at r ¼ 0, is thus

wmax ¼
p0a

4

64D

5þ �
1þ �
� �

: ðcÞ

Given the deflection curve w, the moment equation can readily be obtained from Eqs
(4.22) by substituting for C3 and C4 from (b) and making C1 ¼ C2 ¼ 0. Thus, we
obtain

Mr ¼
p0
16

3þ �ð Þ a2 � r2
� �

;Mt ¼
p0
16

3þ �ð Þa2 � 1þ 3�ð Þr2� �
: ð4:27Þ

The bending moment diagrams are shown in Fig. 4.2b. The maximum moments also
occur at the plate center, i.e., at r ¼ 0. Thus, we have

maxMr ¼ maxMt ¼
p0a

2

16
3þ �ð Þ: ð4:28Þ

(b) Plate with clamped edge under a uniform load p0 (Fig. 4.3a)

The boundary conditions are

w ¼ 0jr¼a;
dw

dr
¼ 0

				
r¼a

: ðdÞ

Introducing the deflection surface in the form of Eq. (4.24) into the conditions (d),
we obtain

C3 ¼ � p0a
2

32D
;C4 ¼

p0a
4

64D
: ðeÞ

Similarly to the procedure for the previous case, the deflection is then

w ¼ p0
64D

a2 � r2
� �2

: ð4:29Þ

The maximum deflection occurs at the center of the plate:

Fig. 4.3
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wmax ¼
p0a

4

64D
: ðfÞ

Expressions for the bending moments are calculated by means of Eqs (4.22).
Substituting for C3 and C4 from Eqs (e) into Eqs (4.22) and letting C1 ¼ C2 ¼ 0,
we obtain

Mr ¼
p0
16

1þ �ð Þa2 � 3þ �ð Þr2� �
; Mt ¼

p0
16

1þ �ð Þa2 � 1þ 3�ð Þr2� �
: ð4:30Þ

The bending moment distributions are shown in Fig. 4.3b. The maximum bending
moment Mr occurs at the edge of the plate (at r ¼ a), where

maxMr ¼ � p0a
2

8
: ð4:31aÞ

The maximum bending moment Mt takes place at the plate center (at r ¼ 0), where

maxMt ¼
p0a

2 1þ �ð Þ
16

: ð4:31bÞ

If � ¼ 0:3, comparing Eqs (c) and (f), we see that the maximum deflection for the
simply supported plate is about four times as great as that for the plate with a
clamped edge. For the same value of �, the maximum bending moment for a simply
supported plate is about 1.7 times as great as that for the plate with clamped edge.

(c) Circular plate under a concentrated force at its center

When a concentrated or a point load acts at the plate center, one can set p0 ¼ 0
and; thus;wp ¼ 0 in Eq. (4.18). Referring to Eq. (4.19), we can conclude that C1 must
be taken as zero in order that the deflection should be finite at r ¼ 0. The term
involving C2 must now be retained because of the very high shear stresses present
in the vicinity of the center (see Sec. 3.4). The deflection surface of the plate is then
represented, as follows:

w ¼ C2r
2 ln rþ C3r

2 þ C4: ð4:32Þ
The constants C2;C3; and C4 are evaluated from the boundary conditions and from
conditions at the point of application of the concentrated force. As an example,
consider the plate with clamped edge loaded by a concentrated force P applied at
plate center O, as shown in Fig. 4.4a. The boundary conditions (d), when introduced
into Eq. (4.32) lead to

C2a
2 ln aþ C3a

2 þ C4 ¼ 0;

C2a 2 ln aþ 1ð Þ þ 2C3 ¼ 0:
ðgÞ

The additional condition can be set up from the following consideration. Let us
isolate a small cylinder of radius r in the vicinity of the application of P (Fig. 4.5).

From equilibrium of this cylinder, we obtain

X
Fz ¼ 0: Qr 2�rð Þ þ P ¼ 0 or Qr ¼ � P

2�r
:

Substituting for Qr from Eq. (4.22) into the above and letting p0 ¼ 0, we obtain
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4DC2

1

r
¼ P

2�r
: ðhÞ

Solving Eqs (g) and (h), the constants of integration are

C2 ¼
P

8�D
; C3 ¼ � P

16�D
2 ln aþ 1ð Þ; C4 ¼

Pa2

16�D
:

Upon substitution of the above into Eq. (4.32), we obtain an expression for the
deflection:

w ¼ P

16�D
2r2 ln

r

a
þ a2 � r2

� �
: ð4:33Þ

The bending moments Mr and Mt may be obtained by inserting the constants of
integrationC2;C3; andC4 ðC1 ¼ 0Þ into Eqs (4.22) for p0 ¼ 0. We have the following:

Mr ¼
P

4�
1þ �ð Þ ln a

r
� 1

h i
; Mt ¼

P

4�
1þ �ð Þ ln a

r
� �

h i
: ð4:34Þ

Applying the same procedure, we can obtain the deflection surface and bending
moments for a plate with simply supported edges and subjected to a concentrated
force at its center. For this plate, the deflection and bending moments are given by

w ¼ P

16�D
2r2 ln

r

a
þ 3þ �
1þ � a2 � r2

� �� �
;

Mr ¼
P

4�
1þ �ð Þ ln a

r
; Mt ¼

P

4�
1þ �ð Þ ln a

r
þ 1� �

h i
:

ð4:35Þ

Fig. 4.4

Fig. 4.5
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As seen, the bending moments for both plates approach infinity at the point of
application of concentrated force (r ! 0) (see Fig. 4.4b). The appearance here of a
singularity in the bending moments has the same nature as that discussed earlier for
rectangular plates loaded by a concentrated force. A detailed explanation of this
phenomenon is provided in Sec. 3.4.

(d) Simply supported circular plate subjected to a symmetric lateral load
which linearly increases from the center of the edge (Fig. 4.6)

Substituting p ¼ p0
r
a
into Eq. (4.20) for the particular solution gives

wp ¼
ð
1

r

ð
r

ð
1

r

ð
1

D
r p0

r

a

� �
drdrdrdr ¼ p0r

5

225aD
: ð4:36Þ

Substituting the above into Eq. (4.23), yields the general solution of the form

w ¼ C3r
2 þ C4 þ

p0r
5

225aD
: ðaÞ

Substituting (a) into the boundary conditions (4.11) leads to the following values of
the constants of integration:

C3 ¼ � p0a
2

90D

4þ �
1þ �
� �

; C4 ¼
p0a

4

45D

4þ �
2 1þ �ð Þ �

1

5

� �
: ðbÞ

Equation (a) with known coefficients C3 and C4 determines the deflected plate sur-
face

w ¼ p0a
2

45D

r2

2

4þ �
1þ �
� �

þ a2
4þ �

2ð1þ �Þ �
1

5

� �
þ r5

5a3

( )
: ðcÞ

Example 4.1

A cylindrical tank and flat thin plate bottom are subjected to internal pressure p, as
shown in Fig. 4.7a. Determine a required thickness of the bottom, h, and calculate its
maximum deflection. Use R ¼ 0:25m, p ¼ 2:5MPa, E ¼ 200GPa, and � ¼ 0:3;
respectively. The allowable stress �all is 150MPa.

Solution

The cylindrical tank bottom represents a circular solid plate. It is necessary to
establish a type of boundary conditions on the plate edge, which depends on a
rigidity of the cylinder, and the presence of the gasket at the connection. If the

Fig. 4.6
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cylinder itself is sufficiently rigid, the plate of radius is R (Fig. 4.7b) is thin and, in
addition, the bottom is inserted without a soft gasket, then we can assume the
circular plate edge to be clamped over the contour of the bolts arrangement and
the plate. If the cylinder walls are compliant and the soft gaskets are at the connec-
tion, one can take the plate edge to be simply supported (Fig. 4.7c). In practice, a real
type of plate support is an intermediate one between the above-mentioned extreme
cases, i.e., they (the supports) represent an elastic restraint support. In order to gain a
clear impression of real stresses and deformations occurring in the bottom, it makes
sense to consider both extreme cases. The deflection surfaces and bending moments
for these cases are given by Eqs (4.29), (4.30), and (4.26), (4.27). The bending
moment, Mr and Mt, diagrams are shown in Figs 4.3 and 4.4 for both extreme
cases. Referring to these diagrams, we can conclude that the maximum bending
moment for a simply supported circular plate occurs at the center, while for the
plate with clamped edge the maximum bending moment is at the plate edge. The
value of the maximum bending moment for a simply supported plate is nearly 1.7
times larger than for a plate with a clamped edge (for � ¼ 0:3). However, taking into
account that the plate edge is rather clamped than simply supported, one can expect
that the value of the maximum bending moment at the plate center does not exceed
p0R

2=8, i.e., the value of the bending moment at the clamped edge. Therefore, the
circular plate with a clamped edge can be taken as the design variant of the tank
head. The maximum normal stress occurs at the clamped edge (i.e., for r ¼ R and
z ¼ �h=2). From Eq. (4.8), �max is given by

�r;max ¼
Mr;max

h2=6
¼ 6pR2

8h2
; �t;max ¼

Mt;max

h2=6
¼ �

6pR2

8h2
:

The third principal stress �3 ¼ �z ¼ 0, according to the general assumptions adopted
in the plate bending theory. Since the material of the plate is assumed to be a ductile,
the maximum shear (Tresca) criterion of yielding (see Appendix A.6.2) can be
applied: namely,

Fig. 4.7
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�e ¼ �1 � �3 ¼
6pR2

8h2
� �all:

Solving this for the plate thickness, h, yields

h ¼
ffiffiffiffiffiffiffiffiffiffiffi
6pR2

8�all

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6 2:5	 106
� �

0:25ð Þ2
8 150	 106
� �

s
� 28mm;

D ¼ Eh3

12 1� �2� � ¼ 40:2	 104N �m

Note that if the simply supported plate was chosen as a design variant, then the plate
thickness was found to be h � 36mm.

The maximum deflection for the selected design variant of the tank head is
given by Eq. (f) (case (b) in Sec. 4.3.1), as follows:

wmax ¼
pR4

64D
:

Substituting the given numerical data into the above equation gives

wmax ¼ 0:38mm:

Example 4.2

Find the expression for the deflection of the clamped solid plate shown in Fig. 4.8a
due to line load p distributed along a circle with radius r ¼ b.

Solution

To solve this problem, one first divides the plate problem into two parts (Fig. 4.8b):
an inner solution for a solid plate 1 extending over the region 0 � r � b, and an outer
solution for an annular plate 2 over the region b � r � a. In each case, the governing
equation are (for p ¼ 0)

r4
r w1 ¼ 0;r4

r w2 ¼ 0:

For the inner plate 1 the solution w1 is of the form (see Eq. (4.23))

w1 ¼ C
1ð Þ
3 r2 þ C

1ð Þ
4 ; ðaÞ

and for plate 2 the corresponding solution is

Fig. 4.8

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



w2 ¼ C
2ð Þ
1 ln rþ C

2ð Þ
2 r2 ln rþ C

2ð Þ
3 r2 þ C

2ð Þ
4 : ðbÞ

The six constants in Eqs (a) and (b) are determined from the boundary conditions at
r ¼ a, i.e.,

w2 ¼ 0
		
r¼a

dw2

dr
¼ 0

				
r¼a

ðcÞ

and from the continuity conditions at the junction of the two plate segments. The
latter have the form

w1

		
r¼b

¼ w2

		
r¼b

;
dw1

dr

				
r¼b

¼ dw2

dr

				
r¼b

; M 1ð Þ
r

			
r¼b

¼ M 2ð Þ
r

			
r¼b

; p ¼ Q 1ð Þ
r

			
r¼b

�Q 2ð Þ
r

			
r¼b
:

ðdÞ
Since the inner plate is in pure bending (see Eq. (a)), then Qð1Þ

r ¼ 0 and the last
condition (d) is of the form

p ¼ �Qð2Þ
r

			
r¼b
: ðeÞ

The last condition (e) is illustrated in Fig. 4.8b. Introducing expressions (a) and (b)
into conditions (c), (d), and (e) together with Eqs (4.14), we can find the six constants
of integration. The final solution is, as follows:

– for the inner plate 1, 0 � r � b

w ¼ pb

8a2D
a2 � b2
� �

a2 þ r2
� �� 2a2 b2 þ r2

� �
ln
a

b

h i
; ð4:37aÞ

– for the outer annular plate 2, b � r � a

w ¼ pb

8a2D
a2 þ b2
� �

a2 � r2
� �þ 2a2 b2 þ r2

� �
ln

r

a

h i
: ð4:37bÞ

4.3.2 Annular circular plates

In this section, we discuss the bending of circular plates with concentric circular
holes, the so-called annular plates (Fig. 4.9).

Fig. 4.9
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The outer and inner radii of a plate are denoted by a and b, respectively. For
annular plates the homogeneous solution is given by Eq. (4.19). The solution of an
axially symmetric bending of circular plates with central holes may follow a proce-
dure similar to the one discussed in the foregoing section, but one must consider the
boundary conditions at the outer (r ¼ a) as well as the inner (r ¼ b) boundaries. Two
typical cases of loading are illustrated below.

(a) Simply supported annular plate loaded by edge moments (Fig. 4.10)

For this case of loading, wp ¼ 0 and the general solution is given by

w ¼ C1 ln rþ C2r
2 ln rþ C3r

2 þ C4: ð4:38Þ

The boundary conditions are

Mr ¼ m1

		
r¼b

; Qr ¼ 0
		
r¼b

; Mr ¼ m2

		
r¼a

; w ¼ 0jr¼a: ðaÞ

Introducing Eq. (4.38) into the boundary conditions (a), with the use of Eqs (4.14),
yields the following expressions for the constants of integration:

C1 ¼
m1 �m2ð Þa2b2

D 1� �ð Þ a2 � b2
� � ; C2 ¼ 0;C3 ¼

m1b
2 �m2a

2

2D 1þ �ð Þ a2 � b2
� � ;

C4 ¼ � m1 �m2ð Þa2b2
D 1� �ð Þ a2 � b2

� � ln a� m1b
2 �m2a

2
� �

2D 1þ �ð Þ a2 � b2
� � a2:

ðbÞ

Substituting the above into Eq. (4.38) yields the expression for deflections:

w ¼ m1 �m2ð Þa2b2
D 1� �ð Þ a2 � b2

� � ln r

a
þ m1b

2 �m2a
2

2D 1þ �ð Þ a2 � b2
� � r2 � a2

� �
: ð4:39Þ

Substituting the above expression into Eqs (4.14) gives the expressions for bending
moments:

Mr ¼ �m1b
2 �m2a

2

a2 � b2
þ a2b2 m1 �m2ð Þ

r2 a2 � b2
� � ; Mt ¼ �m1b

2 �m2a
2

a2 � b2
� a2b2 m1 �m2ð Þ

r2 a2 � b2
� � :

ð4:40Þ

Fig. 4.10
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(b) Simply supported plate under a line load uniformly distributed along the
inner edge (Fig. 4.11)

Again, wp ¼ 0, and the general solution is given by Eqs (4.38). The boundary con-
ditions are

w ¼ 0jr¼a; Mr ¼ 0
		
r¼a

; Mr ¼ 0
		
r¼b

; Qr ¼ �p
		
r¼b
: ð4:41Þ

Substituting expressions (4.14) and (4.38) into boundary conditions (4.41), we find

C1 ¼ p
b

4D

2ð1þ �Þ ln ba
ð1� �Þða2 � b2Þ a

2b2; C2 ¼ p
b

4D
;

C3 ¼ p
b

4D

b2 ln ba
a2 � b2

� ln a� 3þ �
2ð1þ �Þ

 !
;

C4 ¼ �p
b

4D

a2b2 ln ba
a2 � b2

2ð1þ �Þ
1� � þ

� �
� ð3þ �Þa2

2ð1þ �Þ

( )
:

Substitution of the above into Eq. (4.38) gives the following expression for the
deflection:

w ¼ p
a2b

4D
1� r2

a2

 !(
3þ #

2 1þ #ð Þ �
b2

a2 � b2
ln
b

a

" #

þ r2

a2
ln

r

a
þ 2b2

a2 � b2
1þ #
1� # ln

b

a
ln

r

a

)
:

ð4:42Þ

It is observed that if b ! 0, b2 ln ðb=aÞ vanishes, and Eq. (4.42), letting p ¼ P=2�b,
reduces to the first equation (4.35) for a solid circular plate under a concentrated
force applied at its center.

4.4 THE USE OF SUPERPOSITION FOR THE AXISYMMETRIC
ANALYSIS OF CIRCULAR PLATES

The procedure discussed in Sec. 4.3 for determining the deflections and bending
moments of symmetrically loaded circular plates is applicable to other cases of
loading and boundary conditions. For complicated configurations of loads and
boundary conditions, the method of superposition may be used to good advantage

Fig. 4.11
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to simplify the analysis. Superposition is a valid method of solution if the response of
a structure is directly proportional to the load that produces it and deflections are
small. Then, if a static loading is broken into simpler components, the final response
is independent of whether component loads are applied simultaneously or added in
arbitrary sequence. Let us illustrate an application of the method of superposition in
the following examples.

Example 4.3

Find the center deflection, w0, in the solid clamped plate loaded as shown in Fig.
4.12a.

Solution

Consider a solid plate with clamped edge loaded by a line load p around a circle of
radius c, as shown in Fig. 4.12b. The center deflection, w0, is given by expression
(4.37a). Setting b ¼ c and r ¼ 0, we obtain the center deflection, w0, as follows:

w0 ¼
pc

8D
a2 � c2 þ 2c2 ln

c

a

� �
: ðaÞ

Having the deflection for a load uniformly distributed along a concentric circle, we
can determine the deflection for the given loading using the method of superposition.
In fact, consider an infinitesimal line load p0dc around a circle of radius c on a plate,
as shown in Fig. 4.12c. Then, the center deflection for the given loading is obtained
from Eq. (a), replacing p by p0dc and integrating from 0 to b. We have

wc ¼
p0
8D

ðb
0

a2c� c3 þ 2c3 ln c� 2c3 ln a
� �

dc

¼ p0
8D

a2
c2

2
� c4

4
þ 2 ln a � c

4

4
þ 2

c4

4
ln c� c4

16

 !" #					
b

0

:

Fig. 4.12
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Finally, we obtain

wc ¼
p0b

2

16D
a2 � 3

4
b2 þ b2 ln

b

a

� �
: ð4:43Þ

Example 4.4

The plate shown in Fig. 4.13a is stepped so that the central disk has twice the flexural
rigidity of the outer annulus. Find the maximum deflection and bending moment Mr

at r ¼ 0:5a, caused by concentrated force P. Use � ¼ 0:3.

Solution

The plate can be separated into two components (Fig. 4.13b): an inner part of the
plate of radius a=2 and outer part in the form of an annular plate (a=2 � r � a).
Continuity between the inner and outer plates is maintained by applying an
unknown moment, Mr, as shown in Fig. 4.13b.

First, consider the solution for the inner plate. The slope at r ¼ a=2 is

dwi

dr
¼ dwi

dr
Pð Þ þ dwi

dr
Mrð Þ; ðaÞ

where dwi

dr
Pð Þ and dwi

dr
Mrð Þ are the slopes of the inner plate at r ¼ a=2 produced by an

external concentrated force P and bending moment Mr, respectively. The above
slopes can be obtained by differentiating the expressions for the deflections given
by the first equation (4.35) and Eq. (4.39) and then setting r ¼ a=2 in the equation for
dwi

dr
ðPÞ and r ¼ a=2;m1 ¼ 0; b ¼ 0; and m2 ¼ Mr in the equation for dwi

dr
ðMrÞ. Thus,

we obtain the following:

dwi

dr
Pð Þ ¼ �0:0612

P 0:5að Þ
2D

¼ �0:0153
Pa

D
;

dwi

dr
Mrð Þ ¼ C1

0:5a

2
þ C2

1

0:5a
¼ 0:5a

2
� 2 0:25a2

� �
Mr

1:3 0:25a2
� �

2D

 !
¼ �0:1923

Mra

D
: ðbÞ

Fig. 4.13
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Finally,

dwi

dr
Pð Þ þ dwi

dr
Mrð Þ ¼ �0:0153

Pa

D
� 0:1923

Mra

D
: ðcÞ

Then we can determine the slopes of the outer annular plate. This plate is
loaded by the line shear forces Qr and the line unknown bending moments Mr.
The line shear force is

Qr ¼
P

2�r
¼ P

2� 0:5að Þ ¼ 0:318
P

a
: ðdÞ

The slope of the outer plate at r ¼ a=2 is

dwo

dr
¼ dwo

dr
Qrð Þ þ dwo

dr
Mrð Þ: ðeÞ

The slopes on the right-hand side of Eq. (e) can be obtained by differentiating the
expressions for the deflections given by Eqs (4.39) and (4.42) and then setting m2 ¼
0; m1 ¼ Mr, and q ¼ Qr.

We obtain the following:

dwo

dr
Mrð Þ ¼ Mrb

2

Dða2 � b2Þ
a2

rð1� �Þ þ
r

1þ �

" #
; ðfÞ

dwo

dr
ðQrÞ ¼ Qr

a2b

4D
� 2r

a2

� �
3þ �

2ð1þ �Þ �
b2

a2 � b2
ln
b

a

" #
þ r

a2
2 ln

r

a
þ 1

� �(
ðgÞ

þ 2b2

a2 � b2
1þ �
1� � ln

b

a

1

a

)
:

Making b ¼ a=2 and r ¼ a=2 in Eqs (f) and (g) and using Eq. (d), we obtain the
following expressions for slopes at r ¼ a=2:

dwo

dr
Mrð Þ ¼ 1:0806

Mra

D
;

dwo

dr
ðQrÞ ¼ �0:1353

Pa

D
: ðhÞ

Finally, the total slope at r ¼ a=2 of the outer plate is given by

dwo

dr
¼ �0:1353

Pa

D
þ 1:0806

Mra

D
: ðiÞ

Equating slopes from Eqs (c) and (i), we find the following:

Mr ¼ 0:094P: ðjÞ
The maximum deflection occurs under the point of application of the concentrated
force. This center deflection is the sum of the following four contributions:

w at r ¼ 0in the first equation (4.35);
w at r ¼ 0 in Eq (4.39) with m1 ¼ 0 and m2 ¼ Mr; b ¼ 0;
w at r ¼ b in Eq. (4.42) with q ¼ Qr; and
w at r ¼ b ¼ 0:5a in Eq. (4.39) with m1 ¼ Mr and m2 ¼ 0.
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Thus, at the plate center, at r ¼ 0, the maximum deflection is given as

wmax ¼ 0:0505
Pð0:25a2Þ

2D
þ Mra

2

4Dð1þ �Þ �
Mrb

2

Dða2 � b2Þ
2

1þ �
b2 � a2

4
þ a2

1� � ln
b

a

" #
þ 0:1934Qr

a3

D
:

Substituting here Qr from Eq. (d) for Mr from Eq. (j), we compute the center
deflection:

wmax ¼ 0:03224
Pa2

D

4.5 CIRCULAR PLATES ON ELASTIC FOUNDATION

We consider in this section circular plates loaded symmetrically with respect to their
center and resting on a Winkler-type foundation, which was discussed earlier in
chapter 3. The foundation reaction, q rð Þ, can be described by

qðrÞ ¼ k � wðrÞ; ð4:44Þ
where k k ¼ constÞð is the modulus of the foundation.

Introducing the reaction of the foundation from Eq. (4.44) into Eq. (4.15b), we
obtain the governing differential equation of bending of circular plates resting on a
Winkler-type foundation:

d2

dr2
þ 1

r

d

dr

 !
d2w

dr2
þ 1

r

dw

dr

 !
¼ 1

D
p� kwð Þ; ð4:45Þ

where p is a given surface load. Denoting

l ¼
ffiffiffiffi
D

k

4

r
; ð4:46Þ

and introducing the dimensionless coordinate � ¼ r=l, one can write Eq. (4.45) in the
form

d2

d�2
þ 1

�

d

d�

 !2

wþ w ¼ pl4

D
: ð4:47Þ

Introducing the following notation

r2
� ¼

d2

d�2
þ 1

�

d

d�
; ð4:48Þ

we can rewrite Eq. (4.47) as follows:

r4
�wþ w ¼ pl4

D
: ð4:49Þ

For p ¼ 0, the homogeneous equation (4.49) is reduced to a system of the following
two second-order differential equations:
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d2w

d�2
þ 1

�

dw

d�
� iw ¼ 0; ð4:50Þ

where i is the imaginary unit, i2 ¼ �1.
The solution of this system of differential equations is of the form [1]:

w ¼ C1J0 �
ffiffi
i

p� �
þ C2J0 �

ffiffiffiffiffiffi
�i

p� �
þ C3H

1ð Þ
0 �

ffiffi
i

p� �
þ C4H

1ð Þ
0 �

ffiffiffiffiffiffi
�i

p� �
; ð4:51Þ

where J0 �
ffiffiffiffiffiffi�i

p� �
is the Bessel function of the first kind of zero order and H

1ð Þ
0 �

ffiffiffiffiffiffi�i
p� �

is the Hankel function of the first kind of zero order [2].
Since the functions J0 �

ffiffiffiffiffiffi�i
p� �

and H
1ð Þ
0 ð� ffiffiffiffiffiffi�i

p
) are complex, whereas the solu-

tion w must be real, it is evident that the constants Ci i ¼ 1; 2; 3; 4ð Þ must also be
complex. In order to express the solution in terms of real functions, let us rewrite the
expression (4.51) in the form

w ¼ A1u0 �ð Þ þ A2v0 �ð Þ þ A3f0 �ð Þ þ A4g0 �ð Þ; ð4:52Þ
where the following expressions are the modified Bessel functions [1] tabulated in [3]:

u0 �ð Þ ¼ ReJ0 �
ffiffi
i

p� �
¼ J0 �

ffiffi
i

p� �þ J0 �
ffiffiffiffiffiffi�i

p� �
2

;

v0 �ð Þ ¼ ImJ0 �
ffiffi
i

p� �
¼ J0 �

ffiffi
i

p� �� J0 �
ffiffiffiffiffiffi�i

p� �
2i

;

f0 �ð Þ ¼ ReH
1ð Þ
0 �

ffiffi
i

p� �
¼ H

1ð Þ
0 �

ffiffi
i

p� �þH
1ð Þ
0 �

ffiffiffiffiffiffi�i
p� �

2
;

g0 �ð Þ ¼ ImH
1ð Þ
0 �

ffiffi
i

p� �
¼ H

1ð Þ
0 �

ffiffi
i

p� ��H
1ð Þ
0 �

ffiffiffiffiffiffi�i
p� �

2i
:

ð4:53Þ

Since the functions u0 �ð Þ; v0 �ð Þ; f0 �ð Þ; and g0 �ð Þ are real, then the coefficients
Ai i ¼ 1; 2; 3; 4ð Þwill also be real.

It can be shown that the functions u0 and v0, together with all of their deriva-
tives, remain finite when � ! 0 and tend toward infinity when �! 1. The function
f0 for �! 0 has a singularity of the �2 ln � type, the function g0 approaches infinity as
ln � when � ! 0; both these functions approach zero when � ! 1 [1].

The following relationships exist between the functions u0; v0; f0; and g0:

r2
�u0 ¼ v0;r2

�v0 ¼ �u0; r2
� f0 ¼ g0; r2

�g0 ¼ �f0; ð4:54Þ
where the operator r2

� is given by Eq. (4.48). These relations and Eqs (4.14) enable us
to write the expressions for bending moments and shear forces.

Example 4.6

Find the deflection surface equation for an infinite plate resting on an elastic foun-
dation, subjected to a concentrated force P.

Solution

The deflection surface is given by Eq. (4.52). Thus, the problem is to evaluate the
constants of integration Ai. The functions u0 �ð Þ and v0 �ð Þ tend toward infinity for
� ! 1 whereas the deflections and bending moments for � ! 1 should vanish. As
it follows from the physical sense of the problem, then A1 ¼ A2 ¼ 0. For � ¼ 0; the
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deflection should be finite; since g0 �ð Þ approaches infinity for � ! 0; then A4 ¼ 0:
Thus,

w ¼ A3f0 �ð Þ: ð4:55Þ
Notice that f0 �ð Þ remains finite when �! 0. The constant A3 is determined from the
equilibrium condition at the point of application of P: the resultant of the radial
shear force Qr distributed over a lateral surface of an infinitesimal circular cylinder
cut out from the plate at its center must be in the limit equal to a value of the applied
force P, ie.,

lim
�!0

Qr ¼
P

2�r
¼ � P

2�l�
: ð4:56Þ

Substituting for w from Eq. (4.55) into the third Eq. (4.14) and taking into account
the relations (4.54), we obtain the following expression for the shear force:

Qr ¼ �D

l3
A3g0

0 �ð Þ; ð4:57aÞ

where the prime notation indicates the first derivative of the function with respect to
the variable �. From the theory of the Bessel functions [2], when �! 0 then
g 0
0ð�Þ ¼ � 2

��. Thus,

Qr ¼ �A3

D

l3
2

��
: ð4:57bÞ

Equating the right-hand sides of Eqs (4.56) and (4.57b), one obtains A3 ¼ Pl2=4D
and the deflection surface is given by

w ¼ Pl2

4D
f0 �ð Þ: ð4:58Þ

Taking into account that the function f0 �ð Þ tends toward 1=2 for � ! 0 [2], we
can determine the maximum deflection (under point of application of P), as follows:

wmax ¼
Pl2

8D
:

The bending moments may be determined from Eqs (4.14) by inserting Eqs (4.57).
They are of the following form:

Mr ¼
P

4�
1þ �ð Þ ln

2l

r
� �

� �
� 1

2
1� �ð Þ

� �
;

M� ¼
P

4�
1þ �ð Þ ln

2l

r
� �

� �
þ 1

2
1� �ð Þ

� �
;

ð4:59Þ

where � ¼ 0:5772157 . . . is Euler’s constant. These formulas are inapplicable for the
point of application of the concentrated force.

The function (4.58) can be considered as a Green’s function in polar coordi-
nates for plates resting on a Winkler-type elastic foundation, i.e., it enables one to
determine the deflection surface of an infinite plate subjected to any type of axisym-
metric loading p ¼ p rð Þ by integrating the solution as a function of r.

Once the solution for an infinite plate on an elastic foundation is available, we
can go to the solution for a circular plate of finite dimensions subjected to an
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axisymmetric loading. For example, the deflection surface of solid circular plates on
a Winkler-type foundation can be represented by Eq. (4.18), where wp is a particular
and wh is a complementary solutions of Eq. (4.45), respectively. The particular
solution can be determined using the superposition principle and Green’s function
(4.58). The homogeneous solution for the solid circular plate of finite dimensions is
of the form

wh ¼ A1u0 �ð Þ þ A2v0 �ð Þ:
The constants of integration A1 and A2 can be evaluated from the prescribed bound-
ary conditions on the plate edge.

4.6 ASYMMETRIC BENDING OF CIRCULAR PLATES

In the foregoing sections, our concern was with circular plates loaded axisymmetri-
cally. We now turn to asymmetrical loading. For the analysis of deflections and
stresses, we must obtain appropriate solutions of the governing differential equation
(4.6). The general solution of this equation can also be presented in the form of
(4.18). The complementary solution, wh, can be expressed by the following series:

wh ¼ f0ðrÞþ
X1
n¼1

fnðrÞ cos n’þ
X1
n¼1

f n ðrÞ sin n’: ð4:60Þ

Substituting the above into Eq. (4.6), and noting the validity of the resulting expres-
sions for all r and ’, leads to two ordinary differential equations with solutions

f0ðrÞ ¼ A0 þ B0r
2 þ C0 ln

r

r
þD0r

2 ln
r

r0
;

f1ðrÞ ¼ A1rþ B1r
�1 þ C1r

3 þD1r ln
r

r0
for n ¼ 1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

fnðrÞ ¼ Anr
n þ Bnr

�n þ Cnr
nþ2 þDnr

�nþ2 n 6¼ 1ð Þ;

ð4:61Þ

Similar expressions can be written for f n ðrÞ and f 1 ðrÞ. The first term in Eq. (4.61)
represents an axisymmetric part of the deflection, discussed in Sec. 4.3. The terms
containing cos n’ in Eq. (4.60) correspond to symmetrical components of the func-
tion wh with respect to the plane ’ ¼ 0, while the terms containing sin n’ represent an
inversely symmetrical part of wh. The applied surface load p ¼ p r; ’ð Þ can be
expanded into a trigonometric series:

p r; ’ð Þ ¼ p0ðrÞþ
X1
n¼1

pnðrÞ cos n’þ
X1
n¼1

pnðrÞ sin n’; ð4:62Þ

where

pnðrÞ ¼
1

�

ð2�
0

pðr; ’Þ cos n’d’; pnðrÞ ¼
1

�

ð2�
0

pðr; ’Þ sin n’d’;

p0ðrÞ ¼
1

2�

ð2�
0

pðr; ’Þd’:
ð4:63Þ
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The constants of integration, An; . . . ;Dn, can be determined from boundary condi-
tions of the plate. The boundary conditions on curvilinear edges of the circular plates
are given by the expressions (4.10)–(4.12). The stress resultants and stress couples
within the plate and on its edge are given by Eqs (4.7) and (4.9). Some details of an
asymmetrical circular plate analysis are explained by considering the following illus-
trative problems.

Example 4.7

The edge of a solid circular plate of radius a is fixed over its boundary and the
applied load is expressed as

p ¼ p0 1þ x

a

� �
¼ p0 1þ r

a
cos ’

� �
: ðaÞ

Find an expression for the deflections (Fig. 4.14).

Solution

Comparing Eq. (a) with Eq. (4.62), we can see that only two terms of the series are
present in the example: an axisymmetric component p0 and component pnðrÞ cos n’
for n ¼ 1 i.e., p1ðrÞ ¼ p0

r
a
cos ’. The axisymmetric part of the solution, caused by

load p0,w0, has been obtained in Sec. 4.3 and is expressed by formulas (4.29) and
(4.30).

Find the asymmetrical part of the solution, w1, that corresponds to the load
component p1ðrÞ. The above part of the solution can also be represented in the form
of Eq. (4.18). The homogeneous solution is given by the second equation (4.61), i.e.,

w
ð1Þ
h ¼ f1ðrÞ cos ’ ¼ A1rþ B1r

�1 þ C1r
3 þD1r ln

r

a

� �
cos ’; ðbÞ

Fig. 4.14
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where the superscript 1 indicates that this solution is obtained for n ¼ 1. A particular
solution must satisfy Eq. (4.6) with the right-hand side p0r

Da
cos ’. We will seek this

particular solution in the following form:

wð1Þ
p ¼ Ar5 cos ’: ðcÞ

Substituting the above into Eq. (4.6), we can find a constant A, i.e., A ¼ p0=192Da.
Thus, the particular solution is

wð1Þ
p ¼ p0r

5 cos ’

192Da
: ðdÞ

Hence, the general solution that corresponds to the asymmetrical part of loading is
given by

w1 ¼ A1rþ B1r
�1 þ C1r

3 þD1r ln rþ
p0r

5

192Da

 !
cos ’: ðeÞ

The boundary and continuity conditions are, as follows:

w 6¼ 1		
r¼0

;
@w

@r
6¼ 1

				r¼0
;w ¼ 0jr¼a;

@w

@r
¼ 0

				
r¼a

: ðfÞ

As it follows from the first two boundary conditions (f)

B1 ¼ 0 and D1 ¼ 0:

The third and fourth conditions (f) lead to the following two equations:

A1aþ C1a
3 þ p0a

4

192D
¼ 0; A1 þ 3C1a

2 þ 5p0a
3

192D
¼ 0;

from which one derives A1 and C1, as follows:

A1 ¼
p0a

3

192D
;C1 ¼ � p0a

96D
:

Hence, the deflection surface of the plate caused by the asymmetrical part of the
given loading (a) is of the following form:

w1 r; ’ð Þ ¼ w
ð1Þ
h þ wð1Þ

p ¼ p0a
4

192D

r

a
� 2

r

a

� �3
þ r

a

� �5� �
cos ’: ðgÞ

Finally, the deflection surface of the plate due to the given loading (a) can be
obtained by superposing the solutions given by formulas (4.29) and (g). We have

w r; ’ð Þ ¼ w0 þ w1 ¼
p0a

4

64D
1� 2

r

a

� �2
þ r

a

� �4� �
þ p0a

4

192D

r

a
� 2

r

a

� �3
þ r

a

� �5� �
cos ’:

ðhÞ
The deflection at the center, wC, can be obtained by setting r ¼ 0. We obtain

wC ¼ p0a
4

64D
: ðiÞ
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The bending moments can be obtained by substitution for w from (g) into Eqs (4.7).
Stress analysis of circular plates having various boundary conditions and sub-

jected to asymmetrical loading can be successfully carried out by numerical and
approximate methods introduced in Chapter 6. Among other methods, the recipro-
city theorem [4] may enable a simple approach for computation of the center dis-
placements in circular plates with symmetrical boundary conditions under
asymmetrical loading.

Consider a circular plate that carries two loads PC and PD applied at points
C and D, respectively. Maxwell’s reciprocal theorem is formulated, as follows [6]:

PC�CD ¼ PD�DC; ð4:64Þ
where �CD is the displacement component at point C in the direction of load PC and
due to load PD; �DC is the displacement component at point D in the direction of
load PD and due to load PC. Equation (4.64) states that work done by the load PC in
moving through displacement produced by the load PD is equal to work done by the
load PD in moving through displacement produced by the load PC. The words
‘‘load’’ and ‘‘displacement’’ can be given by their general meanings, i.e., concen-
trated forces and deflections, couples and their rotations; at last, distributed load
and the corresponding deflections are included.

Let point C be the center of a circular plate and point D be some point located
at a distance r from that center. Denote �CD ¼ wC and �DC ¼ wðrÞ. Evidently wðrÞ is
a deflection at point D due to the unit force applied at the plate center. In the cases of
fixed and simply supported plates, wðrÞ is given by expressions obtained in Eqs (4.33)
and (4.35), respectively. Then, let PC ¼ 1 and PD ¼ pðr; ’Þ. Substituting the above
into Eq. (4.64), one obtains

wC ¼
ð2�
0

ða
0

pðr; ’ÞwðrÞrdrd’ ð4:65Þ

where a is the radius of a circular plate.
To illustrate the application of Eq. (4.65), reconsider Example 4.7. Upon sub-

stituting pðr; ’Þ ¼ p0 1þ r
a
cos ’

� �
and Eq. (4.33) into Eq. (4.65), setting P ¼ 1 and

integrating, we obtain

wC ¼ p0
16�D

ð2�
0

ða
0

1þ r

a
cos ’

� �
2r2 ln

r

a
þ a2 � r2

� �
rdrd’ ¼ p0a

4

64D
: ð4:66Þ

The above coincides exactly with the value given by Eq. (i) in Example 4.7.

4.7 CIRCULAR PLATES LOADED BY AN ECCENTRIC LATERAL
CONCENTRATED FORCE

The solution for circular plates under an arbitrary concentrated load can be con-
sidered one of the fundamental problems in the theory of plates, because this solu-
tion can be used as the Green’s function (see Sec. 3.4) for determining deflections of
the plate caused by an arbitrary asymmetric loading.
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Consider a bending problem for a clamped circular plate of radius R loaded by
a concentrated force P applied at a distance b from the center of the plate. Represent
the given concentrated force in the following form of series:

P

�b

1

2
þ
X1
n¼1

cos n’

 !
:

This series is quite analogous to the series applied earlier for the case of a rectangular
plate loaded by a concentrated force. Then, the deflected surface of the plate, wðr; ’Þ,
can be sought also in the form of the trigonometric series corresponding to the given
loading. The next procedure for obtaining a solution of Eq. (4.6) will be quite similar
to that discussed in Sec. 4.6. An approach for obtaining the solution of the problem
leads to a rapidly convergent series for deflections. However the series in the
solutions for the bending moments and shear forces do not convergent rapidly,
and, directly at the point of application of the concentrated force these series are
divergent (see Sec. 3.4). Therefore, a solution of this problem in the closed form is of
a special interest. Such a solution was first obtained by Michell [5]. We present
Michell’s solution below.

At first, let us remind ourselves of one well-known definition of a circle given in
analytical geometry. Let point M0 be any point on the circumference, points O1 and
O2 some fixed points on the xy coordinate plane and r01 and r02 some distances from
point M0 to points O1 and O2 as shown in Fig. 4.15a.

Then, any circle can be defined as a locus of points for which the ratio r01=r
0
2 is a

constant. In fact, as follows from Fig. 4.15a,

r01 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ð�RÞ2 � 2R � ð�RÞ cos ’;

q
r02 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ ðR=�Þ2 � 2R � ðR=�Þ cos ’

q
;

ð4:67Þ
where � is some parameter. It can be shown that

r01
r02

¼ � ¼ const: ð4:68Þ

Let the concentrated force P be applied at point O1 at a distance �R from the center,
as shown in Fig. 4.15b. Locate an arbitrary point M of the plate by coordinates r1
and r2; which are the distances from the above point to some fixed points O1 and O2.

Fig. 4.15

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



The coordinates r1 and r2 are related to Cartesian coordinates by the following
expressions:

r21 ¼ ðx� �RÞ2 þ y2; r22 ¼ ðx� R=�Þ2 þ y2: ð4:69Þ
Determine the expression for the Laplace operator of some function � in terms of
the coordinates r1 and r2. For this purpose, first find the following

@�

@x
¼ @�

@r1

@r1
@x

þ @�

@r2

@r2
@x

¼ @�

@r1
� x� �R

r1
þ @�

@r2
� x� R=�

r2
;

@2�

@x2
¼ @2�

@r21

ðx� �RÞ2
r21

þ @
2�

@r22

ðx� R=�Þ2
r22

þ @�

@r1

1

r1
� ðx� �RÞ2

r31

" #

þ @�

@r2

1

r2
� ðx� R=�Þ2

r32

" #
:

ð4:70Þ

Similarly,

@2�

@y2
¼ @2�

@r21

y2

r21
þ @

2�

@r22

y

r22
þ @�

@r1

1

r1
� y2

r31

 !
þ @�

@r2

1

r2
� y2

r32

 !
: ð4:71Þ

Summing the above equations for the second derivatives, one obtains the expression
for the Laplace operator. We have the following:

r2� � @2�

@x2
þ @

2�

@y2
¼ @2�

@r21
þ @

2�

@r22
þ 1

r1

@�

@r1
þ 1

r2

@�

@r2
: ð4:72Þ

This expression can be rewritten in the form

r2� ¼ 1

r1

@

@r1
r1
@�

@r1

� �
þ 1

r2

@

@r2
r2
@�

@r2

� �
: ð4:73Þ

Determination of the biharmonic operator r2r2� is reduced to the double imple-
mentation of the operator (4.73).

A solution of Eq. (4.6) for the circular plate loaded by a concentrated force P
at point O1 can be represented in the following form:

w ¼ P

8�D
r21 ln r1 þ C1r

2
1 ln r2 þ C2r

2
1 þ C3r

3
2; ð4:74Þ

where the first term on the right-hand side represents the deflection surface of the
plate symmetrical about point O1 and having a singularity at that point. The con-
stants of integration C1;C2; and C3 are evaluated from the boundary conditions.
Since on the boundary, r1 ¼ r01; r2 ¼ r02, and also r01 ¼ �r02, then the boundary con-
dition w ¼ 0 will be satisfied if we put

C1 ¼ � P

8�D
;C2 ¼ � P

8�D
ln �� C3

�2
: ð4:75Þ

In this case,
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w ¼ P

8�D
r21 ln

r1
�r2

þ C3 r22 �
r21
�2

 !
: ð4:76Þ

The constant C3 is determined from the condition that on the boundary @w=@n ¼ 0.
Since w ¼ 0, then to satisfy this boundary condition it is sufficient that @w=@r1 ¼ 0 on
the boundary, i.e., for r1 ¼ �r2. As it follows from the above, C3 ¼ P

8�D
�2

2
. Finally, we

obtain

w ¼ P

8�D
r21 ln

r1
�r2

þ 1

2
ð�2r22 � r21Þ

� �
: ð4:77Þ

At the point of application of the concentrated force, i.e., for r1 ¼ 0 and r2 ¼
R 1

�� �
� �

(see Fig. 4.15b), the deflection is

w ¼ PR2

16�D
ð1� �2Þ: ð4:78Þ

The closed-form equation for the deflections enables one to determine the bending
moments in the closed form also. For this purpose, we first find the derivatives of w
and the bending moments in the Cartesian coordinate system using Eqs (4.70). The
bending moments at points of the diameter passing through the point of application
of the force (y ¼ 0Þ are found to be

Mx ¼ Mr ¼
P

8�D
2ð1þ �Þ ln r1

�r2
þ 2þ �2ð1þ �Þ þ r21

r22
ð1� �Þ

" #
;

My ¼ Mt ¼
P

8�D
2ð1þ �Þ ln r1

�r2
þ 2�þ �2ð1þ �Þ � r21

r22
ð1� �Þ

" #
:

ð4:79Þ

where r1 ¼ x� �R; r2 ¼ R=�� x.
In the particular case of a clamped circular plate loaded by a concentrated

force P applied at its center, �! 0 and Eqs (4.78) and (4.79) will coincide with those
obtained in Sec. 4.3 for an axisymmetrically loaded circular plate (see Eqs (4.33) and
(4.34)).

4.8 CIRCULAR PLATES OF VARIABLE THICKNESS

We limit ourselves to axisymmetric bending, since this is the type most widely
encountered in engineering – for example, in many machine parts, such as turbine
blades, bellows, springs, etc. Following Szillard [6], we derive the governing equation
of these plates.

Due to the symmetry, Qt and Mrt vanish and only internal forces and moments
show in Fig. 4.16a act on the plate element, as follows

ðQr þ dQrÞðrþ drÞd’�Qrrd’þ pdsdr ¼ 0; ð4:80Þ

Mr þ
dMr

dr
dr

� �
rþ drð Þd’�Mrrd’�Qrrd’dr�Mtdrd’ ¼ 0: ð4:81Þ
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The last term on the left-hand side of Eq. (4.81) is due to the resultant moment
shown in Fig. 4.16b. Replacing ds ¼ rd’, canceling the common factor drd’ and
neglecting small quantities of higher order, Eqs (4.80) and (4.81) become

� 1

r

d

dr
rQrð Þ ¼ p; ð4:82Þ

Qr ¼
dMr

dr
þ 1

r
Mr �Mtð Þ: ð4:83Þ

Substituting for Mr and Mtfrom Eqs (4.14) into Eq. (4.83) and making D ¼ DðrÞ, we
obtain

d3w

dr3
þ d2w

dr2
1

D

dD

dr
þ 1

r

� �
þ dw

dr

�

rD

dD

dr
� 1

r2

� �
þQr

D
¼ 0: ð4:84Þ

If we substitute for Qr from the third equation (4.14) into Eq. (4.82), we obtain

1

r

d

dr
rD

d

dr

1

r

d

dr
r
dw

dr

� �� � �
¼ pðrÞ: ð4:85Þ

Either of the two equations, (4.84) or (4.85), can be used as the governing differential
equations of axisymmetrically loaded circular plates of variable thickness.

In order to lower the order of differential equation (4.84), let us introduce a
new variable

# ¼ � dw

dr
; ð4:86Þ

where # is the angle of rotation of the normal to the plate middle surface. The
negative sign for # is because, as seen from Fig. 4.17, this angle is counted off in
the direction which is opposite to the rotation from the r axis to the z axis. The
expressions for bending moments, Eqs (4.14), can be also written in terms of #, as
follows:

Fig. 4.16
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Mr ¼ D
d#

dr
þ � #

r

� �
;Mt ¼ D

#

r
þ �d#

dr

� �
: ð4:87Þ

Finally, introducing # in the form of Eq. (4.86) into Eq. (4.84) yields the following:

d2#

dr2
þ 1

r
þ 1

D

dD

dr

� �
d#

dr
þ �

D

dD

dr
� 1

r

� �
#

r
¼ Qr

D
: ð4:88Þ

If D ¼ const, Eq. (4.88) reduces to

d2#

dr2
þ 1

r

d#

dr
� 1

r2
# ¼ Qr

D
: ð4:89Þ

Equation (4.88) can also be considered as the governing differential equation of
bending of an axisymmetrically loaded circular plate having a variable stiffness. It
is assumed that the right-hand side of this equation is a known function of r. Qr can
be obtained from the free-body equilibrium. In a general case, when h is an arbitrary
function of r, Eq. (4.88) can be solved numerically only using the approximate
methods introduced in Chapter 6. The small-parameter method, introduced in
Chapter 3 for treating rectangular plates with a variable thickness, can also be
applied to the solution of Eq. (4.88).

However, there is an important particular case when a closed-form solution of
Eq. (4.88) is available. This is a case when the plate thickness varies according to the
following law:

h ¼ Cr	: ð4:90Þ
Depending on the exponent 	, the shape of the plate may be different (Fig. 4.18). The
problem of an axisymmetric bending of the circular plate having a form that corre-
sponds to 	 < 0 is encountered, in particular, in the analysis of turbine disks loaded
by an axial load.

Let r1 be the inner radius and h1 the plate thickness on the inner edge of an
annular circular plate. Taking into account Eq. (4.90), we can represent the plate
thickness as

h ¼ h1
r

r1

� �	
: ð4:91Þ

The flexural rigidity of the arbitrary point of the plate for this case is

Fig. 4.17
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D ¼ Eh3

12ð1��2Þ ¼ D0

r

ri

� �3	

; and ð4:92Þ

D0 ¼
Eh31

12ð1� �2Þ is the flexural rigidity on the inner edge. Substituting Eq. (4.92) into

Eq. (4.88), yields

d2�

dr2
þ 1þ 3	ð Þ

r

d�

dr
� 1� 3	�ð Þ

r2
# ¼ Qr

D0

r1
r

� �3	
: ð4:93Þ

The general solution of this equation can be represented

# ¼ #h þ #p; ð4:94Þ
where the complementary solution #h is sought in the form

#h ¼ Crx: ð4:95Þ
Substituting the above into the homogeneous equation (4.93), we obtain the follow-
ing characteristic equation:

x2 þ 3	x� ð1� 3	�Þ ¼ 0:

The roots of this equation are the following:

x1 ¼ � 3	

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4
þ 1� 3�	ð Þ

r
; x2 ¼ � 3	

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4
þ 1� 3	�ð Þ

r
:

Hence, the complementary solution is given by

#h ¼ C1r
�3	

2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4 þ 1�3	�ð Þ
ph i

þ C2r
�3	

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4 þ 1�3	�ð Þ
ph i

: ð4:96Þ
The particular solution, #p, depends on the type of loading. If the circular plate is
subjected to a load p0 ¼ const, then the shear force Qr can be calculated from the
equilibrium as follows:

Fig. 4.18
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Qr ¼ �p0
r2 � r21
2r

:

Substituting the above into the right-hand side of Eq. (4.93), we can seek a particular
solution in the following form #p ¼ Bry. After a simple transformation, we obtain

#p ¼ � p0r
3	
1

2D0

r3 1�	ð Þ

8� 9	þ 3	�
þ r 1�3	ð Þr21
3	 1� �ð Þ

" #
: ð4:97Þ

If a concentrated load P is distributed over the inner edge, we can find, by analogy,
that

Qr ¼ � P

2�r
and #p ¼ Pr3	1 r 1�3	ð Þ

6�D0	 1� �ð Þ : ð4:98Þ

The general solution of Eq. (4.93) for a plate subjected to uniform pressure p0 and
concentrated force P distributed over the inner edge of the plate can be represented
in the form

# ¼ C1r
�3

2	þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4 þ 1�3�	ð Þ
ph i

þ C2r
�3

2	�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9	2

4 þ 1�3	�Þð Þ
ph i

:

� p0r
3	
1

2D0

r3ð1�	Þ

8� 9	þ 3	�
þ rð1�3	Þr21
3	ð1� �Þ

" #
þ Pr3	1 rð1�3	Þ

6�D0	ð1� �Þ
:

ð4:99Þ

The bending moments can be determined from Eqs (4.87). The deflection w is deter-
mined by integrating the expression (4.86). We have

w ¼ �
ð
#drþ C3: ð4:100Þ

The constants of integration, C1;C2, and C3, are to be determined from boundary
conditions. The above conditions are of the following form:

if the plate edge is fixed, then # ¼ 0;
if the plated edge is simply supported, then Mr ¼ D d#

dr
þ � #

r

� � ¼ 0;

The third boundary condition is formulated, as follows: the deflection on the
restrained edge is zero. One can also take a definite integral instead of indefinite
Eq. (4.100), i.e.,

w ¼ �
ðr
r0

#d �rr; ð4:101Þ

where r0 is the radius on the plate support and r is the radius at a point of interest.

Example 4.9

Find the expressions for stresses and deflections in the circular plate with linearly
varying thickness. The plate is simply supported on its edges and loaded by line
forces P, as shown in Fig. 4.19a. Given r2 ¼ 
r1; � ¼ 1=3.
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Solution

The parameter 	 in this case is equal to unity. Thus, for 	 ¼ 1 and � ¼ 1=3, Eq.
(4.99) becomes

# ¼ C1 þ C2r
�3 þ Pr31 r

�2

4�D0

: ðaÞ

Accordingly,

#

r
¼ C1r

�1 þ C2r
�4 þ Pr31 r

�3

4�D0

;
d#

dr
¼ �3C2r

�4 � Pr31 r
�3

2�D0

: ðbÞ

The boundary conditions are

Mr ¼ 0
		
r¼r1

or
d#

dr
þ 1

3

#

r

� �
¼ 0

				
r¼r1

; Mr ¼ 0
		
r¼r2¼3r1

or
d#

dr
þ 1

3

#

r

� �
¼ 0

				
r¼r2¼
r1

:

ðcÞ
Substituting for # and d#=dr from Eqs (b) into the boundary conditions (c) leads to
the following system of two algebraic equations:

� 3C2

r41
� P

2�D0

þ C1

3r1
þ C2

3r41
þ P

12�D0

¼ 0;

� 3C2


4r41
� P

2
3�D0

þ C1

3
r1
þ C2

3
4r41
þ P

12
3�D0

¼ 0:

Solving these equations for C1 and C2 yields

C1 ¼
5

4

P

4�D0

r1 1þ 

3 � 


1� 
3
 !

; C2 ¼
5

32

P

�D0

r41

3 � 

1� 
3 :

Fig. 4.19
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Substituting the above into the expression (a) gives the following

# ¼ P

4�D0

r1
5ð1� 
Þ
1� 
3 þ 5ð
3 � 
Þ

8ð1� 
3Þ
r31
r3

þ r21
r2

" #
: ðdÞ

Knowing # we can determine the bending moments Mr and Mt from Eqs (4.87). We
have

Mr ¼ D0

r3

r31

d#

dr
þ � #

r

� �
¼ 5P

12�

r1ð
2 � 1Þ

rð
3 � 1Þ � 1þ 
� 1


3 � 1

r2

r21

" #
;

Mt ¼ D0

r3

r31

#

r
þ � d#

dr

� �
¼ P

4�

5ð
� 1Þ

3 � 1

r2

r21
þ 1

3

" #
:

ðeÞ

The moment diagrams for 
 ¼ 3 are shown in Fig. 4.19b. The maximum stress at
r ¼ r1 is

�t;max ¼
6Mt

h21
¼ 1:08

P

�h21
;

and at r ¼ r2

�t;max ¼
6Mt

3h1ð Þ2 ¼ 0:63
P

�h21
:

The maximum deflection for 
 ¼ 3 is found from Eq. (4.101) by substituting for #
from Eq. (d) into the above and making r0 ¼ r2 ¼ 
r1:

wmax ¼ �
ðr1
3r1

#dr ¼ 0:295
Pr21
�D0

:

Numerical results, given in Fig. 4.19, were taken from Ref. [7].

PROBLEMS

4.1 A circular plate of radius a is bent according to the following equation (the origin of

the coordinate system is at the plate center):

w ¼ Cða2 � r2Þ

Fig. P4.1
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How is the plate supported and what is the nature of the loading?

4.2 The equation of the deflected middle surface of the circular plate of radius a is given by

the following equation:

w ¼ C ð5þ �Þa4 � 2ð3þ �Þa2r2 þ ð1þ �Þr4� �
How is the plate supported and what is the nature of the loading?

4.3 It is known that at a concentrated load on a beam, the bending moment is finite at the

point of application of the force. However, at a concentrated load on a plate, the

bending moment is infinite at a point of application of the force according to

Kirchhoff’s plate bending theory. Explain physically, why there is this difference.

4.4 At each of the circular plates with the clamped edge and loaded, as shown in Fig. P.4.1,

determine the deflection and bending moments equations. Find wmax; Mr;max; and

Mt;max.

4.5 At each of the circular plates with simply supported edge and loaded, as shown in Fig.

P.4.2, determine the equations for deflections and bending moments. Find wmax;
Mr;max, and Mt;max.

Fig. P4.2
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4.6 Let a circular plate be subjected to an axially symmetric transverse load of intensity p.

Show that p ¼ Qr

r
þ dQr

dr
:

4.7 Show that the following relations are valid for the axisymmetrically loaded circular

plate:

d

dr
�r þ �tð Þ ¼ �Qr

D
and

d

dr
Mr þMtð Þ ¼ �ð1þ �ÞQr:

4.8 At each of the annular circular plates and loaded, as shown in Fig. P.4.3, determine the

equations for the deflections and bending moments. Find wmax; Mr;max; and Mt;max.

4.9 Calculate the stresses and deflections in a diaphragm intended for measuring the rate of

liquid (see Fig. P.4.3b). The resistance created by the diaphragm in flowing the liquid

Fig. P4.3
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causes a pressure drop of intensity p. Given: a ¼ 0:2m; p ¼ 0:4MPa; � ¼ 0:3, E ¼ 220

GPa; and h ¼ 0:02m.

4.10 Calculate the stresses and deflections in the cap of a hatch. The cap is modeled by a

circular plate simply supported on its outer edge and having a rigid cylinder welded to

the plate’s central part, as shown in Fig. P.4.3.e. Use: a ¼ 0:85m; p ¼ 2MPa; E ¼
200GPa; � ¼ 0:3, and h ¼ 0:08m:

4.11 Find the deflections and bending moments in the circular stepped plate shown in Fig.

P.4.4. Assume a ¼ 2m; h ¼ 0:2m; h1 ¼ 0:12m; p0 ¼ 1:5MPa; E ¼ 200GPa; and

� ¼ 0:3.
4.12 Redo Problem 4.11 for the case of the plate with fixed outer edge.

4.13 Find the expressions for deflections and bending moments in a circular plate subjected

to load p ¼ p0r
a
cos ’ (the origin is taken at the plate center) if the plate edge is fixed and

a is the plate radius.

4.14 A circular simply supported plate is subjected to a transverse load p ¼ p0 1þ r
a
cos ’

� �
(the origin of the coordinate system is taken at the plate center) and a is the plate

radius. Draw the deflection and bending moment diagrams along the diameter for

’ ¼ �=4. Use a ¼ 2:0m; h ¼ 0:15m, p0 ¼ 5MPa; E ¼ 200GPa; and � ¼ 0:3.
4.15 Derive expressions for the stress couples Mr, Mt, and Mrt in terms of the deflection,

using the procedure presented in Sec. 2.3 for rectangular plates.

4.16 A concrete circular slab, simply supported on its edge, is subjected to the loading

shown in Fig. P.4.5. Using the reciprocity theorem, determine the center deflection

Fig. P4.4

Fig. P4.5
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of the plate due to a concentrated center force. A useful formula for a concentrated

center force P and � ¼ 0 is w ¼ 1

16�D
2r2 ln

r

a
þ 3ða2 � r2Þ

h i
.

4.17 For the circular plate, shown in Fig. P.4.5c, verify Eq. (4.64) using the Michell solution

given by Eq. (4.77) and the solution (P.4.1) for the deflection due to a centrally applied

concentrated force.

4.18 Derive the governing differential equation for a circular plate analogous to Eq. (2.44)

for rectangular plates, using the procedure presented in Sec. 2.4.
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5

Bending of Plates of Various Shapes

5.1 INTRODUCTION

Structural members, common in engineering practice, consist of plates with shapes
other than rectangular or circular. The analytical approaches to the solutions of such
plate bending problems, discussed in Chapters 3 and 4, are usually too complicated
to be considered for practical use. The more general forms are discussed in this
chapter. We consider possible solutions, which can be obtained analytically with
relative ease for some geometrical forms of plates different from rectangular and
circular.

5.2 ELLIPTICAL PLATES

Elliptical plates with a clamped boundary, subjected to uniformly distributed loads,
enable one to obtain an analytical solution. Let us consider the elliptical plate shown
in Fig. 5.1. Take the origin of the coordinate system at the center of the plate. The
equation of the contour of the plate (equation of the ellipse) is given by

x2

a2
þ y2

b2
¼ 1: ðaÞ

The boundary conditions for the clamped edge of the plate are

w ¼ 0;
@w

@n
¼ 0: ðbÞ

It can be easily shown that these conditions are satisfied if the deflected surface is

w ¼ w0

x2

a2
þ y2

b2
� 1

 !2

; ð5:1Þ
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where w0 is the center deflection of the plate. Substituting for w into the governing
differential equation (2.24), and letting p ¼ p0, gives

w0

24

a4
þ 16

a2b2
þ 24

b4

� �
¼ p0

D
;

from which

w0 ¼
p0

D 24=a4 þ 24=b4 þ 16=a2b2
� � : ð5:2Þ

Substituting the above into Eq. (5.1), gives the following solution:

w0 ¼
p0
8D

a4b4 x2=a2 þ y2=b2 � 1
� �2
3a4 þ 3b4 þ 2a2b2
� � : ð5:3Þ

Since the deflection surface w in the form of Eq. (5.1) satisfies Eq. (2.24) and the
prescribed boundary conditions (b) exactly, then it is an exact solution of the given
plate bending problem.

The maximum deflection is given by

wmax ¼ wð0; 0Þ ¼ p0
8D

a4b4

ð3a4 þ 3b4 þ 2a2b2Þ :

Knowing the deflection surface Eq. (5.2), one can determine the bending moments in
the plate using Eqs (2.13). The bending moments My at the end points of the semi-
minor axis and at the plate center are

My

		
x¼0;y¼�b

¼ � 8�w0D

b2
; My

				
x¼0;y¼0

¼ 4w0D
1

b2
þ �

a2

� �
: ð5:4Þ

Fig. 5.1
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The bending moments Mx at the end point of the semi-major axis and at the plate
center are given by

Mx

		
x¼�a;y¼0

¼ � 8w0D

a2
; Mx

				
x¼0;y¼0

¼ 4w0D
1

a2
þ �

b2

� �
: ð5:5Þ

Comparing these values of the bending moments, we can conclude that the end point
of the semi-minor axis of the ellipse is the most stressed point.

In the particular case, for a ¼ b ¼ R, the relation (5.3) gives a value of the
maximum deflection for a circular plate with clamped boundary:

w0 ¼
p0R

4

64D
:

For an elliptical plate with a simply supported boundary, subjected to a uniformly
distributed load, the deflected surface is a more intricate problem. Omitting the
solution of this problem, we give only values of the maximum deflection

w0 ¼ 	
p0b

4

D

and the bending moments at the center of the plate

Mx ¼ 
p0b
3; My ¼ 
1p0b

2:

The values of the coefficients 	; 
; and 
1 are given in the Table 5.1 [1] for � ¼ 0:3:

5.3 SECTOR-SHAPED PLATES

The general solution for circular plates (Sec. 4.2) can be used with some modifica-
tions for a plate in the form of a sector plate. We consider a uniformly loaded sector
plate subtending the angle 	 and bounded by the lines r ¼ r0 and r ¼ r1. The plate is
assumed to be simply supported along the straight edges, as shown in Fig. 5.2.

By expanding the lateral load p ¼ p0 ¼ const into a trigonometric series con-
taining the sine terms only, we obtain the following expression for the load:

p ¼ 4p0
�

X1
m¼1;3;5;...

1

m
sin

m�’

	
: ð5:6Þ

The general solution of the problem is sought in the form

w ¼ wh þ wp;

where the particular solution for the deflections, wp, which satisfies the conditions of
simple supports along the edges ’ ¼ 0; 	, is given by [2]

Table 5.1

a=b 1.0 1.2 1.5 2.0 3.0 4.0 5.0 1

	 0.70 0.96 1.26 1.58 1.88 2.02 2.10 2.28


 0.206 0.219 0.222 0.210 0.188 0.184 0.17 0.15


1 0.206 0.261 0.321 0.379 0.433 0.465 0.48 0.5
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wp ¼
4p0r

4
0

�
�4

X1
m¼1;3;5;...

sin
m�’

	
m 16�m2�2=	2
� �

4�m2�2=	2
� �: ð5:7Þ

where � ¼ r=r0
The complementary solution, wh, can be taken as

wh ¼ F0 þ
X1
m¼1

Fm sin
m�’

	
; ð5:8Þ

where

F0 ¼ A0 þ B0�
2 þ C0 ln �þD0�

2 ln �;

Fm ¼ Am�
m�=	 þ Bm�

�m�=	 þ Cm�
2þm�=	 þDm�

2�m�=	:
ð5:9Þ

The coefficients A0;B0;C0;D0; and Am;Bm;Cm;Dm are determined from the bound-
ary conditions at r ¼ r0 and r ¼ r1. Some analytical solutions for sector plates with
various values of the angle 	 	 ¼ �=2ð and 	 ¼ �Þ are given in Timoshenko and
Woinowski-Krieger [1].

If the uniformly loaded and simply supported plate sector takes the form of a
semicircle (	 ¼ �), as shown in Fig. 5.3, then its solution assumes the form

w ¼
X1

m¼1;3;5;...

Amr
m þ Cmr

mþ2
� �

sinm’þ 4p0r
4

�D

X1
m¼1;3;5;...

sinm’

m 16�m2
� �

4�m2
� �:

ð5:10Þ
This solution satisfies the boundary conditions on the straight edge of the semicir-
cular plate. The constants Am and Cm are determined from the boundary conditions
along the curvilinear edge of the semicircle. Determining the above constants and
inserting them into Eq. (5.10), one finds

w ¼ por
4
0

D

X1
m¼1;3;5;...

4�4

m� 16�m2
� �

4�m2
� �

(

þ �m 5þmþ �ð Þ
m� 16�m2
� �

2þmð Þ mþ 0:5 1þ �ð Þ½ �

� �mþ2ð3þmþ �Þ
m�ð4þmÞð4�m2Þ mþ 0:5ð1þ �Þ½ �

)
sinm’:

ð5:11Þ

Fig. 5.2
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5.4 TRIANGULAR PLATES

5.4.1 Isosceles right triangular plates

Consider a simply supported isosceles right triangular plate AOB, of length a under a
concentrated force P acting at an arbitrary point Cð�; Þ, as shown in Fig. 5.4. To
solve the given plate bending problem, the method of images, introduced by Nadai
[2], may be used. According to this method, the given triangular plate is considered as
one-half of a simply supported square plate, as indicated in Fig. 5.4 by dashed lines.

This square plate is subjected to the concentrated forces P (given force acting
downward) and �P (fictitious concentrated force acting upward) at points C �; ð Þ
and C 0 a� �; a� ð Þ, respectively. Point C 0 is the mirror or image point of C with
respect to diagonal AB. The bending couple due to þP and �P results in a zero
bending moment and deflection along diagonal AB of the square plate, i.e., the
prescribed simply supported boundary conditions for the given triangular plate

Fig. 5.3

Fig. 5.4
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will be satisfied. The deflection owing to the force P can be obtained from Eq. (3.27)
by replacing b with a. Finally, we have

wþP ¼ 4Pa2

�4D

X1
m¼1

X1
n¼1

sin
m��

a
sin

n�

b

m2 þ n2
� �2 sin

m�x

a
sin

n�y

a
: ð5:12Þ

Upon substitution of �P for P, a� ð Þ for �, and a� �ð Þ for  in Eq. (5.12), we
obtain the deflection due to the force �P at C 0:

w�P ¼ � 4Pa2

�4D

X1
m¼1

X1
n¼1

ð � 1Þmþn sin
m�

a
sin

m��

a

m2 þ n2
� �2 sin

m�x

a
sin

n�y

a
: ð5:13Þ

The deflected surface of the triangular plate is obtained from

w ¼ wþP þ w�P; ð5:14Þ
where wþP and w�P are given by Eqs (5.12) and (5.13). Using the function w as
Green’s function, we can obtain the solution of an isosceles triangular, simply sup-
ported plate subjected to any type of loading pðx; yÞ. For example, the deflected
surface of a triangular plate under a uniformly distributed load of intensity p0 ¼
P=d�d may be found from Eq. (5.14), after integration over the area of the plate, as
follows:

w ¼ 16p0a
4

�6d

X1
m¼1;3...

X1
n¼2;4...

n sin
m�x

a
sin

n�y

a

m n2 �m2
� �

m2 þ n2
� �2

2
4

þ
X1

m¼2;4...

X1
n¼1;3...

m sin
m�x

a
sin

n�y

a

n m2 � n2
� �

m2 þ n2
� �2

3
5:

ð5:15Þ

This series converges very rapidly. With the expressions for the deflection of the plate
determined, one can obtain the bending moments and stresses in the plate from Eqs
(2.13) and (2.15), respectively.

5.4.2 Equilateral triangular plate

Consider a simply supported equilateral plate ABC shown in Fig. 5.5. The deflected
surface of the equilateral triangular plate may be represented in the form

w ¼ kFðx; yÞ; ð5:16Þ
where k is a constant and Fðx; yÞ is some function that satisfies the prescribed simply
supported boundary conditions for the plate. In particular, Fðx; yÞ can be repre-
sented as the product of the left-hand sides of equations of the three sides of the
triangle. In this case,

Fðx; yÞ ¼ xþ a

3

� � xffiffiffi
3

p þ y� 2a

3
ffiffiffi
3

p
� �

xffiffiffi
3

p � y� 2a

3
ffiffiffi
3

p
� �

¼ x3 � 3y2x

3
� aðx2 þ y2Þ

3
þ 4a3

81
:

ð5:17Þ
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It is evident that Fðx; yÞ is zero at the boundary. In the particular case of a
uniformly loaded equilateral triangular plate, the deflection surface can be taken as
[1]

w ¼ p0
64aD

x3 � 3y2x� a x2 þ y2
� �þ 4

27
a3

� �
4

9
a2 � x2 � y2

� �
; ð5:18Þ

where p0 is the load intensity. It can be shown that this expression for w satisfies the
governing differential equation (2.24) and the boundary conditions for a simply
supported edge. Therefore, Eq. (5.18) is the solution. By employing Eqs (2.13), the
bending moments may then be obtained. It can be shown that the center moments
are

Mx ¼ My ¼ ð1þ �Þ p0a
2

54
: ð5:19Þ

The largest moments occur on the planes bisecting the angles of the triangle. For
example, at points along the x axis (Fig. 5.5), for � ¼ 0:3, we obtain the following
expressions:

Mx;max ¼ 0:0248p0a
2 x ¼ �0:062a; y ¼ 0ð Þ;

My;max ¼ 0:0259p0a
2 x ¼ 0:129a; y ¼ 0ð Þ:

The maximum stress is given by �y;max ¼ 0:155p0a
2=h2.

5.5 SKEW PLATES

Skew plates are widely used in modern structures. Swept wings of airplanes and
parallelogram slabs in buildings and bridges are examples of the application of
skew plates in engineering. Following Szillard [3], let us derive the governing differ-
ential equation of bending of skew plates by introducing an oblique coordinate
system, �; , as shown in Fig. 5.6. The coordinates of the rectangular (x; y) and
oblique (�; ) systems are related by

Fig. 5.5
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� ¼ x� y tan ’ and  ¼ 1

cos ’
y: ð5:20Þ

Substitution of the expressions (5.20) into Eq. (2.17), transforms the Laplacian
operator from the rectangular to oblique coordinate system, r2

o, as follows:

r2
o ¼ 1

cos2 ’

@2

@�2
� 2 sin ’

@2

@�@
þ @2

@2

 !
ð5:21Þ

Therefore, the governing differential equation of plate bending, expressed in terms of
the oblique coordinates, is of the form

D

cos4 ’

@4w

@�4
þ 2 1þ 2 sin2 ’

� � @4w

@�2@2

(
� 4 sin ’

@4w

@�3@
þ @4w

@�@3

 !
þ @

4w

@4

)
¼ p �; ð Þ:

ð5:22Þ
or, more concisely,

Dr2
or2

ow �; ð Þ ¼ p �; ð Þ: ð5:23Þ
The analytical solution of Eq. (5.22) or (5.23) is complicated by the absence of

orthogonal relationships and by the presence of singularities occurring at the obtuse
corners. It can be solved only for a few particular cases. Thus, the analysis of the
skew plates mentioned above can be carried out, primarily, by numerical methods
discussed in Chapter 6. Some numerical solution procedures and the corresponding
examples are discussed in Szillard [3].

PROBLEMS

5.1 Derive the equation for the bending moments, Mx and My, for a clamped elliptical

plate under a uniformly distributed surface load p0.

5.2 Derive the equations for the shear forces, Qx and Qy, for a clamped elliptical plate

under a uniformly distributed surface load p0.

Fig. 5.6
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5.3 With reference to Problem 5.2, show that a clamped elliptical plate under a uniformly

distributed load p0 is in a state of equilibrium, i.e., show that Pþ R ¼ 0, where P is the

resultant of distributed load p0 and R is the resultant of the reactive forces on the plate

boundary, R ¼ Þ
Vxdy� Vydx
� �

.

5.4 Determine the required thickness of a fixed elliptical plate with a ¼ 25 in. and b ¼
18 in: The plate is loaded by a uniform pressure of 120 psi. Take � ¼ 0:3 and the

allowable stress of 16 ksi.

5.5 Verify Eq. (5.11).

5.7 A simply supported wing panel in the form of an isosceles right triangle is subjected to

a uniform distributed load p0 (Fig. 5.4). By retaining only the first term of the series

solution at point Cðx ¼ a=4; y ¼ a=4Þ, determine (a) the deflection and (b) the bending

moments.

5.8 Consider a simply supported equilateral triangular plate under a uniformly distributed

load p0. With reference to Eqs (2.32), show that

r2M ¼ �p0;M ¼ p0
4a

xþ a

3

� �
x� 2

3
aþ y

ffiffiffi
3

p� �
x� 2

3
a� y

ffiffiffi
3

p� �
:

.

5.9 Verify Eq. (5.22).

5.10 Consider a clamped plate in the form of a parallelogram (Fig. 5.6) subjected to a

uniform surface load p0. Taking a solution of Eq. (5.22) in the form

wð�; Þ ¼ A

4
1� cos

2��

a

� �
1� cos

2�

b

� �

determine at point � ¼ a=2 and  ¼ b=2: (a) the deflection, (b) the bending moments.

Use ’ ¼ 15
.
5.11 Determine the expressions for Mx;My; and Mxy for skew plates by using the geome-

trical relationship (5.20) between the Cartesian and oblique coordinates.
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6

Plate Bending by Approximate and
Numerical Methods

6.1 INTRODUCTION

An exact solution in analytical form (i.e., exact solution formula) of plate bending
problems using classical methods, discussed in Chapters 3, 4, and 5, is limited to
relatively simple plate geometry, load configuration, and boundary supports. If these
conditions are more complicated, the classical analysis methods become increasingly
tedious or even impossible. In such cases, approximate methods are the only
approaches that can be employed for the solution of practically important plate
bending problems. Nevertheless, the classical solutions remain very valuable because
they enable one to gain insight into the variation of stresses and strains with basic
shape and property changes, and they provide an understanding of the physical plate
behavior under an applied loading. In addition, they can be used as a basis for
incisively evaluating the results of approximate solutions through quantitative com-
parisons and order-of-magnitude bounds.

In this chapter we consider some approximate methods that are widely used for
plate and shell bending analysis. By convention, these approximate methods may be
divided into two groups.

6.1.1 Indirect methods

These methods enable us to obtain numerical values of unknown functions by,
primarily, direct discretization of the governing differential equation of the corre-
sponding boundary value problem. Also they can be defined as methods for solving
problems on computers. Note that computers have changed, almost revolutionized,
numerical methods. These changes of the field as a whole, as well as many individual
methods, are continuing. Here, we introduce such well-known methods as the finite
difference method, the method of boundary collocations, the boundary element
method, and the Galerkin method.
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6.1.2 Direct methods

These methods use the variational principles introduced in Sec. 2.6 for determin-
ing numerical fields of unknown functions (deflections, internal forces, and
moments), avoiding the differential equations of the plate or shell theory. The
Ritz method is considered first and then the most efficient and well-accepted
method at the present time – the finite element method – is also be presented.
It should be noted that the above-mentioned division is very conventional because
some approximate methods combine some distinguishing features of both groups
of methods. For instance, the variational difference method is based on varia-
tional principles but unknown functions of deflection are represented in a numer-
ical form at nodal points of the mesh drawn on the area of a plate midplane. In
this chapter, all the above-mentioned methods are discussed only with application
to plate bending problems. Their application to shell problems is considered in
Part II.

6.2 THE FINITE DIFFERENCE METHOD (FDM)

6.2.1 General concepts

This is a method of the solution of boundary value problems for differential equa-
tions. The essence of the FDM lies in the following:

1. The middle plane of the plate is covered by a rectangular, triangular, or
other reference network (Fig. 6.1), depending on the geometry of the
plate. This network is called a finite difference mesh and points of inter-
section of this mesh are referred to as mesh or nodal points.

2. The governing differential equation inside the plate domain is replaced by
the corresponding finite difference equations at the mesh points using the
special finite difference operators.

3. Boundary conditions are also formulated with the use of the above-men-
tioned finite difference operators at mesh points located on the plate
boundary.

As a result of such replacement, we obtain a closed set of linear algebraic equations
written for every nodal point within the plate. Solving this system of equations, one
obtains a numerical field of the nodal displacements.

6.2.2 Approximation of derivatives by finite differences

The key point of the FDM is the finite difference approximation of derivatives.
Consider a development of the above approximations for the derivatives of a one-
dimensional, continuous function f ðxÞ. It is known that the derivative of a function
f ðxÞ at point xi is defined, as follows (Fig. 6.2a):

df

dx

� �
i

¼ lim
�!0

fiþ1 � fi
�

or
df

dx

� �
i

¼ lim
�!0

fi � fi�1

�
;
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Fig. 6.1

Fig. 6.2
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where fi ¼ f ðxiÞ, etc.; � is a finite increment of the variable x. Dropping the symbol
of limit in the above equalities, we obtain

df

dx

� �
i

� fiþ1 � fi
�

; ð6:1aÞ

df

dx

� �
i

� fi � fi�1

�
: ð6:1bÞ

Expressions (6.1a) and (6.1b) are called the first forward and backward approxima-
tions of the first derivative of f ðxÞ at point xi, respectively. In practice, the expression
for a central difference approximation of (df =dxÞi is often used, as follows:

df

dx

� �
i

� fiþ1 � fi�1

2�
: ð6:2Þ

Expressions (6.1) and (6.2) are also referred to as the finite difference operators of the
first derivative. It is clear that expressions (6.1) and (6.2) are more accurate as the
value of � is smaller. From now on, for simplicity, we use the sign of equality in the
above expressions instead of the sign of approximate equality.

Applying expressions (6.1) and (6.2) as operators we can derive the correspond-
ing differential approximations of the second, third, and fourth derivatives of the
function f ðxÞ. We present below only the central difference approximations of the
above derivatives, as follows:

d2f

dx2

 !
i

¼ fi�1 � 2fi þ fiþ1

�2
; ð6:3Þ

d3f

dx3

 !
i

¼ fiþ2 � 2fiþ1 þ 2fi�1 � fi�2

2�3
; ð6:4Þ

d4f

dx4

 !
i

¼ fiþ2 � 4fiþ1 þ 6fi � 4fi�1 þ fi�2

�4
: ð6:5Þ

The coefficient patterns for the central finite difference operators of a one-dimen-
sional function f ðxÞ are given in Fig. 6.2b.

By using the quadratic interpolation, one can obtain the expressions of the
above derivatives for a nonuniformly spaced finite difference mesh shown in Fig. 6.3.

For example,

df

dx

� �
i

¼ �	2fi�1 � 1� 	2� �
fi þ fiþ1

	 1þ 	ð Þ� ;

d2f

dx2

 !
i

¼ 2 	fi�1 � 1þ 	ð Þfi þ fiþ1

� �
	 1þ 	ð Þ�2

:

ð6:6Þ

We now discuss the case of a continuous function Fðx; yÞ of two variables. For
this purpose, assume that a plate middle plane is approximated by a mesh with
the mesh widths of �x and �y in the x and y directions, respectively. Let us
restrict our derivation and application to equally spaced square meshes by introdu-
cing �x ¼ �y ¼ �. It is evident that @iF=dxi and @jF=@yj (i; j ¼ 1; 2; 3; 4Þ are
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approximated by the finite difference operators of the type (6.3)–(6.5). For example,
for a central point k, we obtain

@2F

@x2

 !
k

¼ Fa � 2Fk þ Fc

�2
;

@2F

@y2

 !
k

¼ Fd � 2Fk þ Fb

�2
: ð6:7Þ

Adding the equalities (6.7), we obtain the finite difference approximation of the
Laplace operator, as follows:

r2F
� �

k
¼ @2F

@x2
þ @

2F

@y2

 !
¼ Fa þ Fb þ Fc þ Fd � 4Fk

�2
: ð6:8Þ

The finite difference approximation of the biharmonic operator can be obtained by
applying the Laplace operator (6.8) twice. We have the following:

r2r2F
� �

k
¼

20Fk � 8 Fa þ Fb þ Fc þ Fdð Þ þ 2 Fe þ Ff þ Fg þ Fh

� �þ Fl þ Fm þ Fn þ Fið Þ
�4

:

ð6:9Þ

The expression for the approximation of the second mixed derivative can be
obtained following the pattern shown next:

@2F

@x@y

 !
k

¼ @

@x

@F

@y

� �
k

¼ � @F=@yð Þaþ @F=@yð Þc
2�

¼ Fh � Fe þ Ff � Fg

4�2
: ð6:10Þ

Applying this operator twice, one obtains the approximation of the fourth derivative
of the function Fðx; yÞ; ð@4F=@x2@y2Þk.

For reference purposes, some useful finite difference operators for a square
mesh are represented in the form of coefficient patterns in Fig. 6.4. Notice that the
center point in each case is the node about which each operator is written (the above
point is outlined by a rectangle). In the case of a rectangular mesh with �x ¼ �x and
�y ¼ �y, one needs to replace � with �x, or � with �y. For example,

Fig. 6.3
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@F

@x

� �
k

¼ Fa � Fc

2�x
;

@F

@y

� �
k

¼ Fb � Fd

2�y
;

@2F

@x2

 !
k

¼ Fa � 2Fk þ Fc

�2x
;
@2F

@y2

 !
k

¼ Fb � 2Fk þ Fd

�2y
; etc:

ð6:11Þ

Up to this point, the finite difference operators have been derived using only
Cartesian coordinates. The latter are well adapted to the solution of plate bending
problems involving domains bounded by straight lines. For curvilinear plate
domains, polar coordinates, can be conveniently applied. The finite difference opera-
tors in polar, or other coordinates, can be developed through the transformation of
the corresponding equations relating the x and y coordinates to the set of coordi-
nates of interest and using the coefficient patterns for finite difference operators
given in Fig. 6.4.

6.2.3 Application of the finite difference method to plate bending pro-
blems

We can set up, with the use of a biharmonic operator (6.9), a finite difference
expression of the governing differential equation (2.25) for every kth nodal point
of the finite difference mesh within the plate at which wk 6¼ 0:

Fig. 6.4
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r2r2w
� �

k
¼ pk

D
; k ¼ 1; 2; . . .N; ð6:12Þ

where pk is an average load over an area �	� enclosing the nodal point k. If a
concentrated force P is applied at a kth point, then pk ¼ P=�2. The finite difference
operators for some moments and the effective shear forces are given in Fig. 6.5. They
were obtained by replacing the partial derivatives in Eqs (2.13) and (2.39b) by the
corresponding finite difference expressions.

Let us consider some finite difference expressions for typical boundary condi-
tions for the plate edge x ¼ const:

(a) Simply supported edge (Fig. 6.6a)

According to the boundary conditions for a simply supported edge, we have

wk ¼ 0 and
@2w

@x2

 !
k

¼ 0; ð6:13aÞ

and applying the finite difference operator of the second derivative (see Fig. 6.4)
yields

wa � 2wk þ wb

�2
¼ 0;

from which, taking into account that wk ¼ 0, we can obtain

wb ¼ �wa: ð6:13bÞ

Fig. 6.5
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(b) Clamped edge (Fig. 6.6b)

Boundary conditions for the clamped edge of a plate can be written for the kth point
as follows:

wk ¼ 0 and
@w

@x

� �
k

¼ 0: ð6:14aÞ

Applying the operator of the first derivative of w, the latter boundary condition
becomes (see Fig. 6.4)

wb � wa

2�
¼ 0;

from which

wb ¼ wa: ð6:14bÞ

(c) Free edge (Fig. 6.6c)

As shown in Sec. 2.4, the boundary conditions for a free edge, for instance,
x ¼ const, have the form

Mx ¼ 0 and Vx ¼ 0: ð6:15aÞ

Fig. 6.6
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Applying the finite difference operators of forces and moments, given in Fig. 6.5, to
the above boundary conditions, the latter are represented for a kth point on the plate
edge as follows:

2 1þ �ð Þwk � wa � wc � � wb þ wdð Þ ¼ 0;

2 3� �ð Þ wc � wað Þ þ 2� �ð Þ we þ wh � wf � wg

� �þ wi � wm ¼ 0:
ð6:15bÞ

There will be four fictitious nodes – f ; c; g, and m – when the finite difference analog
of the differential equation (6.12), Eq. (6.9) is applied to mesh point k on the free
edge (Fig. 6.6c).

The expressions (6.13b), (6.14b), or (6.15b) are used either for eliminating the
fictitious points mentioned above or for joining them to Eq. (6.9) as additional
equations. As a result we obtain the closed system of linear algebraic equations
with a square matrix. Solving this system of equations yields the numerical field of
the plate deflections wk ðk ¼ 1; 2; . . . ;NÞ.
Example 6.1

Find the approximate deflection values for a continuous rectangular plate, with
loads and supports as shown in Fig. 6.7 [1].

Solution

The domain of the plate is divided into a number of small squares (28 squares, as
shown in Fig. 6.7). We thus have �x ¼ �y ¼ � ¼ 0:25a. In labeling nodal points,
the plate and loading symmetry about the x axis has been taken into account. At all
the nodal points on the outer and inner (x ¼ a) boundaries the deflections are zero.
At the fictitious nodes, located outside of the outer boundary, we have the following
(with regard to the notation of the nodal points of Fig. 6.7):

w1
00 ¼ w1;w6

00 ¼ w6;w5
00 ¼ w5;w10

00 ¼ w10;

w1
0 ¼ �w1;w2

0 ¼ �w2;w3
0 ¼ �w3:

ðaÞ

Nodal loads on the right field of the plate (just to the right of the line x ¼ a) are
p4 ¼ p5 ¼ p9 ¼ p10 ¼ 0; and on the left field of the plate (just to the left of the line
x ¼ a) they are p1 ¼ p2 ¼ p3 ¼ p6 ¼ p7 ¼ p8 ¼ p ¼ const.

Fig. 6.7
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Using the operator (6.9), we obtain a set of the algebraic equations (6.12) in the
explicit form for the nodal points 1; 2; . . . ; 10. Then, with the use of the relation for
case (a), we can eliminate the deflections at the fictitious points 1 00; 5 00; 6 00; and 10 00 in
the above system of equations. Solving the latter yields the following numerical
values of the deflections at the nodal points of the mesh shown in Fig. 6.7:

w1 ¼ 0:00129
pa4

D
; w2 ¼ 0:002047

pa4

D
; w3 ¼ 0:001746

pa4

D
;

w4 ¼ �0:000246
pa4

D
; w5 ¼ �0:000133

pa4

D
; w6 ¼ 0:001746

pa4

D

w7 ¼ wmax ¼ 0:00278
pa4

D
; w8 ¼ 0:002019

pa4

D
; w9 ¼ �0:0003476

pa4

D
;

w10 ¼ �0:0001875
pa4

D
:

Having determined the numerical values of the deflections and applying the finite
difference operators for moments (see Fig. 6.5), one can determine the bending and
twisting moments, and then the corresponding stresses.

The FDM has become fairly popular in recent years. As mentioned earlier,
according to this method the governing differential equation is replaced by a set of
simultaneous algebraic equations: computers can be used to find the solution to these
algebraic equations. The FDM has obvious advantages and disadvantages. Among
its advantages, we can mention the following:

(a) it is straightforward in understanding and application;
(b) it is sufficiently universal, being applied to both linear and nonlinear

problems; and
(c) it is well suited for computer application.

Disadvantages of this method are

(a) it requires (to a certain extent) mathematically trained operators;
(b) it requires more work to achieve complete automation of the procedure in

program writing;
(c) the matrix of the approximating system of linear algebraic equations is

asymmetric, causing some difficulties in numerical solution of this system;
and

(d) an application of the FDM to domains of complicated geometry may run
into serious difficulties.

This section contains only a brief description of the FDM and its application to plate
bending problems. The interested reader is referred to other works [2,3].

6.3 THE BOUNDARY COLLOCATION METHOD (BCM)

The boundary collocation method (BCM) is among the simplest methods of solving
partial differential equations, both from a conceptual, as well as a computational
point of view. The solution is expressed as a sum of known solutions of the govern-
ing differential equation, and boundary conditions are satisfied at selected colloca-
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tion points on the boundary. Thus, the obtained solution satisfies the governing
differential equation exactly and the prescribed boundary conditions only approxi-
mately. An estimation of the error of approximation can be found by simply check-
ing the boundary conditions at some intermediate points located between the
collocation ones. The method is easily applied to irregular domains (simply or multi-
ply connected) with arbitrary boundary conditions. This method can be considered
as a particular case of the more general method, the so-called the weighted residual
method [4], when the weighting functions are chosen in the form of the Dirac delta
functions at discrete points of a boundary.

We describe the general procedure of the BCM applied to plate bending pro-
blems. The presentation of the method follows the spirit of Hutchinson’s paper [5].
Consider a thin plate occupying a two-dimensional domain � with boundary �.
When the plate is subjected to transverse loading p, its deflection w must satisfy
the governing differential equation (2.24) within the domain and prescribed bound-
ary conditions on its boundary, i.e.,

l w x; yð Þ½ � ¼ f x; yð Þ		
�
; ð6:16Þ

where l ¼ ½l1; l2�T is a known two-component, linear differential operator prescribed
on the boundary �, whose explicit form is given by Eqs (2.48); f ¼ ½f1; f2�T is also a
known two-component vector-function specified on �. The superscript T indicates
the symbol of transposition.

In the BCM an unknown deflection w x; yð Þ is approximated by an expansion of
the form

w x; yð Þ ¼
XN
j¼1

aj�j x; yð Þ þ wp x; yð Þ ð6:17Þ

where �j x; yð Þ are some prescribed trial (or basis) functions; aj are unknown coeffi-
cients, and wp is an appropriate particular solution of the nonhomogeneous equation
(2.24). The trial functions �j x; yð Þ are subject to the following conditions [6]:

(a) They must be linearly independent (i.e., any function from the expansion
(6.17) can not be linearly expressed through the other functions of the
same expansion);

(b) Every function from the expansion (6.17) satisfies the homogeneous dif-
ferential equation (2.24) exactly.

Many possibilities exist for the choice of the basis functions�j in the expansion
(6.17). One possible choice is to represent them in polar coordinates for the plate
bending problems, as follows [7]:

rk

r�k

rkþ2

r�kþ2

8>><
>>:

9>>=
>>;

sin k’
cos k’

 �
ð6:18Þ

where k ¼ 1; 2; . . . ;1 for sin terms and k ¼ 0; 1; 2; . . . ;1 for cos terms. For k ¼ 0
and k ¼ 1 the basis functions are the following:

�0 ¼ 1; r2 ln r; r2 ln r
� �T

; �1 ¼ r; r3; r�1; r ln r
� �T ð6:19Þ
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In the expressions (6.18) r and ’ are polar coordinates of points of interest with the
origin located somewhere within the plate. Each term in the left set of braces times
each term in the right set of braces in (6.18) represents a solution form and satisfies
the homogeneous differential equation (2.24). Other forms of the basic functions are
discussed in [5, 8].

In dealing with solid plates with a centrally placed origin, all singular terms in
the expressions (6.18) and (6.19) (lnr; rlnr, and r to any negative power) are omitted.
As it follows from the above, w x; yð Þ in the form of (6.17) satisfies Eq. (2.24) exactly.
Thus, only the boundary conditions need to be satisfied. Substituting the expressions
(6.17) into Eqs. (6.16) and assuming that the boundary conditions will be satisfied at
some discrete points (xi; yi; i ¼ 1; 2; . . . ;M), called collocation points, along bound-
ary �, leads to a system of 2M linear algebraic equations for N unknown constants
aj. This system can be written in the following form:

A½ � af g ¼ bf g; ð6:20Þ
where A½ � ¼ ½Aij;AiþM;j�T and fbg ¼ ½bi; biþM �T are the partitioned matrices. The
coefficients of these matrices are of the form

Aij ¼ l1½�jðxi; yÞ�;AiþM;j ¼ l2½�jðxi; yiÞ�;
bi ¼ f1ðxi; yiÞ � l1½wpðxi; yiÞ�; biþM ¼ f2ðxi; yiÞ � l2½wpðxi; yiÞ�

fag is the column matrix of unknown coefficients aj. In order to obtain a square
matrix [A], the number of terms in the expansion (6.17) would have to be twice the
number of collocation points, that is, N ¼ 2M. Such a variant of the BCM is called
the straightforward boundary collocation method.

As an alternative to insuring that the matrix A½ � is square by a proper choice of
terms and boundary conditions, one can go to the process known as the over-
determined boundary collocation method. In the latter approach, more collocation
points are chosen than are necessary, i.e., 2M > N, and the system (6.20) contains
more equations than unknowns. This overdetermined system can be solved by the
least squares method [2]. This numerical procedure is quite simple. Let fag be a trial
solution of Eq. (6.20). fag does not exactly satisfy Eq. (6.20) but leads to some
residual error feg, so that

½A�fag � fbg ¼ feg ð6:21Þ
It can be shown the condition for selecting the solution fag to minimize the

error ei is equivalent to the following matrix equation [5]

A½ �T � A½ � � a
� � ¼ A½ �T � bf g ð6:22Þ

The matrix A½ �T � A½ � is square and positive definite. The system of linear algebraic
equations (6.22) is called the normal system. The solution steps are the same as for a
square matrix.

In conclusion, notice that the BCM has some advantages and disadvantages.
Among the advantages one notes the following:

1. it is easy to understand and program the approach;
2. it is easily applied to arbitrary shapes and boundary conditions, and the

solution appears in a closed form for the whole region.
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However, the BCM has some disadvantages, among which are

(a) it is limited to linear problems;
(b) a complete set of solutions (the basic functions �j) to the differential

equations must be known; and
(c) the matrix A½ � is full and sometimes ill-conditioned, and a known arbi-

trariness exists in the selection of the collocation points.

This section contains only a brief survey of the boundary collocation method. The
interested reader is referred to other works [5,8,9].

Example 6.2

A 90
 sectorial plate subjected to a uniform surface load of an intensity p0 is simply
supported along its straight edges. Determine the deflection, bending moments dis-
tribution along the x axis for (a) simply supported (Fig. 6.8a) and (b) clamped (Fig.
6.8b) conditions along its arc. Assume � ¼ 0:3 (this example is taken from Ref. [9]).

Solution

The deflection wðx; yÞ is approximated by the expression (6.17) and the trial func-
tions are taken in polar coordinates according to Eqs (6.18), as follows:

w ¼
XN
j¼0

ajr
j þ bjr

jþ2
� �

cos j’þ p0r
4

64D
; ðaÞ

where the coefficients aj and bj are to be determined from the boundary conditions,
and the upper limit of summation N is determined by the accuracy of solution
desired from the BCM. The simply supported plate (Fig. 6.8a) is analyzed by
using 14 boundary points and the plate simply supported along the straight edges
and clamped along the arc (Fig. 6.8b) by using 12 boundary points. The results of the
analysis are presented in Table 6.1, which shows these results, and in Fig. 6.9, where
the moment distributions are shown.

In Table 6.1, the numerical results given by the BCM solutions are compared
with exact solutions obtained in Ref. [7]. This comparison shows that the BCM
solution agrees well with the exact solution both in the interior of the plate and at
its boundary.

Fig. 6.8
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6.4 THE BOUNDARY ELEMENT METHOD

The boundary element method (BEM) is now used extensively for the analysis of
two-dimensional (2D) and three-dimensional (3D) elastic, homogeneous, and iso-
tropic bodies. It offers important advantages over domain-type methods, such as the
finite element method and the finite difference method, since only the discretization
of the boundary is needed. The BEM is well suited for treating complicated bound-
aries, for discontinuous internal actions, mixed boundary conditions, etc. In parti-
cular, the BEM has been applied successfully for the solutions of plate bending
problems, demonstrating its advantages [10–14].

The BEM reduces a given boundary value problem for a plate, in the form of
partial differential equations to the integral equations over the boundary of the plate.
Then, the BEM proceeds to obtain an approximate solution by solving these integral
equations. To make such a reduction possible, it is necessary, first, to express the
solution as the sum of a particular integral corresponding to a given loading applied
to the plate and of a complementary solution. That solution satisfies the homoge-
neous partial differential equation corresponding to the load-free plate, subject to
certain boundary conditions.

Table 6.1

Simple arc support Clamped arc support

w Mx My w Mx

x=a Exact BCM Exact BCM Exact BCM Exact BCM Exact BCM

0 0 0 — �271 — 271 0 0 — �199

0.25 92 93 36 38 319 322 63 64 68 70

0.50 225 226 353 354 352 353 132 132 272 273

0.75 203 203 381 381 286 287 82 81 113 116

1.00 0 0 0 0 88 88 0 1 �488 �486

Multi. 10�5p0a
4=D 10�4p0a

2 10�4p0a
2 10�5p0a

4=D 10�4p0a
2

Fig. 6.9
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Several different boundary element approaches have already been proposed for
the construction of the complementary solution. They are frequently referred to as
direct and indirect BEM formulations [12,13]. In the indirect BEM formulation, the
complementary function is represented by an integral in terms of some arbitrary
functions, called source functions, over the boundary of a domain of the plate. These
source functions may be visualized, for example, as fictitious force and moment
distributions acting on the boundary of the given plate embedded in an infinite
elastic plate (the term ‘‘fictitious’’ is used here because these loads are not resulting
in transverse loads assigned for the plate). Finding these source functions, one can
determine the deflections, bending and twisting moments anywhere within the plate
or on its boundary.

In the direct formulation, the partial differential equation of the plate bending
problem for the complementary function is transformed by the use of the reciprocal
work identity to an integral equation in terms of boundary values of the deflections
and the stress resultants. Both BEM formulations have certain advantages and dis-
advantages that are discussed in detail in Refs [12,13]. It has been established now
that these two formulations have the same origin and theoretical basis. We discuss
below both approaches, as applied to plate bending problems.

6.4.1 Indirect BEM for plates

The presentation of the indirect BEM below follows the approach of Ventsel [14].
Assume that a given plate, originally occupying a 2D domain � with a smooth
boundary �, is to be extended infinitely. Then, apply to an infinite plate the
above-mentioned fictitious loads in the form of transverse loads qð�; Þ and moments
mnð�; Þ distributed continuously over �, where ð�; Þ is some point on � (called the
source point). The moments mn act in the direction of the outward normal n to � at
the source point (Fig. 6.10).

In order to determine the deflection surface of the infinite plate caused by the
above-mentioned fictitious loads, find the so-called singular solutions of the bihar-
monic equation (2.24). In our case, these singular solutions correspond to the deflec-
tion of point ðx; yÞ of the infinite plate (called the observation point) caused by a unit
normal concentrated force, and by a unit concentrated moment; both are applied at

Fig. 6.10
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a source point ð�; Þ. The above singular solutions are denoted by Gqðx; y; �; Þ and
Gmðx; y; �; Þ, respectively.

Mathematically, the fundamental solution Gqðx; y; �; Þ of Eq. (2.25) is defined
as

r2r2Gq ¼ �ðx; y; �; Þ; ð6:23aÞ
where �ðx; y; �; Þ is the Dirac delta function. The solution of the above equation has
the form

Gqðx; y; �; Þ ¼
1

8�D
r2 ln r; ð6:23bÞ

where r2 ¼ ðx� �Þ2 þ ðy� Þ2 is a distance between the source and observation
points. Notice that the observation point may be found either inside the domain
of the plate �, or on its boundary; the source point is always located on the bound-
ary �.

Now we can assign the singular solution Gmðx; y; �; Þ. Let us consider two
normal and oppositely directed concentrated forces P and �P, applied at a source
point ð�; Þ and at some neighboring point located on the normal n, at a distance �n
from the former. Then a unit concentrated moment at the above source point and
acting in the direction of n can be obtained as follows:

m ¼ limP ��n ¼ 1
P!1
�n!0

ð6:24aÞ

If one takes a sum of the solutions (6.23) of the above-mentioned concentrated forces
and goes to the limit �n ! 0, then, taking into account Eq. (6.24a), one finds the
following expression for Gmðx; y; �; Þ:

Gmðx; y; �; Þ ¼ � @Gqðx; y; �; Þ
@n

: ð6:24bÞ

The deflection surface of the infinite plate due to the fictitious and given loads
can be represented in the following form:

w x; yð Þ ¼ wp x; yð Þ þ
ð
�

q x; yð ÞGq x; y; �; ð Þ þmn �; ð ÞGm x; y; �; ð Þ� �
ds;

x; yð Þ 2 �;

ð6:25Þ

where

wp x; yð Þ ¼
ð ð
�

p �; �ð ÞGq x; y; �; �ð Þd�dz ð6:26Þ

is a particular solution of Eq. (2.24). Since a point x; yð Þ is inside the domain �
whereas a point �; ð Þ is on the boundary �, the deflection function w x; yð Þ as given
by Eq. (6.25) will be a continuous function of x and y, with continuous derivatives of
all orders, in the domain �. We can thus differentiate with respect to x and y, as
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required to find the slopes, moments, and shear forces in the plate due to these
fictitious loads applied along �.

Assume that the boundary conditions on � are nonhomogeneous, as follows:

w ¼ w		
�
; #n ;¼ #n

		
�

(Problem 1);

w ¼ w
�; Mn ¼ M

n

		
�

(Problem 2),

Mn ¼ M
n

		
�
; Vn ¼ V

n

		
�

(Problem 3),

ð6:27Þ

where #n;Mn; and Vn are the slope, bending moment, and the effective shear force
on the boundary with the outer normal n;#n;M


n ; and V

n are given boundary
functions specified on �. The boundary quantities #n;Mn; and Vn at a regular
point on � are expressed in terms of the deflection w by the relations (2.45)–(2.48)
and Eq. (2.13). We obtain the following:

#n ¼
@w

@n
;

Mn ¼ �D
@2w

@n2
þ � @

2w

@t2

 !
;

Vn ¼ �D
@3w

@n3
þ 2� �ð Þ @

3w

@n@t2

" #
;

ð6:28Þ

where @=@n and @=@t denote differentiation along the outward normal and tangential
directions, respectively.

The expression (6.25) satisfies the governing equation (2.24) exactly and does
not satisfy the prescribed boundary conditions (6.27) for arbitrary chosen fictitious
loads q and mn. Inserting wðx; yÞ in the form of Eq. (6.25) into the boundary con-
ditions (6.27) and letting a point ðx;yÞ from inside the domain approach the bound-
ary, we obtain the integral representation of the deflection, slope, normal bending
moment, and the effective shear force on � due to the given and fictitious loads. In so
doing, it is necessary to take the limit as x; y approaches �, and to examine the
limiting values of the above-mentioned integral representations. It can be shown that
the deflections and slopes remain continuous, whereas the normal bending moments
and effective shear forces undergo a finite jump for a passage through the boundary
�. Equating the limiting values of w x; yð Þ; #n x; yð Þ;Mn x; yð Þ; and Vn x; yð Þ on � to the
prescribed boundary functions according to Eqs (6.28), we finally obtain the bound-
ary integral equations for the unknown fictitious loads q �; ð Þ and mn �; ð Þ. These
equations can be represented in the general form for solving Problems 1, 2, and 3, as
follows:ð

�

qð�; ÞGqðx; y; �; Þ þmnð�; ÞGmðx; y; �; Þ
� �

dsþ wpðx; yÞ ¼ wðx; yÞ;

ð6:29aÞð
�

qð�; Þ @
2Gqðx; y; �; Þ

@n
þmnð�; Þ

@Gmðx; y; �; Þ
@n

" #
dsþ @wpðx; yÞ

@n
¼ #nðx; yÞ;

ð6:29bÞ
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ð
�

qð�; nÞ @2Gqðx; y; �; Þ
@n2

þ � @
2Gqðx; y; �; Þ

@t2

 !" #
dsþmnðx; yÞ

2

þ
ð
�

mnð�; Þ
@2Gmðx; y; �; Þ

@n2
þ � @

2Gmðx; y; �; Þ
@t2

 !" #
ds

þ @2

@n2
þ � @

2

@t2

 !
wpðx; yÞ ¼ M

n ðx; yÞ; ð6:29cÞ

1

2
qðx; yÞ þ

ð
�

qð�; Þ @
3Gqðx; y; �; Þ

@n3
þ ð2� �Þ @

3Gqðx; y; �; Þ
@n@t2

" #
ds

þ
ð
�

mnð�; Þ
@3Gmðx; y; �; Þ

@n3
þ ð2� �Þ @

3Gmðx; y; �; Þ
@n@t2

" #
ds

þ @3

@n3
þ ð2� �Þ @3

@n@t2

" #
wpðx; yÞ ¼ V

n ðx; yÞ: ð6:29dÞ

It can be shown [14] that the kernels of the integrals in Eqs (6.29a)–(6.29c), as well
as the first integral in Eq. (6.29d), are bounded when a point ðx; yÞ from the
domain � approaches �; ð Þ on �: Therefore, the integrals of these equations can
be evaluated by using a standard numerical technique developed for the numerical
implementation of regular integrals. The kernel of the second integral in Eq.
(6.29d) behaves like r�2 when a point x; yð Þ ! �; ð Þ on the boundary. This integral
does not exist neither as an improper nor singular integral and special care must be
taken for representation and evaluation of such a type of integral. There are a
number of efficient techniques for dealing with this strongly singular integral [14–
16]. The first approach is to cancel out explicitly this higher-order singularity in
advance, before limiting transition to the boundary (for example, by using integra-
tion by parts for the expression of the effective shear force when a point x; yð Þ is
not on �). The second possibility is to assign a certain sense to this strongly
singular integral. This is possible because it appears in the expression for the
effective shear force which is finite on the boundary. Hadamard [17] defined this
integral in the finite part integration sense and it is referred to as a hypersingular
integral. Hypersingular integrals can be evaluated analytically, using either some
regularization technique [14–17, etc.], or numerically, by special quadrature for-
mulas that avoid any explicit performing of limiting processes [14,18,19].

Solving the boundary integral equations, we obtain the source functions q �; ð Þ
and mn �; ð Þ distributed over �. Once the fictitious loads q and mn distributed over
the boundary have been established from the numerical solution of the boundary
integral equations, the values of the deflection and stress resultants anywhere within
the plate and on its boundary can be calculated by using Eqs (6.25) and (2.13).

6.4.2 Direct BEM

Unlike the indirect BEM, the direct BEM is formulated in terms of the natural
variables, interpretable as deflection, slope, bending moment, and effective shear
force assigned along the plate boundary �.
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The direct BEM can be obtained with the use of the Betti–Maxwell reciprocal
theorem [12, 20]. This theorem states that for any two equilibrium states, say, A and
B, of an elastic body, the work that would be done by the forces A if given the
displacements B is equal to the work that would be done by the forces B if given the
displacements A. This means that the following expression can be written for any
elastic plate:ð ð

�

pAwBd�þ
ð
�

VAwB �MA#Bð Þds ¼
ð ð

�

pBwAd�

þ
ð
�

VBwA �MB#Að Þds:
ð6:30Þ

Again, assume that the plate boundary is smooth. If the boundary has corner points,
the expression (6.30) has to be complemented by the terms

P
VAwB and

P
VBwA on

the left- and right-hand sides, respectively. Here, the summation is made over all
corners.

Let us identify wA with w and pA with p (i.e., an actual deflection field and
actual loading are chosen as the state A), while wB is identified with the fundamental
solution (6.23b) for a unit concentrated force replacing pB and applied at a source
point ð�; Þ of an infinite plate. Taking into account thatð ð

�

wðx; yÞ�ðx; y; �; Þd� ¼ wð�; Þ; ð6:31Þ

one obtains from the expression (6.30), after the usual limiting process when the
interior point (�; ) approach � [11–14], the following integral representation of the
plate deflections:

cwð�; Þ ¼
ð
�

Vn wh iGq �Mn wh i @Gq

@n
� Vn Gq

� �
wþMn Gq

� �
#n

� �
dsðx; yÞ

þ
ð ð
�

pðx; yÞGqd�ðx; yÞ
ð6:32Þ

In Eq. (6.32), n is the normal at point ðx; yÞ on the boundary � and

c ¼
1 ð�; Þ inside �

1

2
ð�; Þ on �

0 ð�; Þ outside �

8>><
>>: ð6:32Þ

Explicit expressions for the operators Mnh. . .i; and Vnh. . .i at a point ðx; yÞ are given
by Eqs. (6.28); Gq � Gqðx; y; �; Þ is a fundamental (singular) solution of Eq. (6.23a)
given by Eq. (6.23b).

For solving well-posed plate bending boundary value problems, given by Eqs.
(2.24) and (6.27), an additional equation is required. This can be an integral repre-
sentation for the slopes. Let v is an arbitrary direction at point ð�; Þ 2 �. When the
above point approaches the boundary, this direction will coincide with the corre-
sponding direction of the outward normal at the source point (�; Þ 2 �. Thus,
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differentiating Eq. (6.32) in a fixed direction v, we obtain, through a limiting process,
the following integral representation of the slopes:

c#vð�; Þ ¼
ð
�

Vn wh i @Gq

@v
�Mn wh i @

2Gq

@n@v
� Vn

@Gq

@v

� �
wþMn

@Gq

@v

� �
#n

" #
dsðx; yÞ

þ
ð ð
�

pðx; yÞ @Gq

@v
d�ðx; yÞ

ð6:34Þ
where c for a smooth boundary at point (x; yÞ is given by (6.32), #v ¼ @w=@v.

The expressions (6.32) and (6.34) can be used to give the boundary integral
equations of the direct BEM. Indeed, placing in the above equations the point ð�; Þ
on the boundary �, replacing two out of four boundary quantities, w; #n;Mn; and
Vn, by prescribed boundary functions according to Eqs. (6.27), and noting that the
boundary functions on the left sides are the same boundary functions as on the right
sides, we can formulate two coupled boundary integral equations for the two remain-
ing boundary quantities.

Comparing the indirect and direct BEM formulations, it is easy to discover
that the variables ðx; yÞ and ð�; Þ change places in the resulting boundary integral
equations (6.29) and (6.32), (6.34).

6.4.3 Numerical treatment of BEM

An analytical solution of the boundary integral equations of either direct or indirect
BEM formulation is possible in the exceptional cases of a simple plate geometry,
load, and boundary conditions. However, these equations can be solved numerically
by employing the standard boundary element technique developed, for example, in
Refs [11–13].

Let us describe briefly a possible numerical procedure for solving these bound-
ary integral equations. The boundary of a given domain is divided into N smooth
boundary elements (BEs), ��k k ¼ 1; 2; . . .Nð Þ. The geometry of ��k is approxi-
mated by a straight line or a parabolic arc. Unknown source functions (either
‘‘fictitious’’ loads in the indirect BEM or natural variables in the direct BEM) are
assumed to be uniformly or linearly varying along ��k (of course, a higher order of
approximation of these functions can be also assigned). The nodes of the unknown
source functions and the given boundary functions are assigned either at the center
of ��k or at the interfaces between two adjacent boundary elements. The integrals
are evaluated analytically or numerically using standard Gaussian quadrature [21].
In the case where the boundary integrals involve the previously mentioned strong
singularities (when a point x; yð Þ 2 � ! ð�; Þ 2 �), it is necessary to consider a
neighborhood of such points separately and employ the special regularization for-
mulas [14–19] for evaluating these singular integrals. Such an approximation of the
boundary integral equations yields a system of algebraic equations with respect to
nodal values of the unknown source functions. Once these unknowns have been
established, the values of the deflections and stress resultants at any point either
inside the plate domain or on its boundary can be evaluated from the discretized
form of Eqs (6.25), (6.32), and (2.13).
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Example 6.3

A square plate with a square central opening is subjected to a uniform surface load p.
The external edges of the plate are simply supported and the internal edges are free,
as shown in Fig. 6.11a. Determine the deflection at the points A;B; and C. Assume
� ¼ 1=6.

Solution

This problem has been analyzed by Tottenham [10]. He applied the direct and
indirect BEM to the analysis of this plate. One-quarter of the plate was consid-
ered, with the nodes at the quarter points along each side, giving a total of 24
points – shown in Fig. 6.11b. Due to the symmetry, the boundary conditions
were satisfied at 13 points – indicated also in Fig. 6.11b. The 26 algebraic equa-
tions for the 26 source functions specified at 13 points of the external and inter-
nal edges of the plate boundary have approximated the boundary integral
equations of the indirect and direct BEM . The results obtained are compared
with those using the finite element method (FEM) and variational finite difference
method (VFDM) in Table 6.2. In both of the comparative cases (for BEM solu-
tions) the mesh size was a=16 and the source functions are assumed to be con-
stant over BEs along the boundary. In analyzing this problem, the corner points
were ignored. As follows from Table 6.2, the numerical results obtained by BEM
are very close to those obtained by FEM and VFDM (the discrepancy of the
results does not exceed more than 2.5%).

Example 6.4

A quadrangular plate is subjected to a concentrated force P applied at the center of
an inscribed circle, as shown in Fig. 6.12a. The radius of the inscribed circle
R ¼ 2=3 m. Poisson’s ratio � ¼ 0:3, the plate thickness h ¼ 2	 10�3 m, the mod-
ulus of elasticity E ¼ 2	 105 Pa. Determine the deflection and bending moment
distributions along section AB and along the boundary.

Fig. 6.11
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Solution

This problem was analyzed by Ventsel [14]. He applied the indirect BEM to the
analysis of the plate. The plate boundary was divided into 28 boundary elements
(BEs), giving a total of 28 nodes. The boundary conditions were satisfied at these
nodal points. Unknown edge forces, q, and the normal edge moments, mn, were
assumed to be constant over BEs. The two boundary integral equations (Eqs
(6.29a) and (6.29b)) were approximated by 56 algebraic equations for the 56 nodal
loads, q kð Þ and m kð Þ

n k ¼ 1; 2; . . . ; 28ð Þ. Some results of the numerical analysis are
shown in Fig. 6.12a, b in the form of the deflection and bending moment distribu-
tions along section AB and the boundary. The deflection and bending moments
ordinates are given in Fig. 6.12 to within the following constant multipliers: p=D
for the w and P for the function M.

In conclusion, it should be noted that the BEM is very powerful and efficient as
applied to various linear plate bending problems. The method has the following
advantages:

1. It can be easily adapted to any complicated geometry of the domain
involved and to arbitrary boundary conditions, like the finite element
method. However, unlike the FEM, an application of the BEM to bound-
ary value problems enables us to reduce the dimensionality of the pro-
blem. The latter results in a smaller, than the FEM, system of equations
and considerable reductions in the data required to run a problem.

2. The BEM is easily programmed for arbitrary plate configurations, loads,
and boundary conditions.

3. The numerical accuracy of the BEM is generally greater than that of the
FEM and other numerical methods. The numerical discretization of the
method leads to a stable system of linear algebraic equations. The error of
an approximate solution introduced by the BEM can be estimated a
posteriori when the problem under consideration has been solved [14].

4. The method has been adapted well for the solution of the so-called sin-
gular problems, such as plates with crack-like defects, plates having holes,
corners, etc.

However, this method has some disadvantages:

1. It can be successfully applied primarily to linear problems.
2. The method requires that a fundamental solution of a governing differ-

ential equation or Green’s function be represented in the explicit analy-

Table 6.2

Displacement ð	pa4=100DÞ
Boundary element method

Point Indirect Direct Finite element method Finite difference method

A 0.2188 0.2188 0.2185 0.2174

B 0.3107 0.3141 0.3156 0.3006

C 0.1558 0.1565 — 0.1541
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tical form. Note, that for the plate bending problems discussed, the fun-
damental solution is of the very simple analytical form. If the above-
mentioned fundamental solution is more awkward than for plate bending
problems, the BEM formulation and numerical approximation becomes
less efficient.

3. The matrix of the approximating system of linear algebraic equations is
complete, unlike the FEM, which causes some difficulties in its numerical
implementation.

This section contains only a brief description of the BEMs and their application
to plate bending problems. The interested reader is referred to other publications
[10–15].

Fig. 6.12
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6.5 THE GALERKIN METHOD

The method formulated by Galerkin [22] can be applied successfully to diverse types
of problems of applied elasticity including the plate bending problems. Although the
mathematical theory behind the Galerkin method is quite complicated, its physical
interpretation is relatively simple. We consider now the general idea of the Galerkin
method from the mathematical point of view.

Let a differential equation of a given 2D boundary value problem be of the
form

L wðx; yÞ½ � ¼ pðx; yÞ in some 2D domain �; ð6:35Þ

where w ¼ w x; yð Þ is an unknown function of two variables (of course, the method
can be applied to 3D problems also) and p is a given load term defined also in the
domain �. The symbol L indicates either a linear or nonlinear differential operator.
For instance, for plate bending problems, L½. . .� � Dr2r2ð. . .Þ. The function w must
satisfy the prescribed boundary conditions on the boundary � of that domain. An
approximate solution of Eq. (6.35) is sought in the following form:

wN x; yð Þ ¼
XN
i¼1

	ifi x; yð Þ; ð6:36Þ

where 	i are unknown coefficients to be determined and fi x; yð Þ are the linearly
independent coordinate functions (they are also called trial functions) that satisfy
all the prescribed boundary conditions but not necessarily satisfy Eq. (6.35).

From calculus, any two functions f1ðxÞ and f2ðxÞ are called mutually orthogo-
nal in the interval ða; bÞ if they satisfy the condition

ðb
a

f1ðxÞf2ðxÞdx ¼ 0: ðaÞ

For example, a set of functions 1, sin x, cos x; cos 2x, sin 2x; . . . ; cos kx, sin kx; . . .
is orthogonal in the interval (0; 2�) because any two functions from the this set
satisfy the condition (a) in the above interval. If one of the functions – for exam-
ple, f1ðxÞ – is identically equal to zero, then the condition (a) is satisfied for any
function f2ðxÞ:

Thus, if a function wðx; yÞ is an exact solution of the given boundary value
problem, then the function LðwÞ � p½ � will be orthogonal to any set of functions.
Since the deflection function wNðx; yÞ in the form of (6.36) is an approximate solu-
tion only of Eq. (6.35), LðwNÞ � p½ � 6¼ 0, and it is no longer orthogonal to any set of
functions. However, we can require that the magnitude of the function LðwNÞ � p½ �
be minimum. This requirement is equivalent to the condition that the above function
should be orthogonal to some bounded set of functions: first of all, to the trial
functions fiðxÞ. It leads to the following Galerkin equation:ð ð

A

L wNð Þ � p½ �fi x; yð Þdxdy ¼ 0; ð6:37Þ
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Substituting for wN from Eq. (6.36), one obtains

ð ð
A

L
XN
i¼1

	ifiðx; yÞ
 !

� p

" #
fjðx; yÞdxdy ¼ 0; j ¼ 1; 2; . . . ;N:

Introducing the residual error function EðwNÞ, as follows,

EðwNÞ ¼ L
XN
i¼1

	ifiðx; yÞ
 !

� p; ð6:38Þ

we can rewrite the above Galerkin equation in the formð ð
A

E 	i; fiðx; yÞ; pð Þfjðx; yÞdxdy ¼ 0; i; j ¼ 1; 2; . . . ;N: ð6:39Þ

The above requirement can be used as a condition for determining the coefficients 	i.
Replacing the integral in Eq. (6.39) by the sum of integrals, we obtain the following
system of linear algebraic equations:

a11	1 þ a12	2 þ ::::: þ a1N	N ¼ b1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

aN1	1 þ aN2	2 þ :::::þ aNN	N ¼ bN;

ð6:40aÞ

where

aij ¼
ð ð
A

L fið Þ � fjdxdy; bi ¼
ð ð
A

p � fjdxdy i; j ¼ 1; 2; . . . ;N: ð6:40bÞ

Solving Eqs (6.40a), we can determine the unknown coefficients 	i which, in con-
junction with Eq. (6.36), gives the N-parameter Galerkin approximation of Eq.
(6.35). Notice that if N ! 1, the Galerkin solution approaches the exact solution
if the system of functions f1; f2; . . . is complete and linearly independent [6].

Galerkin equations (6.37) had been derived above from the special mathema-
tical condition of orthogonality of two functions, Eq. (a). However, the Galerkin
method can be derived from the general variational principle of virtual work, intro-
duced in Sec. 2.6.2.

As shown in Sec. 2.4, the governing equation of plate bending problems, Eq.
(2.24), represents the condition of static equilibrium of an infinitesimal plate element.
Then, the operator ½LðwNÞ � p� can be interpreted as an intensity of some unbalanced
total loading that occurs over the area of integration A (area of the plate) when the
deflection function is sought in the form of Eq. (6.36). Retaining a finite number of N
terms in the expansion (6.36) implies that an actual continual system is replaced by a
system withN degrees of freedom (i.e., a discrete system). In turn, the constant coeffi-
cients 	i (i ¼ 1; 2; . . . ;NÞ can be treated as some generalized displacements, each of
which corresponds to a deflected state of the plate defined by a function fiðx; yÞ.

According to the principle of virtual work, any discrete system is in equilibrium
if work done by all the elementary forces, i.e., LðwNÞ � p½ �dxdy, acting through some
admissible for this system displacements, i.e., �	ifiðx; yÞ, is equal to zero:
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�Wi ¼ �	j

ð ð
A

LðwNÞ � p½ �fiðx; yÞdxdy ¼ 0: ðbÞ

This equality, after discarding the arbitrary variation �	i, yields Eqs (6.37).
Since the Galerkin equations (6.37) can be treated as an expression of the

principle of virtual work, then, instead of factor fiðx; yÞ, any of its derivatives can
also be set depending on the sense of the operator ½LðwNÞ � p�. For example, in the
governing differential equation of beam bending, d2v=dx2 ¼ �M=EI , the operator
½EIðd2w=dx2Þ þM� represents the bending moments in dimension. Then, assigning
the deflections in the form of the series vN ¼PN

i 	ifiðxÞ, it is necessary to take fi
00ðxÞ,

having the dimension of curvature, as a multiplier in the integrand of Eq. (6.39), but
not fi. In this case, the product EðvNÞ � fj 00dx represents an elementary work and the
Galerkin equations appear in the following form:

ðL
0

EðvNÞ � fj 00dx ¼ 0; i ¼ 1; 2; . . . ;N:

The above variational interpretation of the method provides a way for justifying the
so-called generalized Galerkin method. Let the trial functions fiðx; yÞ, unlike the gen-
eral requirements of the Galerkin method, satisfy kinematic boundary conditions
only. This implies that, if for example, the bending moment Mn and effective shear
force Vn at any point of the boundary � (n is outward normal at a point of the
boundary) are equal to zero, then bending of a plate over surface fiðx; yÞ can cause an
appearance of some moments Mni 6¼ 0 and Vni 6¼ 0. Then, the following equations,
instead of Eqs (6.37), result from the variational principle �Wi ¼ 0:ð ð

A

LðwÞ � p½ �fiðx; yÞdxdy� ŴWi ¼ 0; ð6:41Þ

where ŴWi is work done by moments and forces on the boundary of the domain of
integration A acting through displacements fiðx; yÞ: For plate bending problems,

ŴWi ¼
þ
�

�Mn

@fi
@n
dsþ

þ
�

�Vnfids

where �Mn and �Vn are unbalanced portions of the moment and effective shear
force on the boundary � in plate bending over the surface w. For example, on the
edge x ¼ 0 of the rectangular plate,

�Mx ¼ mx � �D
@2w

@x2
þ � @

2w

@y2

 !" #
;

�Vx ¼ qx � �D
@

@x

@2w

@x2
þ ð2� �Þ @

2w

@y2

 !" #
;

where mx and qx are intensities of external load applied to the plate edge.
Hence, when the Galerkin method is applied to the solution of the boundary

value problems of solid mechanics and an approximate solution of Eq. (6.35) is
sought in the form of (6.36), the multiplier in the integrand of Eq. (6.37) should
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be chosen in such a way that the operation of orthogonality would correspond to the
application of the principle of virtual work to the given problem. Such an approach
will result in a more rapid convergence of a solution.

Example 6.5

Find an analytical expression by Galerkin’s method for the deflection of a uniformly
loaded (p ¼ const) rectangular plate with all edges clamped (Fig. 6.13).

Solution

The boundary conditions for the plate are given by

w ¼ 0jx¼�a
y¼�b

;
@w

@x
¼ @w

@y

				x¼�a
y¼�b

: ðaÞ

Let us take the deflected plate surface in the following form

w ¼ 	1f1 x; yð Þ þ 	2f2 x; yð Þ þ 	3f3 x; yð Þ þ . . . ðbÞ
where

f1 ¼ x2 � a2
� �2

y2 � b2
� �2

; f2 ¼ x2 � a2
� �2

y2 � b2
� �3

; etc:

The function (b) satisfies all the prescribed boundary conditions (a) exactly. To
simplify the solution, let us consider only the first term in Eq. (b). Thus,
Galerkin’s equations (6.40) reduce to only one equation of the following type:

a11	1 ¼ b1; ðcÞ
where

a11 ¼ D

ð
A

ð
r2r2f1 � f1dxdy; b1 ¼

ð
A

ð
p � f1dxdy: ðdÞ

We have the following

Fig. 6.13
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f1 ¼ x2 � a2
� �2

y2 � b2
� �2

;
@4f1
@x4

¼ 24 y2 � b2
� �2

;
@4f1
@y4

¼ 24 x2 � a2
� �2

;

@4f1
@x2@y2

¼ 16 3x2 � a2
� �

3y2 � b2
� �

;

a11 ¼ D

ð ð
A

@4f1
@x4

f1 þ 2
@4f1
@x4@y4

f1 þ
@4f1
@y4

f1

 !
dxdy

¼ 4D

ða
0

ðb
0

24 x2 � a2
� �2h

y2 � b2
� �4þ32 3x2 � a2

� �
3y2 � b2
� �

x2 � a2
� �2

y2 � b2
� �2þ 24 x2 � a2

� �4
y2 � b2
� �2i

dxdy

¼ D
4 � 128 � 64
63 � 25 a5b5 b4 þ 4

7
a2b2 þ a4

� �
;

b1 ¼
ð ð

A

p � f1dxdy ¼ 4p

ða
0

ðb
0

x2 � a2
� �2

y2 � b2
� �2

dxdy ¼ 4p
64

225
a5b5:

Inserting these values of a11 and b1 into Eq. (c) yields the following:

	1 ¼
b1
a11

¼ 7p

128D b4 þ 4
7
a2b2 þ a4

� � :
Thus,

w ¼ 	1f1 ¼
7p

128D b4 þ 4
7 a

2b2 þ a4
� � x2 � a2

� �2
y2 � b2
� �2

:

The maximum deflection occurs at the plate center or at x ¼ y ¼ 0, as shown below:

wmax ¼
7pa4b4

128D b4 þ 4
7
a2b2 þ a4

� � :
For a square plate (a ¼ b), we have

w ¼ 0:0213
p

Da4
x2 � a2
� �2

y2 � a2
� �2

and wmax ¼ 0:0213
pa4

D
:

The exact solution obtained by a more rigorous approach is shown next [7]:

wmax ¼ 0:0202
pa4

D
:

Although, only one term of the series expansion has been retained, the error of the
approximate solution is about 5%. The bending moments can be determined from
Eqs (2.13). Let us determine the bending moment Mx along the line y ¼ 0 for a
square plate (a ¼ b). We have the following for this line y ¼ 0:
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w ¼ 	1 x2 � a2
� �2

a4; ðeÞ

Mx ¼ �D
@2w

@x2

					
y¼0

¼ �4D	1 3x2 � a2
� �

a4: ðfÞ

The maximum bending moment occurs at midpoints of the sides x ¼ �a; y ¼ 0, and
Mmax is given by

Mmax ¼ �8D	1a
6 ¼ �0:171pa2:

The exact solution of Mmax found by Galerkin is �0:204pa2 [22]. The error is about
16%, which is higher than for the deflection. Taking more terms in the expression
(b), we approach the above exact value of the bending moment.

It should be noted that the Galerkin method is more general that the Ritz
method discussed in Sec. 6.6, because no quadratic functional or virtual work prin-
ciple is necessary. If the governing equations are derivable from a variational prin-
ciple, then the Galerkin method reduces to the Ritz method and leads to an identical
set of linear algebraic equations produced by the Ritz method. Sometimes, the
Galerkin method may be preferable if it is more convenient to work with the govern-
ing differential equations rather than with the energy functional. Moreover, there are
problems for which no satisfactory variational principle has been formulated, but for
which a set of governing differential equations is available. This suggests that the
Galerkin method is even broader in application than the Ritz method.

6.6 THE RITZ METHOD

We are now coming to the presentation of the direct methods. We begin with a study
of the Ritz method. The Ritz method belongs among the so-called variational meth-
ods that are commonly used as approximate methods for a solution of various
boundary value problems of mechanics. These methods are based on variational
principles of mechanics discussed in Sec. 2.6.

The energy method developed by Ritz [23] applies the principle of minimum
potential energy (2.64). According to the Ritz method, the deflection surface of the
plate is approximated by series of the form

w x; yð Þ ¼
X1
i¼1

Cifi x; yð Þ; ð6:42Þ

where fi x; yð Þ are some coordinate functions that satisfy individually, at least, the
kinematic boundary conditions (i.e., conditions imposed on the deflections and their
first derivatives) and Ci are unknown constants to be determined from the minimum
potential energy principle.

Introducing the expression for w x; yð Þ in the form of (6.42) into Eq. (2.60) for
the total potential energy of a plate, we obtain the following after integrating the
total potential energy � as a function of the unknown coefficients Ci:

� ¼ � C1;C2; . . .ð Þ: ð6:43Þ
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Therefore, the extremum problem of the calculus of variations is transformed into
the maximum–minimum problem of differential calculus, The latter problem, in
turn, is solved by satisfying the following:

@�

@C1

¼ 0;
@�

@C2

¼ 0; . . . ;
@�

@Ci

¼ 0; . . . : ð6:44Þ

Since U is a quadratic and �p is a linear functional of w (see Eqs (2.54) and (2.57)),
then Eqs (6.44) represent a system of linear nonhomogeneous algebraic equations for
Ci. The solution of this system, being substituted into the expression (6.42), yields a
final solution of the problem. It is evident that the accuracy of the Ritz method
depends considerably on how well the assumed coordinate functions are capable of
describing the actual deflection surface. These functions must satisfy the two condi-
tions [6,24]:

1. For any i elements f1; f2; . . . ; fn should be linearly independent or, in other
words, any element fi cannot be expressed by a linear combination of
others.

2. The sequence of elements (6.42) is a complete in the energy. This means
that whatever element w and a number " > 0 have been, one can find such
a natural number N and such constants C1;C2; . . . ;CN that the following
inequality could be satisfied:

w�
XN
i¼1

Cifi

�����
����� < ":

where k k is the norm in the energy space [6].

If the coordinate functions fi x; yð Þ satisfy the above-mentioned requirements (and
the kinematic boundary conditions), then the infinite series (6.42) with the coeffi-
cients obtained from Eqs (6.44) represent an exact solution. In most cases, however,
only several terms of the series (6.42) are retained. As a result, only an approximate
solution of a problem is available, the accuracy of which depends to a greater degree
on a selection of the coordinate functions fi x; yð Þ and on a number of terms N
retained in the following expression:

w x; yð Þ ¼
XN
i¼1

Cifi x; yð Þ: ð6:45Þ

Various methods for selecting suitable coordinate functions fi x; yð Þ for bending ana-
lysis of plates by the Ritz method are presented in Refs [24,25].

Example 6.6

Determine the deflection of a rectangular plate simply supported on two opposite
edges y ¼ 0 and y ¼ b, clamped on edge x ¼ 0, and free on the edge x ¼ a, as shown
in Fig. 6.14. The plate is subjected to a uniform load of intensity p0.

Solution

The geometrical boundary conditions for the plate of Fig. 6.14 are

w ¼ 0jy¼0; w ¼ 0jy¼b; w ¼ 0jx¼0;
@w

@x
¼ 0

				
x¼0

: ðaÞ
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The coordinate functions fi x; yð Þ must satisfy the boundary conditions (a) only
and they must not satisfy the natural boundary conditions for the free edge x ¼ a
and the second boundary condition (My ¼ 0) for simply supported edges y ¼ 0
and y ¼ b. Let us take an approximate solution of the following form (the first
approximation):

w x; yð Þ ¼ C1

x

a

� �2
sin
�y

b
; ðbÞ

where C1 is an unknown coefficient. It can be easily shown that w x; yð Þ in the form of
Eq. (b) satisfies exactly the boundary conditions (a) and does not violate the condi-
tions of w 6¼ 0 and @w=@x 6¼ 0 along the free edge, and @w=@y 6¼ 0 along the simply
supported edges. Let us introduce new dimensionless coordinates � and , as follows:

x ¼ a� and y ¼ b: ðcÞ
Thus, we can rewrite the expression for the total potential energy (Eq. (2.60)) in new
coordinates as

� ¼ Db

2a3

ð1
0

ð1
0

@2w

@�2

 !
þ a

b

� �2 @2w

@2

 !" #2
8<
:

�2 1� �ð Þ a

b

� �2 @2w

@�2
@2w

@2
� @2w

@�@

 !2
2
4

3
5
9=
;d�d� ab

ð1
0

ð1
0

p � wd�d;

ðdÞ

and the expression for the deflection surface is

w ¼ C1�
2 sin�: ðeÞ

Upon substituting the expression (e) for the deflection into Eq. (d), evaluating the
integrals and taking the derivative @�=@C1 ¼ 0, we can determine coefficient C1. We
have C1 ¼ a4p=D

� �
2=�ð Þ, where � is given by

� ¼ 3� 2þ �4

10

a

b

� �4
þ 4

3
�2 ð1� �Þ a

b

� �2
� 2

3
��2

a

b

� �2� �
:

"
ðfÞ

Fig. 6.14
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The expression for the deflection is

w ¼ a4p

D
� 2 x=að Þ2sin�y=b

�
:

If we evaluate the deflection for a=b ¼ 1; � ¼ 0:3; x ¼ a; and y ¼ b=2, we obtain

w ¼ 0:1118
pa4

D
;

which deviates from the exact solution by approximately 1%.

Example 6.7

Determine the deflection of a semicircular plate (h ¼ constÞ subjected to a concen-
trated force P, as shown in Fig. 6.15. It is fixed along the straight edge and is free
along the arc edge.

Solution

The geometrical boundary conditions for this problem have the form

w ¼ 0jx¼0;
@w

@x
¼ 0

				
x¼0

: ðaÞ

These conditions will be satisfied if we take w x; yð Þ in the form

w ¼ x2 C0 þ C10xþ C01yþ C20x
2 þ C11xyþ C02y

2 þ . . .
� �

: ðbÞ
After substitution of this expression into Eq. (2.60) and letting p x; yð Þ ¼ 0, an inte-
gration should be performed over the area of the semicircle. With this purpose, it is
convenient to go to the polar coordinates, r and ’, replacing x with r cos ’; y with
r sin ’ and the area element dxdy with rdrd’. The limits of integration will be: over
the variable ’ – from 0 to � and over the variable r – from 0 to R. Notice that the
potential of the external forces will involve only a non-integral term, namely

�s ¼ �P � w0;

where w0 is the deflection at a point of the force application that is calculated from
Eq. (b). Fairly awkward calculations do not present any key difficulties and allow us
to determine the deflection surface w x; yð Þ and then the bending moments. The

Fig. 6.15
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accuracy of calculation of the bending moments depends mainly on the number of
terms retained in the expansion (b).

If a plate has openings (Fig. 6.16), then the analysis can be performed similarly
but the area of openings must be eliminated from the area of integration in calculat-
ing the total potential energy �.

Let us discuss the advantages of the Ritz method.

(a) The basic advantage lies in the fact that the coordinate functions fi x; yð Þ
must satisfy the kinematic (or geometrical) boundary conditions only.
Therefore, the area of an application of the method to the plate bending
problems is wider than of the classical analytical methods discussed in
Chapter 3. Therefore, the Ritz method is very efficient for the analysis of
plates having free edges, for plates with openings.

(b) The method can be also applied successfully to rectangular plates of
variable thickness, because there is no difference between the expressions
of � for plates of constant and variable thicknesses.

(c) Another advantage of the method is that the matrix of the linear algebraic
equations, following on from Eq. (6.44), is always symmetrical, resulting
in stable and powerful logarithms for their numerical solution.

The basic disadvantages of the method are

(a) The Ritz method can be applicable only to simple configurations of plates
(rectangular, circular, etc.), because of the complexity of selecting the
coordinate functions for domains of complex geometry.

(b) The Ritz method approximation (6.44) results in the complete matrix of
linear algebraic equations that produces some difficulties in its numerical
implementation.

It should be noted that the Ritz method can serve as a basis for a such popular and
powerful methods as the finite element method, which is discussed in the next section.

6.7 THE FINITE ELEMENT METHOD (FEM)

6.7.1 Introduction

The finite element method (FEM) is based on the concept that one can replace any
continuum by an assemblage of simply shaped elements with well-defined force–

Fig. 6.16
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displacement and material relationships. While one may not be able to derive a
closed-form solution for the continuum, one can derive an approximate solution
for the element assemblage that replaced it.

According to the FEM, a plate is discretized into a finite number of elements
(usually, triangular or rectangular in shape), called finite elements and connected at
their nodes and along interelement boundaries. Unknown functions (deflections,
slopes, internal forces, and moments) are assigned in the form of undetermined
parameters at those nodes. The equilibrium and compatibility conditions must be
satisfied at each node and along the boundaries between finite elements. To deter-
mine the above-mentioned unknown functions at nodal points, one of the variational
principles, introduced in Sec. 2.6, is applied. As a result, a system of algebraic
equations is obtained. Its solution determines the state of stress and strain in a
given plate.

There are a number of finite element methods. In this section we discuss
only the commonly used finite element displacement approach wherein the gov-
erning set of algebraic equations is expressed in terms of unknown nodal displa-
cements.

The FEM can be treated as some modification of the Ritz method. A difference
between the classical Ritz approach and the FEM is in the technique of representa-
tion of displacements. In the Ritz method, the displacements are assigned in the
entire domain occupied by the plate. A governing system of algebraic equations
for this approach will have a completed, not banded structure. Since in the FEM
the displacements are assigned element by element, the matrix of the system of
algebraic equations is obtained as partially completed, and usually it has a banded
structure. This is a profound advantage of the FEM compared with other numerical
methods introduced in the preceding sections of this chapter.

The FEM has gained considerable attention and prominence after the publica-
tion of the classic paper by Turner et al. [26] that showed how one can use an
assemblage of simple elements as a basis for computerized structural analysis.
Courant [27], and later Argyris et al. [28] represent the initial attempts to provide
the theoretical investigations of this method. Gallagher [29], Hughes [30],
Zienkiewicz [31], and other investigators developed the general procedure of the
FEM technique for plate and shell stress analysis.

For every finite plate (or shell) element there is a relationship between the
generalized displacements at the nodal points and the corresponding forces and
moments at the nodes. This relationship may be presented in the form of a matrix
called a stiffness matrix. In this section, we discuss the stiffness matrices for rectan-
gular and triangular plate elements. Then, we present the general procedure of the
FEM for plate bending analysis. The derivations, given below, are based on the
classical (Kirchhoff’s) plate bending theory introduced in Chapter 2.

6.7.2 The rectangular plate element

Consider a flat rectangular plate which is subdivided into rectangular finite elements
with dimensions c and d, as shown in Fig. 6.17. The properties belonging to such a
finite element (abbreviated further as FE) is designated e. The geometrical position
of a rectangular FE is determined by the four nodal (corner) points i; j; k; and l, and
the straight line boundaries. At each node q ðq ¼ i; j; k; lÞ we consider the possible
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nodal deflection wq and rotations of the normal to the plate middle surface (slopes)
about the x and y axes, i.e., @w=@yð Þq and @w=@xð Þq, respectively.

The deflection wq and two rotations @w=@yð Þq and @w=@xð Þq are referred to as a
set of nodal displacements.

We assume that the FE is subjected to surface-distributed load pðx; yÞ and
external concentrated force Pq and moments mxq and myq, applied at each nodal
point q of the FE, as shown in Fig. 6.17. Do not confuse the external nodal moments
mxq and myq with the stress couples Mx and My introduced in Chapter 2. The nodal
force and two moments are referred to as a set of nodal forces. The nodal displace-
ments and nodal forces are assumed to be positive in the directions shown in Fig.
6.17. Two coordinate systems are introduced in Fig. 6.17: the coordinate set X;Y;Z
is referred to as a global set for the entire structure while the set x; y; z is called the
local set for the FE of interest.

We develop below a stiffness matrix for a given FE. Let us approximate the
deflection field over the area of the rectangular FE shown in Fig. 6.17. The strain
energy of the plate in bending involves the second derivatives of the deflections (see
Eq. (2.60)). Hence, the degree of a polynomial that approximates this deflection field
cannot be less than two. On the other hand, in order to characterize the shape of the
FE by its nodal displacements with reference to Fig. 6.17, it is necessary to have 12
degrees of freedom (in the three degrees of freedom, w; @w=@y; @w=@x at each of the
four nodal points i; j; k; l of the above element). Consequently, we need to select a
polynomial with 12 parameters. The polynomial selected is

wðx; yÞ ¼ 	1 þ 	2xþ 	3yþ 	4x2 þ 	5y2 þ 	6xyþ 	7x2yþ 	8xy2 þ 	9x3 þ 	10y3

þ 	11x3yþ 	12xy3:
ð6:46Þ

Obviously, the above polynomial satisfies exactly the governing differential equation
(2.24). However, this deflection function will not result in a fully compatible element.
In the FEM formulation, it is required that the compatibility conditions (equality of
the deflections and slopes) are satisfied at the nodal points. An accuracy of the FEM
will be increased if the selected deflection function involves the compatibility of the
deflections and slopes along a common boundary line of the adjacent FEs. It can be
shown that the polynomial (6.46) provides the compatibility of deflections between

Fig. 6.17
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elements and some slopes (normal) are continuous while other slopes (tangential)
may not be continuous. In order to correct this problem, one needs to define four
degrees of freedom at each node and, correspondingly, employ a deflection function
with 16 terms [29,30]. Of course, the above polynomial leads to improved results, but
the analysis becomes more involved than described below. At the same time, numer-
ical and theoretical investigations showed that the use of the polynomial (6.46)
provides a convergence of the solution by the FEM. So, the polynomial (6.46) is
frequently used in engineering practice.

Let us represent the above polynomial approximating the deflection field over
the FE designated by e in the matrix form as follows:

we ¼ N½ � 	f g; ð6:47Þ
where

N½ � ¼ 1; x; y; x2; y2; xy; x2y; xy2; x3; y3; x3y; xy3
� �

and 	f g ¼ 	1; 	2; . . . ; 	12½ �T :
ð6:48Þ

Here and further, the subscript e refers to a finite element designated by this letter.
We introduce the braces . . .f g to indicate a matrix of one column, the brackets . . .½ � to
represent a matrix (both, a square and row matrices); and the superscript T to
represent the transpose of a matrix.

Introduce the element displacement matrix �f ge as follows:
�f ge¼ �i; �j; �k; �l

� �T
; ð6:49Þ

where

�i
� � ¼ wi; @w=@yð Þi; @w=@xð Þi

� �T
; �j

� � ¼ wj; @w=@yð Þj; @w=@xð Þj
� �T

; etc.

If we express the coefficients 	mðm ¼ 1; 2; 3; . . . ; 12Þ via the nodal displacements wq,
@w=@yð Þq; and @w=@xð Þq ðq ¼ i; j; k; lÞ in the local coordinate system x; y; z, then we
can write the following relationship:

�f ge¼ C½ � 	f g; ð6:50Þ
where C½ � is 12	 12 matrix whose elements depend on the x and y coordinates of the
nodal points of the finite element shown in Fig. 6.17.

From the foregoing, the solution for the unknown constants is

	f g ¼ C½ ��1 �f ge: ð6:51Þ
The inverse matrix C½ ��1 is given below for the rectangular FE of Fig. 6.17 in the
explicit form in Table 6.3.

Upon substitution of 	f g from Eq. (6.51) into Eq. (6.47) one obtains

we ¼ L½ � �f ge; ð6:52Þ
where

L½ � ¼ N½ � C½ ��1 ð6:53Þ
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is referred to as a shape function for the FE of interest.
Define the strain–displacement relationship as follows:

"f ge ¼ z �f ge; ð6:54Þ
where "f ge ¼ "x; "y; �xy

� �T
is the strain matrix and �f ge ¼ �x; �y; 2�xy

� �T
is the curva-

ture matrix. Using Eqs (2.7), one can represent the latter matrix in terms of the
deflections as follows:

�f ge ¼ � @w

@x2
;� @

2w

@y2
;�2

@2w

@x@y

" #T

: ð6:55Þ

Substituting for we from Eq. (6.52) into Eq. (6.55), one can express the curva-
ture matrix in terms of the polynomial (6.46) as follows:

�f ge ¼ B½ � �f ge; ð6:56Þ
where B½ � ¼ B½ �i; B½ �j; B½ �k; B½ �l

� �
and

Table 6.3

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

� 3

a2
� 2

a
0 3

a2
� 1

a
0 0 0 0 0 0 0

� 3

b2
0 � 2

b
0 0 0 0 0 0 3

b2
0 � 1

b

� 1

ab
� 1

b
� 1

a

1

ab
0 1

a
� 1

ab
0 0 1

ab

1

b
0

3

a2b

2

ab
0 � 3

a2b

1

ab
0 3

a2b
� 1

ab
0 � 3

a2b
� 2

ab
0

3

ab2
0 2

ab
� 3

ab2
0 � 2

ab

3

ab2
0 � 1

ab
� 3

ab2
0 1

ab

2

a3
1

a2
0 � 2

a3
1

a2
0 0 0 0 0 0 0

2

b3
0 1

b2
0 0 0 0 0 0 � 2

b3
0 1

b2

� 2

a3b
� 1

a2b
0 2

a3b
� 1

a2b
0 � 2

a3b

1

a2b
0 2

a3b

1

a2b
0

� 2

ab3
0 � 1

ab2
2

ab3
0 1

ab2
� 2

ab3
0 1

ab2
2

ab3
0 � 1

ab2

½C ��1 ¼
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B½ �i ¼ � @
2 L½ �i
@x2

;� @
2 L½ �i
@y2

;�2
@2 L½ �i
@x@y

" #T

;

B½ �j ¼ � @
2 L½ �j
@x2

;� @
2 L½ �j
@y2

;�2
@2 L½ �j
@x@y

" #T

; etc.

Now. let us introduce the stress resultants and stress couples relationships (see Eqs
(2.13)) in the matrix form:

fMge ¼
Mx

My

Mxy

8>><
>>:

9>>=
>>; ¼ D

1 � 0

� 1 0

0 0 ð1� �Þ=2

2
664

3
775

�x

�y

2�xy

8>><
>>:

9>>=
>>;; ð6:57aÞ

or symbolically as follows:

Mf ge¼ D½ � �f ge; ð6:57bÞ
where D½ � is the elasticity matrix. The stress–strain relationship, from Eqs (2.10), can
be written in the matrix form as follows:

�f ge¼ z D½ � �f ge; ð6:58Þ
where the matrix D½ � is given by

D½ � ¼ 12

h3
D½ �: ð6:59Þ

To continue the development, it is necessary to define the set of discrete nodal forces
corresponding to the prescribed nodal degrees, as shown in Fig. 6.17:

Rf ge¼ Ri;Rj;Rk;Rl

� �T
; ð6:60aÞ

where

Rq

� � ¼ Pq;mxq;myq

� �T
; q ¼ i; j; k; l: ð6:60bÞ

We now employ the principle of minimum potential energy, introduced in Sec.
2.6.2, to derive the element stiffness matrix, k½ �e and the element nodal force matrix
Rf ge. Toward this end, we write the strain energy in the element as (see Eq. (2.61))

Ue ¼
1

2

ð ð
Ae

�½ �Te Mf gedAe: ð6:61Þ

Substituting for �½ �Te from Eq. (6.56) and for Mf ge from Eq. (6.57b) into the above,
we obtain

Ue ¼
1

2

ð ð
Ae

�f gTe B½ �T D½ � B½ � �f gedAe ¼ �f gTe
1

2

ð ð
Ae

B½ �T D½ � B½ �dAe

* +
�f ge

or
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U ¼ 1

2
�f gTe k½ �e �f ge; ð6:62Þ

where Ae is the rectangular area c	 d of the FE of interest (see Fig. 6.17) and

k½ �e¼
ð ð
Ae

B½ �T D½ � B½ �dAe ð6:63Þ

is the (symmetric) element stiffness matrix.
The potential of external forces, �e, acting upon the element is

�e ¼ � �f gTe Rf ge�
ð ð
Ae

pwdAe; ð6:64Þ

where the first term on the right-hand side is the potential of the discrete nodal forces
and the second term is the potential of the distributed load pðx; yÞ: If we substitute
for w from Eq. (6.52) into the above equation, we obtain

�e ¼ � �f gTe Rf ge�
ð ð
Ae

p L½ � �f gedAe:

Since the potential of external forces is a scalar quantity, we may take the transpose
without changing its value

�e ¼ � �f gTe Rf geþ
ð ð

Ae

p L½ �TdAe

* +
: ð6:65Þ

It is convenient to write the above equation in the form

�e ¼ � �f gTe Q
� �

e
; ð6:66Þ

where

Q
� �

e
¼ Rf geþ

ðð
Ae

p L½ �TdAe ð6:67Þ

is the element nodal force matrix.
If �e ¼ Ue þ�e is the total potential energy associated with the element, we

have

�e ¼
1

2
�f gTe k½ �e �f ge� �f gTe Q

� �
e
: ð6:68Þ

If we apply the principle of minimum potential energy to Eq. (6.68), we obtain

@�e

@ �f ge
¼ 0 or

@�e

@ �q
� � ¼ 0; q ¼ i; j; k; l: ð6:69Þ
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If we perform the operations prescribed by Eq. (6.69) and rearrange terms, we obtain
the following expression that relates nodal displacements and corresponding nodal
forces:

k½ �e �f ge¼ Q
� �

e
: ð6:70Þ

This 12	 12 system of linear algebraic equations characterizes the deformation of
the rectangular plate element subjected to surface load and nodal forces.

When the elements are assembled, the total potential energy of the entire plate
is characterized by the following (see Eq. (6.69):

� ¼
XE
e¼1

1

2
�f gTe k½ �e �f ge� �f gTe Q

� �
e

� �
; ð6:71Þ

where E refers to the total number of finite elements comprising the given plate. This
expression contains 12E unknowns, which is excessive. Since the value of �f ge for two
adjacent elements that share a common nodal point must be the same, the displace-
ment vector is reduced and can be represented as

�f g ¼ �1;�2; . . . ;�M½ �T ; ð6:72Þ

where M ¼ 3N and N is the total number of nodal points in the mesh. Thus, the
expression of �in terms of the reduced displacement vector takes the form

� ¼ 1

2
�f gT K½ � �f g � �f gT Q

� �
; ð6:73Þ

where K½ � is the M 	M global stiffness matrix of the entire plate and Q
� �

is the
generalized global force matrix.

If we apply the principle of minimum potential energy to Eq. (6.73):

@�

@ �i

� � ¼ 0; i ¼ 1; 2; . . . ;M;

we obtain the following governing equation of the FEM for the entire plate:

K½ � �f g ¼ Q
� �

: ð6:74Þ
The global stiffness matrix K½ � and the generalized global force matrix Q

� �
can be

assembled from 12	 12 element stiffness, k½ �e, and the element force, Q
� �

e
, matrices.

This assembly process is readily computerized once the individual element properties
are known.

The matrix K½ � in Eq. (6.74) is singular, because in deriving the above equation
possible rigid body motions of the entire plate have not been prevented. Applying
appropriate kinematic boundary conditions (imposed on the components of the
displacement vector �f ge), we eliminate the rigid body motion. This results in deleting
some rows and columns of the matrix K½ �, corresponding to vanishing displacements,
and the nonsingular stiffness matrix K½ � is obtained. As a result, Eq. (6.74) can be
represented in the form

K½ � �� � ¼ Q� �
: ð6:75Þ
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This set of algebraic equations is then solved for the unknown displacements. The
order of this system will be equal to the total number of unknown displacements of
the discretized plate. The matrix K½ � can always be written in banded, symmetric
form.

Once all displacements have been determined, we can utilize Eqs (6.56) and
(6.57) to determine the bending and twisting moments. The general procedure for
solving plate (or shell) bending problems by FEM is summarized as follows:

1. For every FE, having a number e and certain nodes numbering and
displacements, the nodal force Q

� �
e
and the element stiffness k½ �e matrices

are determined in the local coordinate system. A transition of the above
matrices from the local to global coordinate system is carried out.

2. The governing system of equations (6.74) is set up where the global
matrices K½ � and Q

� �
are simply generated in elements as follows: K½ � ¼P

e k½ �e and Q
� � ¼P

e Q
� �

e
.

3. The prescribed kinematic boundary conditions are inserted in the global
stiffness matrix, as indicated earlier, and the set of equations (6.75) is
formed for the entire plate.

4. The set of Eqs (6.75) is solved.
5. Output data are calculated. The element deflections, internal forces, and

moments, as well as the stress components, are computed at all nodal
points.

It should be noted that the procedure described can be efficient only by using power-
ful digital computers. At present, new powerful computer programs, based on FEM,
have been developed for solving various linear and nonlinear plate (and shell) bend-
ing problems.

6.7.3 The triangular plate element

The triangular element can easily accommodate irregular boundaries and can be
graduated in size to permit small elements in regions of stress concentration.
Consequently, this element is widely used in the finite element technique. Let a flat
plate be subdivided into a set of triangular finite elements referred to the local
coordinate system xyz, where one of the coordinate axes (for instance, the y axis,
as shown in Fig. 6.18) is directed along a particular side of the FE.

Fig. 6.18
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The matrix of the nodal displacements for this FE includes the nodal deflec-
tions wq and slopes ð@w=@yÞq; ð@w=@xÞq where q ¼ i; j; k. Thus, the triangular FE
posseses nine degrees of freedom.

The problem of selecting a suitable polynomial to describe the displacement
field over the triangular FE of interest is somewhat more difficult than for the
rectangular element. The simplest expression for the deflection function wðx; yÞ
that satisfies all the general requirements, introduced in Sec. 6.7.2, is a cubic poly-
nomial. However, a complete cubic polynomial contains 10 terms. Thus, one needs
to fit this cubic polynomial to the nine-degree FE under consideration. Several
different possibilities of the presentations of this polynomial were proposed to over-
come this difficulty [29–31]. We consider only one of them. It was recommended to
take the above cubic polynomial in the form

wðx; yÞ ¼ 	1 þ 	2xþ 	3yþ 	4x2 þ 	5xyþ 	6y2 þ 	7x3 þ 	8ðx2yþ y2xÞ þ 	9y3:
ð6:76Þ

The triangular plate bending element, based on the polynomial (6.47), has several
limitations. The continuity of slopes across element lines is not guaranteed. Further,
its stiffness matrix may be singular for some orientations of sides of FE with respect
to the local coordinate axes [30,31]. Thus, this type of element cannot always provide
accurate results when used for the bending analysis of plates. However, because of its
simplicity, this polynomial is used in engineering practice.

The nodal displacement matrix �f ge is of the form (see Fig. 6.18):

�f ge¼ �i; �j; �k
� �

; ð6:77Þ
where

�i
� � ¼ wi; ð@w=@yÞi; ð@w=@xÞi

� �
; etc.

The matrix representing the deflection field is also given by Eq. (6. 47), but the
matrices N½ � and 	f g now have the following form:

N½ � ¼ 1; x; y; x2; xy; y2; x3; x2yþ y2x; y3
� �

; 	f g ¼ 	1; 	2; . . . ; 	9½ �T : ð6:78Þ
Nodal displacements, upon introduction of Eq. (6.76) and the first derivatives of w
with respect to x and y into Eq. (6.77), are next found. They are given by Eq. (6.50)
in which the matrix C½ � is the 9	 9 matrix that depends upon the nodal coordinates.
Inversion of the above matrix provides the values of the unknown coefficients 	1;
	2; . . . ; 	9 and is given by Eq. (6.51). The displacement function is expressed by Eq.
(6.52).

The nodal force matrix Rf ge for the triangular FE represents a three-compo-
nent vector of the form

Rf ge¼ Ri;Rj;Rk

� �T
; ð6:79Þ

where Rf gqðq ¼ i; j; kÞ is given by Eq. (6.60b). The stiffness matrix, k½ �e, and the
external nodal force matrix, Q

� �
e
, for the triangular plate element as well as the

governing equation of the FEM for the entire plate can be obtained by employing
the general procedure introduced in Sec. 6.7.2 for the rectangular plate element.

Let us discuss briefly some advantages of the FEM:
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1. The solution by the FEM is obtained without the use of the governing
differential equation.

2. The method has a clear and straightforward mechanical meaning and can
be formulated in terms of a technique familiar to practicing engineers.

3. The method can be successfully applied to arbitrary boundary and load-
ing conditions that can be handled in the same manner as simpler pro-
blems.

4. The complete automation of all procedures of the numerical process for
solving boundary value problems by the FEM is permitted.

5. The FEM can be applied to the stress analysis of combined structures
consisting of various structural elements such as plates, shells, beams,
arches, etc.

Among the disadvantages of the FEM, the following can be mentioned:

1. The FEM requires the use of powerful computers of considerable speed
and storage capacity.

2. It is difficult to ascertain the accuracy of numerical results when large
structural systems are analyzed.

3. The method is poorly adapted to a solution of the so-called singular
problems (e.g., plates and shells with cracks, corner points, discontinuity
internal actions, etc.), and of problems for unbounded domains.

4. The method presents many difficulties associated with problems of C1

continuity and nonconforming elements in plate (and shell) bending
analysis.

Since the application of fundamental concepts of the FEM has recently extended
to various linear and nonlinear boundary value problems, it is efficient to combine
the BEM and FEM for the stress analysis of combined plate and shell structures
[12,13].

Example 6.8

A square simply supported plate with side a is acted upon by (a) a uniform lateral
surface load p0 and (b) a concentrated force P applied at the plate center. Determine
the deflections and the bending and twisting moments by the FEM. Use � ¼ 0:3

Solution

Calculations are carried out with the use of the rectangular FEs under a varied
number of the plate discretization. The deflection, w; the bending moments, Mx;
My, at the plate center, and the twisting moment, Mxy at a corner point of the plate
are assigned in the form:

– for a uniformly distributed load p0, as follows:

w ¼ 	 � 10�4 p0a
4

D
; Mx ¼ My ¼ 
 � 10�2p0; Mxy ¼ � � 10�2p0 and

– for a concentrated force P, as follows:

w ¼ 	1 � 10�2 Pa
2

D
; Mx ¼ My ¼ 
1 � 10�2P; Mxy ¼ �1 � 10�2P:
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The results of calculations are given in Table 6.4 (taken from Ref. [32]), where these
numerical results for varied numbers of the FEs are compared with those obtained
from Ref. [7]. As seen from Table 6.4, a discrepancy of the corresponding numerical
data is small even for a sufficiently large mesh of the plate discretization. A reduction
of mesh dimensions (an increase in the number of the FEs) provides a monotonic
convergence of the obtained results to an exact solution.

This section provides only a brief survey of the FEM and its application to
plate bending problems. The literature associated with this method and its applica-
tion is voluminous. The interested reader is referred to Refs [28–31].

PROBLEMS

6.1 Derive the finite difference expressions for the effective shear forces Vx and Vy.

Referring to Fig. 6.5 check the correctness of the result for Vx.

6.2 Determine the finite difference expression corresponding to Eq. (2.25) at a pivotal point

k for nonuniform spaced rectangular mesh widths �x and �y in the x and y axes

directions, respectively.

6.3 Verify Eqs (6.15b).

6.4 Consider a clamped plate shown in Fig. P.6.1. The plate is acted upon by a uniformly

distributed load of intensity p0. Find the deflection w at the nodal points 1 through 5

Fig. P6.1

Table 6.4

Discretization

Number of

nodes

A uniform distributed load Concentrated force

	 
 � 	1 
1 �1

2	 2 9 34.44 4.427 �3:492 1.378 23.18 �6:505
4	 4 25 39.45 4.694 �3:317 1.233 24.72 �6:184
8	 8 81 40.40 4.728 �3:296 1.183 25.18 �6:032
16	 16 289 40.58 4.781 �3:251 1.167 25.34 �6:085
[7] — 40.62 4.789 �3:247 1.160 — —
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and estimate the location of the point of maximum deflection and determine its mag-

nitude. Use the method of finite differences.

6.5 With reference to Example 6.1 of Sec. 6.2, determine the bending moments Mx and My

at nodal points of the mesh of the plate shown in Fig. 6.7 by utilizing the deflection

field found at the nodal point in the above example.

6.6 Consider a square clamped plate with side a. The plate is subjected to a uniformly

distributed load of intensity p0. Analyze a convergence of numerical FDM solutions

for the deflections w and the bending moments Mx and My at the plate center for

varied plate mesh widths �. Take � equal to a=2; a=4; and a=8.
6.7 Derive Eq. (6.22) from the conditions of minimum of the error ei, given by Eq. (6.21).

6.8 Consider a simply supported square plate (0 � x; y � a) subjected to a uniformly

distributed load p0. Using the approximate representation of the deflection in the

form of (a) in Example 6.2, write out the straightforward BCM governing collocation

equations (6.19) for the collocation points on the plate boundary. Take the three points

for each side of the plate boundary.

6.9 With reference to Fig. 6.10 write the expression for the singular solution Gmðx; y; �; Þ
in the explicit form.

6.10 Write the boundary integral equations of the direct BEM formulation for a simply

supported rectangular plate ð0 � x � a; 0 � y � bÞ subjected to a lateral surface load

pðx; yÞ. Use the expressions (6.31) and (6.33).

6.11 Consider a square clamped plate with side a subjected to a uniformly distributed load

p0. Applying the indirect BEM approach, write the boundary integral equations in the

explicit form. Use the expressions (6.25) and (6.27).

6.12 With reference to Example 6.5 of Sec. 6.5, find the maximum value of the bending

moment Mx by retaining two and three terms in the expression (b) for the deflection

surface. Compare the obtained value of Mmax with the exact solution given in that

example. Use the Galerkin method.

6.13 With reference to Fig. 6.13, solve the problem of Example 6.5 by taking the deflection

surface of the plate in the following form

w ¼ A cos2
�x

2a
cos2

�y

2b

that satisfies all the boundary conditions of the plate. Applying the Galerkin method,

find the maximum deflection and bending moments at the plate center and at a mid-

point of the clamped edge.

6.14 Consider a rectangular plate under a uniformly distributed surface load p0. The plate

has edges y ¼ �b simply supported and the edges x ¼ �a clamped. Using the Galerkin

method, determine the deflection and bending moments at the plate center and the

bending moment Mx at the midpoint of the clamped edge x ¼ a. Let a ¼ 1m; b ¼
1:5m; h ¼ 12mm; p0 ¼ 25MPa; E ¼ 200GPa; and � ¼ 0:3. Assume a solution of the

following form:

w ¼ 1

2
C 1� cos

2�x

a

� �
cos

�y

2b
:

Check that the above solution satisfies all the prescribed boundary conditions of the

plate.

6.15 A rectangular plate with sides a and b (0 � x � a, 0 � y � b) is subjected to a uniformly

distributed load of intensity p0. The plate edges y ¼ 0; b are simply supported, the edge

x ¼ 0 is clamped, while the edge x ¼ a is free. Determine the deflection w and stresses �x
and �y at the plate center. Use the Ritz method and solution approximated by

w ¼ C
x

a

� �2
sin
�y

b
:
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Check that the above solution satisfies the kinematic boundary conditions on the plate

boundary. Take a ¼ b ¼ 1:5m; h ¼ 15mm; E ¼ 210GPa; p0 ¼ 30MPa; and � ¼ 0:3.
6.16 Determine the required thickness h of a rectangular plate platform of sides 2a and 2b

(�a � x � a, �b � y � bÞ. The plate is supported by columns at its corners and the

plate edges are free. The plate is acted upon by a uniform lateral surface load p0. Let

a ¼ b ¼ 2:0m, p0 ¼ 32MPa; E ¼ 210GPa; �YP ¼ 250MPa, and � ¼ 0:3; the factor of
safety is 2. Assuming that the columns can be considered as point supports at the plate

corners, take a solution in the form

w ¼ C cos
�x

2a
þ cos

�y

2b

� �
:

Use the Ritz method and Tresca criterion.

6.17 A uniformly loaded rectangular plate of sides a and b (0 � x � a; 0 � y � bÞ has the
following boundary conditions: the edge x ¼ 0 is fixed, the edge y ¼ 0 is simply sup-

ported, and the edges y ¼ b and x ¼ a are free. Determine the deflections at the mid-

points of the free edges of the plate if a deflection surface of the plate is approximated

by the following expression:

w ¼ C
x

a

� �2
sin
�y

2b
:

Check that the above expression satisfies the kinematic boundary conditions prescribed

on the plate edges. Use the Ritz method and take � ¼ 0:3:
6.18 Derive the expression of the nodal force matrix Q

� �
e
for the squarer finite element of

side c, as shown in Fig. 6.17, subjected to a uniform distributed load p0 only.

6.19 Redo Problem 6.18 for the triangular finite element representing a right isosceles

triangle with legs a and b ðb ¼ 2aÞ. The origin of the Cartesian coordinate system is

taken at the centroid of the triangle.

6.20 A square plate of side a ð0 � x � a; 0 � y � bÞ with two opposite sides x ¼ 0 and x ¼ a

simply supported and the remaining edges clamped is subjected to a uniformly dis-

tributed load p0. If the plate is discretized into four identical rectangular finite elements,

compute the maximum deflection. Take a ¼ 4m; h ¼ 30mm; p0 ¼ 50MPa; E ¼ 210

GPa; and � ¼ 0:3. Analyze only one quarter-plate by the FEM.
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7

Advanced Topics

7.1 THERMAL STRESSES IN PLATES

7.1.1 Basic concepts

It was assumed in the foregoing discussions that the temperature of an elastic plate
remains constant and has the same value at all points of the plate; hence, tempera-
ture effects were not taken into consideration. If the temperature of the plate is raised
or lowered it expands or contracts, respectively. Within a certain temperature
change, such expansion or contraction, for most structural materials, is directly
proportional to the change in temperature. When a free plate made of homogeneous
isotropic material is heated uniformly, there appear normal strains but no thermal
stresses. The thermal stresses will occur in the following cases: first, if the plate
experiences a nonuniform temperature field; secondly, if the displacements are pre-
vented from occurring freely because of the restrictions placed on the boundary even
with a uniform temperature; and thirdly, if the material displays anisotropy even
with uniform heating – for example, if a heated plate consists of several layers of
different materials (e.g., bimetallic plates).

A study of the deformations of an elastic solid in the presence of a temperature
field is called thermoelasticity. Let us assume that the temperature of an infinitesimal
plate element is increased from T0 to T . The initial temperature, T0, is defined as a
reference state of uniform temperature distribution which does not produce stress or
strain in the plate. The thermal field, T ¼ Tðx; y; zÞ, is assumed to be known from a
solution of the heat conduction problem. The thermal strains are expressed for a
two-dimensional body as follows [1,2]:

"zxT ¼ 	T; "zyT ¼ 	T; �zxyT ¼ 0; ð7:1Þ
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where 	 is the coefficient of thermal expansion. Over a moderate temperature
change, 	 remains reasonably constant and represents an experimentally determined
material property. In Eqs (7.1), "zxT ; "

z
yT ; and �

z
xyT are the normal and shear thermal

strain components, respectively, at a distance z from the plate middle surface. From
Eqs (7.1) it follows that the temperature field has no effect on the shear strain
components.

Also, from Eqs (7.1), taking the temperature effects into account, we must
modify the general plate bending equations. For the sake of simplicity, we assume
that the material properties of the plate are not affected by temperature changes: i.e.,
the modulus of elasticity, E, and Poisson’s ratio, �, are assumed to be constant. In
general, a temperature increase or decrease produces changes in a plate’s curvature
and in the dimensions of the plate’s middle surface.

7.1.2 Thermoelastic plate equations

We begin by modifying Hooke’s law relations for Kirchhoff’s plate theory. These
relations are obtained by adding to strains resulting from external forces, the strains
due to the thermal effects. The latter are given by Eqs (7.1). We have the following:

"zx ¼ 1

E
�zx � ��zy
� �þ 	T; "zy ¼

1

E
�zy � ��zx
� �þ 	T; �zxy ¼ 1

G
�zxy: ð7:2Þ

Solving these equations for the stress components, yields

�zx ¼ E

1� �2 "
z
x þ �"zy � 1þ �ð Þ	T� �

;

�zy ¼
E

1� �2 "
z
y þ �"zx � 1þ �ð Þ	T� �

; �zxy ¼ G�zxy:

ð7:3Þ

The assumptions of Kirchhoff’s plate bending theory, introduced in Sec. 1.3,
can be applied to the thermoelastic analysis of plates, with the exception of assump-
tion 6. As mentioned earlier, a change in the temperature of a plate may result in a
change in the dimensions of the middle surface, i.e., points of the middle surface can
displace not only in the z but also in the x and y directions. Let u and v, as before, be
the displacement components along the x and y axes on the middle surface, respec-
tively. Thus, the total strain components for thermoelastic plates can be obtained by
superimposing the strains due to stretching or contracting of the middle surface (Eqs
1.5a) and the strains associated with bending of the middle surface (Eqs 2.6), derived
in Sec. 2.2. As result, the following expressions for the strains in terms of displace-
ment components in the middle surface can be written:

"zx ¼ @u

@x
� z

@2w

@x2
; "zy ¼

@v

@y
� z

@2w

@y2
; �zxy ¼

@u

@y
þ @v

@x

� �
� 2z

@2w

@x@y
: ð7:4Þ

In the foregoing, the first terms on the right-hand sides of the above equations
represent the strain components in the middle surface due to its stretching, and
terms with w represent the strain components due to bending.

Owing to the deformation of the plate middle surface, the stresses distributed
over the thickness of the plate result in the in-plane forces, Nx;Ny;Nxy and moments,
Mx;My;Mxy, per unit length, as shown in Figs 3.19 and 2.4. The in-plane force
components are represented by
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Nx

Ny

Nxy

8><
>:

9>=
>; ¼

ðh=2
�h=2

�zx

�zy

�zxy

8><
>:

9>=
>;dz; ð7:5Þ

and the moments are given by Eqs (2.11). Introducing Eqs (7.3) and (7.4) into Eqs
(2.11) and (7.5), the stress resultants are obtained in the form

Nx ¼ Eh

1� �2
@u

@x
þ � @v

@y

� �
� NT

1� � ; Ny ¼
Eh

1� �2
@v

@y
þ � @u

@x

� �
� NT

1� � ;

Nxy ¼ Nyx ¼ E

2 1þ �ð Þ
@u

@y
þ @v

@x

� �
; ð7:6Þ

Mx ¼ �D
@2w

@x2
þ � @

2w

@y2

 !
� MT

1� � ; My ¼ �D
@2w

@y2
þ � @

2w

@x2

 !
� MT

1� � ;

Mxy ¼ Myx ¼ �D 1� �ð Þ @
2w

@x@y
: ð7:7Þ

Here the quantities

NT ¼ 	E

ðh=2
�h=2

Tðx; y; zÞdz and MT ¼ 	E

ðh=2
�h=2

Tðx; y; zÞzdz ð7:8Þ

are termed the thermal stress resultants, i.e., the thermal equivalent normal force and
bending moment, respectively.

The components of the stress tensor may now be derived in terms of the stress
resultants by substitution of Eqs (7.4) into (7.3) and elimination of the displacement
derivatives through the use of Eqs (7.7) and (7.8), as follows:

�zx ¼ 1

h
Nx þ

NT

1� �
� �

þ 12z

h3
Mx þ

MT

1� �
� �

� 	ET

1� � ;

�zy ¼
1

h
Ny þ

NT

1� �
� �

þ 12z

h3
My þ

MT

1� �
� �

� 	ET

1� � ;

�zxy ¼
1

h
Nxy þ

12z

h3
Mxy:

ð7:9Þ

Substitution of Eqs (7.7) and the second equation of (7.8) into the plate equilibrium
equation (2.25) gives the following:

r2r2w ¼ 1

D
p� 1

1� �r
2MT

� �
: ð7:10Þ

This is the governing differential equation for the bending of thin elastic Kirchhoff’s
plates due to the lateral pressure and thermal effects. We observe from Eq. (7.10) that
it is possible to superimpose the temperature-induced deflections with those induced
only by the transverse load.

From the above, it follows that in addition to the thermal bending stresses
resulting from the temperature variation across the thickness of the plate, membrane
stresses are also produced, if the plate is heated uniformly throughout its thickness
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and prescribed boundary conditions prevent free expansion or contraction of the
middle surface of the plate. The equations governing the in-plane (membrane) resul-
tants are given by Eqs (3.90). These equations are identically satisfied by introducing
the stress function � x; yð Þ, related to the force resultants, as follows:

Nx ¼ @2�

@y2
; Ny ¼

@2�

@x2
; Nxy ¼ � @2�

@x@y
: ð7:11Þ

For a plate of a constant thickness and negligible weight, the equation of compat-
ibility can be obtained by inserting Eqs (7.2) and (7.9) into Eq. (1.13) and making
Mx ¼ My ¼ Mxy ¼ MT ¼ 0. We obtain

@2

@y2
Nx � �Ny þNT

� �þ @2

@x2
Ny � �Nx þNT

� � ¼ 2 1þ �ð Þ @
2Nxy

@x@y
: ð7:12Þ

Substitution of relations (7.11) into the above yields

r2r2� ¼ �r2NT ð7:13Þ
where NT is given by Eq. (7.8). Equation (7.13) is the governing differential equation
for the two-dimensional thermoelastic problem of plane stress for thin plates. Since we
have assumed the validity of Kirchhoff’s small-deflection theory, the governing
equations of thermal bending, Equation (7.10), and thermal stretching or contract-
ing, Eq. (7.13), are independent of each other. Equation (7.10) may be solved by the
methods discussed in Chapters 3 and 6, while the methods discussed in the theory of
elasticity for plane stress problems are available for solving Eq. (7.13) [1,2]. We
discuss below some peculiarities associated with the solution of the thermoelastic
plate bending problems. We modify the boundary conditions for thermoelastic
plates. Let us consider the boundary conditions for rectangular plates again, as
follows:

(a) Simply supported edges x ¼ 0 and x ¼ a

w ¼ 0; Mx ¼ 0

From Eq. (7.7), the condition for the bending moment can be rewritten as

Mx ¼ �D
@2w

@x2
þ � @

2w

@y2

 !
� MT

1� � ¼ 0

					
x¼0;x¼a

: ð7:14Þ

Taking into account that for edges x ¼ 0; a the curvature @2w=@y2 ¼ 0, the above
conditions can be simplified to the form

w ¼ 0jx¼0;a and D
@2w

@x2
þ MT

1� � ¼ 0

					
x¼0;a

: ð7:15Þ

(b) Clamped edges x ¼ 0 and x ¼ a

w ¼ 0jx¼0;a and
@w

@x
¼ 0jx¼0;x¼a: ð7:16Þ

(c) Free edges x ¼ 0 and x ¼ a
The boundary conditions in this case are (see Chapter 2)
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Mx ¼ 0 and Vx ¼ 0: ð7:17Þ
The first condition (for the bending moment) is given by Eq. (7.14). The effective
shear force is found to be (see Sec. 2.4) Vx ¼ Qx þ @Mxy=@y. Using Eqs (2.22a) and
(7.7), we can express Vx in the above equation in terms of the deflections w. Finally,
the second equation (7.17) will take the following form:

@3w

@x3
þ 2� �ð Þ @

3w

@x@y2
þ 1

D 1� �ð Þ
@MT

@x
¼ 0

					
x¼0;a

: ð7:18Þ

Similarly, the boundary conditions can be represented for edges y ¼ 0 and y ¼ b. We
observe from Eqs (7.15)–(7.18) that the boundary conditions for simply supported
and free edges of thermoelasic plates are nonhomogeneous.

Small-deflection thermal bending problems of plates can be readily solved by
the so-called isothermal analogy [1,2]. Let us introduce a fictitious lateral load as
follows:

pT ¼ � 1

1� �r
2MT: ð7:19Þ

Then, the thermoelastic plate bending problems can be reduced to the corresponding
isothermal problems for a plate subjected to two types of surface lateral loads: an
actual surface lateral load of intensity p x; yð Þ and a fictitious load of intensity
pT x; yð Þ. It should be noted that the isothermal analogy might also require a mod-
ification of the boundary conditions. This means that in the mathematical formula-
tion of the static boundary conditions, the thermal equivalent moment MT must be
included in accordance with Eqs (7.15) and (7.18) for bending problems.

Example 7.1

Consider a simply supported rectangular plate (see Fig. 3.5) that is subjected to a
nonuniform temperature distribution. Determine the deflection surface of the plate.

Solution

The boundary conditions on the edges x ¼ 0; a of the plate are given by Eqs (7.15).
Similar expressions can be written for edges y ¼ 0; b by replacing the variable x with
y in the second equation (7.15). In general,MT is a function of x;y; and T . From Eqs
(7.15) and (7.7), the following expression applies to the boundary

Dr2w ¼ �MT

1

1� �
				x¼0;a
y¼0;b

: ðaÞ

Equation (7.10), setting p ¼ 0, can be represented in an equivalent form, as follows:

Dr2wþMT

1

1� � ¼ f x; yð Þ;

r2f ¼ 0:

ðbÞ

Equation (a) and the first equation (b) results in

f ¼ 0; ðcÞ
which is an appropriate solution of the second Eq. (b).
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Thus, the given thermoelastic problem can be reduced to the solution of the
following equation:

Dr2w ¼ �MT

1

1� � ; ð7:20Þ

with the following boundary condition on all edges:

w ¼ 0jx¼0;a
y¼0;b

: ðdÞ

We apply Navier’s method for solving the boundary value problem described by Eq.
(7.20) and Eq. (d). The solution of Eq. (7.20) is sought in the following form of a
double Fourier series:

w x; yð Þ ¼
X1
m¼1

X1
n¼1

wmn sin
m�x

a
sin

n�y

b
: ðeÞ

Each term of this series satisfies the boundary conditions (d). The right-hand side of
Eq. (7.20) is expressed in a similar form, i.e.,

MT x; yð Þ ¼
X1
m¼1

X1
n¼1

� Tð Þ
mn sin

m�x

a
sin

n�y

b
; ðfÞ

where the Fourier coefficients � Tð Þ
mn are the following:

� Tð Þ
mn ¼ 4

ab

ða
0

ðb
0

MT x; yð Þ sinm�x
a

sin
n�y

b
dxdy: ðgÞ

Substituting these two series into Eq. (7.20), and equating coefficients of like terms,
we obtain

wmn ¼
� Tð Þ
mn

1� �ð Þ�2D
1

m=að Þ2þ n=bð Þ2
� �

: ðhÞ

If, for example, the temperature varies through thickness only, i.e., T ¼ T zð Þ, then

� Tð Þ
mn ¼ 4MT

�2mn
1� �1ð Þm½ � 1� �1ð Þn½ �; ðiÞ

and the deflection surface becomes

w x; yð Þ ¼ 16MT

1� �ð Þ�2D
X1

m¼1;3;...

X1
n¼1;3;...

sinm�xa sin
n�y
b

mn m=að Þ2þ n=bð Þ2� �: ð7:21Þ

The bending moments and stresses in the plate may be calculated from Eqs (7.7) and
(7.9).

The thermoelastic problem above has been considered in Cartesian coordinates
for rectangular plates. However, all previously introduced thermoelastic analysis can
be applied to circular plates in polar coordinates. This section covers only some
general ideas and fundamental concepts of the thermoelastic stress analysis of plates
in the context of Kirchhoff’s bending theory. The interested reader is referred to Refs
[1,2].
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7.2 ORTHOTROPIC AND STIFFENED PLATES

7.2.1 General

Up to this point, all our previous discussions of plates have assumed the plate
material to be isotropic according to assumption 1 in Sec. 1.3. We recall that the
assumption of isotropy implies that material properties at a point are the same in
all directions. This means, that if an isotropic material is subjected to an axial
stress in a principal direction, the major deformation occurs in the direction of
the applied load. Lateral deformations of smaller magnitude occur in the other
principal directions. Also, shear stress causes only shear deformation. So, normal
strains and stresses are not coupled to shear strains and stresses. The deforma-
tions are dependent on the two independent elastic constants – for instance, E
and �. Many construction materials such as steel, aluminum, etc., fall into this
category.

However, certain materials display direction-dependent properties; conse-
quently, these materials are referred to as anisotropic. In anisotropic materials
stressed in one of the principal directions, the lateral deformations in the other
principal directions could be smaller or larger than the deformation in the direction
of the applied stress depending on the material properties. For a general anisotropic
material, the matrix of material constants, because of symmetry, contains 21 inde-
pendent material constants. This means that all the strains are coupled to all the
stresses. Some materials such as wood, plywood, delta wood, and fiber-reinforced
plastics, etc., fall into this category. These materials possess natural anisotropy.
Besides plates made of anisotropic materials, a number of manufactured plates
made of isotropic materials also may fall into the category of anisotropic plates:
examples include corrugated and stiffened plates, etc. Such a type of anisotropy is
referred to as structural anisotropy and that of an anisotropic plate can approxi-
mately replace their structural behavior. Such an approximation is possible if, for
example, stiffeners are arranged sufficiently close to each other so that the given
stiffened plate can be replaced by an orthotropic homogeneous plate with ‘‘distrib-
uted’’ stiffened rigidities along the plate. Experimental data indicate a good agree-
ment with this idealization provided that the flexural rigidities are uniformly
distributed in the x and y directions.

If an anisotropic material has three mutually perpendicular planes of symmetry
with respect to its elastic properties, it is called orthotropic (i.e., orthogonally aniso-
tropic). Practical applications of orthotropic plates in civil, marine, and aerospace
engineering are numerous and include decks of contemporary steel bridges, compo-
site-beam gridworks, plates and reinforced with closely spaced flexible ribs, and
reinforced concrete plates.

The fundamental equations for the small-deflection theory of bending of thin
orthotropic plates are presented in this section.

7.2.2 Basic relationships

Let us consider bending of plates of constant thickness and made of orthotropic
material. Assume that the principal directions of orthotropy coincide with the x and
y coordinate axes which, in turn, lie in the middle plane of the plate. The stress–strain
relations (2.9) used for isotropic plates are not valid for orthotropic plates. Thus, we
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must obtain a new set of stress–strain relations that reflects the orthotropic proper-
ties of a material of the plate. Such a set of relations is shown below [3]:

"x ¼ �x
Ex

� �y
�y
Ey

; "y ¼
�y
Ey

� �x
�x
Ex

; �xy ¼
�xy
G
; ð7:22Þ

where Ex;Ey; �x; �y; and G are assumed to be elastic constants of an orthotropic
material, i.e., Ex;Ey; and �x; �y are the moduli of elasticity and Poisson’s ratios in the
x and y directions, respectively. They are independent of one another. G is the shear
modulus, which is the same for both isotropic and orthotropic materials. It can be
expressed in terms of Ex and Ey as follows:

G �
ffiffiffiffiffiffiffiffiffiffiffi
ExEy

p
2 1þ ffiffiffiffiffiffiffiffiffi

�x�y
p� � : ð7:23Þ

The following relationship exists between independent elastic constants introduced
above:

�x
Ex

¼ �y
Ey

: ð7:24Þ

This equality directly results from Betti’s reciprocal theorem. Solving Eqs (7.22) for
the stress components and taking into account (7.24), we obtain

�x ¼ Ex

1� �x�y
"x þ �y"y
� �

; �y ¼
Ey

1� �x�y
"y þ �x"x
� �

;

�xy ¼ G�xy:

ð7:25Þ

The derivation of the governing differential equation of bending of an orthotropic
plate is based on the general hypotheses introduced in Sec. 1.3. The strain-deflection
relations (2.6) hold for orthotropic plates also. So, substituting the relations (2.6)
into Eqs (7.25) gives the following:

�x ¼ � Ex

1� �x�y
@2w

@x2
þ �y

@2w

@y2

 !
z; �y ¼ � Ey

1� �x�y
@2w

@y2
þ �x

@2w

@x2

 !
z;

�xy ¼ �2Gz
@2w

@x@y
:

ð7:26Þ
Substituting the above into Eqs (2.11) and integrating over the plate thickness, yields
the following bending and twisting moments deflection relations for orthotropic
plates:

Mx ¼ � Dx

@2w

@x2
þDxy

@2w

@y2

" #
; My ¼ � Dy

@2w

@y2
þDyx

@2w

@x2

" #
;

Mxy ¼ �2Ds

@2w

@x@y
;

ð7:27Þ
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where Dx;Dy;Dxy;Dyx; and Ds are the flexural and torsional rigidities of an ortho-
tropic plate, respectively, and are given as

Dx ¼
Ex

1� �x�y
h3

12
; Dy ¼

Ey

1� �x�y
h3

12
; Dxy ¼

Ex�y
1� �x�y

h3

12
;

Dyx ¼ Ey�x
1� �x�y

h3

12
; Ds ¼

Gh3

12
:

ð7:28Þ

In view of the expressions (7.24), one can conclude that Dxy ¼ Dyx. The shear force
expressions (2.22) become

Qx ¼ � @

@x
Dx

@2w

@x2
þH

@2w

@y2

 !
; Qy ¼ � @

@y
H
@2w

@x2
þDy

@2w

@y2

 !
; ð7:29Þ

where

H ¼ Dxy þ 2Ds: ð7:30Þ
The governing differential equation (2.24) for orthotropic plates becomes

Dx

@4w

@x4
þ 2H

@4w

@x2@y2
þDy

@4w

@y4
¼ p x; yð Þ: ð7:31Þ

We give below the expression for the potential energy of bending for orthotropic
plates, which follows from Eqs (2.52) and (7.26):

U ¼ 1

2

ð ð
A

Dx

@2w

@x2

 !2

þ 2Dxy

@2w

@x2
@2w

@y2
þDy

@2w

@y2

 !2

þ 4Ds

@2w

@x@y

 !2
2
4

3
5dA:

ð7:32Þ
Equations (7.31) and (7.32) are valid for both naturally and structurally orthotropic
plates provided structural elements causing orthotropy are arranged sufficiently close
together, so as to ignore a jump change of elastic properties in a plate.

7.2.3 Determination of rigidities for structurally orthotropic plates

The solution of Eq. (7.31) requires specific values of the flexural and torsional
rigidities of naturally and structurally orthotropic plates and plate structures. As
mentioned earlier, the orthotropic moduli and Poisson’s ratios Ex;Ey; �x; �y; and G
can be obtained experimentally for naturally orthotropic materials – for example,
from tension or shear tests, as in the case of isotropic materials. The plate rigidities
may be then calculated from Eqs (7.28) and (7.30).

The flexural and torsional rigidities of structurally ortotropic plates are deter-
mined using the following approximate procedure. A structurally orthotropic plate is
reduced to a naturally orthotropic plate with elastic properties equal to the average
properties of components of the original plates [4]. Such a plate is termed an equiva-
lent or transformed orthotropic plate. Subsequently, the rigidities (7.28) and (7.30) of
such an equivalent orthotropic plate are approximated, depending on the type of
structural orthotropy. The suitable formulas for the plate rigidities for some com-
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monly encountered cases of structurally orthotropic plates, shown in Fig. 7.1 [5], are
listed below [4–6,7]:

(a) Plate reinforced by equidistant stiffeners in one direction (the x-direction) (Fig.
7.1a)

Dx ¼ Eh3

12 1� �2� �þ E 0b H3
1 � h3

� �
12t

; Dy ¼ H ¼ Eh3

12 1� �2� � : ðaÞ

(b) Plate reinforced by a set of equidistant ribs in one direction (Fig. 7.1b)

Dx ¼ EI

t
;Dy ¼

Eh3

12 1� b
t þ bh3

tH3
1

� � ; Dxy ¼ 0;Ds �
Ch3

12
þ C

2t
; ðbÞ

where I is the moment of inertia of a T-shaped section corresponding to one spacing
of the rib location about its center axis (shown as shaded in Fig. 7.1c); C is the
torsional rigidity of one rib about its centroidal axis. In Eqs (a), (b), and (c), E and

Fig. 7.1
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E 0 are the elastic moduli of the plating and stiffeners or ribs, respectively; � is
Poisson’s ratio of plating.
(c) Plate reinforced by equidistant stiffeners in two directions (Fig.7.1c)

Dx ¼ Eh3

12 1� �2� �þ E 0b1 H3
1 � h3

� �
12t1

;

Dy ¼
Eh3

12 1� �2� �þ E 0b2 H3
2 � h3

� �
12t2

;H � Eh3

12 1� �2� � ;
ðcÞ

(d) Corrugated plate with a sinusoidal corrugation z ¼ H1 sin
�y
l
(Fig. 7.1d)

Dx ¼ EI ; Dy ¼
l

s

Eh3

12ð1� �2Þ ; Dxy ¼ 0;H ¼ s

l

Eh3

12ð1þ �Þ ðdÞ

where

I ¼ 0:5H2h 1� 0:81

2:5ðH=2lÞ2
� �

is the moment of inertia of one wave of the corrugation, and s ¼ l 1þ �2H2
1=4l

2
� �

is
an unfolded length of the one wave.
(e) Open gridworks ( Fig. 7.1e)

Dx ¼
b1h

3

12t1
; Dy ¼

b2h
3

12t2
; Dxy ffi 0; H ¼ 2Ds ¼

1

2

C1

t1
þ C2

t2

� �
; ðeÞ

where C1 and C2 are the torsional rigidities of the ribs that are parallel to the x and y
axes.
(f) Two-way reinforced concrete slab (Fig. 7.1f)

Dx ¼ Ec

1� �2c
� � h3

12
� Ixs þ

Es

Ec

Ixs

" #
; Dy ¼

Ec

1� �2c
� � h3

12
� Iys þ

Es

Ec

Iys

" #
;

Ds ¼
1� �c

2

ffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
;H ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

DxDy

p
;Dxy ¼ �c

ffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
;

ðfÞ

where Ec; �c are the modulus of elasticity and Poisson’s ratio for concrete, respec-
tively; Es is the modulus of elasticity for steel; and Ixs; Iys are the moments of inertia
of steel bars about the x and y axes, respectively.

Notice when Ex ¼ Ey ¼ E and �x ¼ �y ¼ �, Eqs (7.23), (7.28), and (7.30)
become

G ¼ E

2 1þ �ð Þ ; Dx ¼ Dy ¼ D ¼ Eh3

12 1� �2� � ; Dxy ¼ �D ¼ �
Eh3

12 1� �2� � ;

Ds ¼
Eh3

24 1þ �ð Þ ; H ¼ Dxy þ 2Ds ¼ D ¼ Eh3

12 1� �2� � :
and Eq. (7.31) reduces to that of an isotropic plate, Eq. (2.24), for this particular
case.
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7.2.4 Rectangular naturally and structurally orthotropic plates

The general procedure for the determination of the deflection, bending moments,
and stress components in orthotropic plates is identical with that employed for
isotropic plates. The analytical and numerical methods described earlier in
Chapters 3 and 6 can be used for determining the deflections, stress resultants,
and stress couples.

Example 7.2

A rectangular orthotropic plate with principal directions parallel to the sides is
simply supported on all four edges (see Fig. 3.5) and bends under a normal load
distributed according to some arbitrary law, i.e., p ¼ p x; yð Þ. Determine the deflec-
tion surface for the plate.

Solution

The simply supported boundary conditions are given by Eqs (3.14). We now apply
Navier’s method discussed in Chapter 3 to treat this plate. Introduction of Eqs (3.15)
into (7.31) yields the following:

X1
m¼1

X1
n¼1

wmn

m4�4

a4
Dx þ 2

m2n2�4

a2b2
H þ n4�4

b4
Dy

 !
� pmn

( )
sin

m�x

a
sin

n�y

b
¼ 0:

ðaÞ
Since the above must be valid for all x and y, the terms in the braces must be zero.
We obtain

wmn ¼
pmn

Dx m4�4=a4
� �þ 2H m2n2�4=a2b2

� �þDy n4�4=b4
� � : ðbÞ

Substituting Eqs (b) and (3.17) into Eq. (3.15a), we obtain the expression for the
following deflections:

w ¼ 4

ab

X1
m¼1

X1
n¼1

ða
0

ðb
0

p x; yð Þ sinm�xa sin
n�y
b

dxdy

Dx m4�4=a4
� �þ 2H m2n2�4=a2b2

� �þDy n4�4=b4
� �: ðcÞ

In the particular case of a rectangular plate under a uniformly distributed load
of intensity p0, referring to Sec. 3.3, Eq. (c) is reduced to the following:

w ¼ 16p0
�6

X1
m¼1;3;...

X1
n¼1;3;...

sinm�xa sin
n�y
b

mn Dx m4=a4
� �þ 2H m2n2=a2b2

� �þDy n4=b4
� �� �: ð7:33Þ

For isotropic materials, letting Dx ¼ Dy ¼ Dxy ¼ D, the above equation will coincide
with Eq. (3.21a).

Example 7.3

An infinitely long (in the y direction) plate is reinforced by equidistant stiffeners in the
direction of the x axis located symmetrically about the middle surface. This plate is
modeled by an equivalent orthotropic plate with elastic properties given by Eqs (a) of
Sec. 7.2.3. Assuming that the plate is simply supported on edges x ¼ 0; a and subjected
to a uniform surface load p0 (Fig. 7.2), determine the plate deflection surface.
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Solution

We apply Levy’s method discussed in Sec. 3.5 to treat this splate-strip. The deflection
can be expressed by Eq. (3.40), where the complementary solution wh is given by Eq.
(3.42). Substituting the above into the homogeneous differential equation (7.31)
gives

Dx

m�

a

� �4
fm � 2H

m�

a

� �2d2fm
dy2

þDy

d4fm
dy4

¼ 0: ðaÞ

The solution of this ordinary differential equation is of the following form:

fm ¼ Cesy:

Then

Dx

m�

a

� �4
�2Hs2

m�

a

� �2
þDys

4 ¼ 0: ðbÞ

The roots of this equation are

s1;2 ¼ �m�

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dy

H þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 �DxDy

q� �s
;

s3;4 ¼ �m�

a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Dy

H �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
H2 �DxDy

q� �s
:

ðcÞ

The particular solution can be determined by using the procedure discussed in Sec.
3.5. Taking the distributed load p x; yð Þ in the form of a single Fourier series (3.52),
where pm is given by Eq. (3.53), and for a uniformly distributed load – by Eq. (a) of
Example 3.3:

pm ¼ 4p0
m�

; m ¼ 1; 3; 5; . . . : ðdÞ

Fig. 7.2
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The particular solution is given by Eq. (3.51). Substituting for wp and p from Eqs
(3.51) and (d) into Eq. (7.31), yields the following:

Dx

m�

a

� �2
gm � 2H

m�

a

� �2d2gm
dy2

þDy

d4gm
dy4

¼ pm:

The particular solution of this equation is presented next:

gm ¼ pm
Dx

a

m�

� �4
and

wp ¼
X1

m¼1;3;...

pm
Dx

a

m�

� �4
sin

m�x

a
¼ 4p0
�Dx

a

�

� �4 X1
m¼1;3;...

1

m5
sin

m�x

a

ðeÞ

The general solution w becomes

w ¼
X1

m¼1;3;...

C1me
s1y þ C2me

s2y þ C3me
s3y þ C4me

s4y þ 4p0
�Dx

a

�

� �4 1

m5

� �
sin

m�x

a

ð7:34Þ
As y gets larger, the quantities es1y and es3y tend to approach infinity. Thus, we must
set C1m ¼ C3m ¼ 0 and Eq. (7.34) reduces to the following:

w ¼
X1

m¼1;3;...

C2me
s2y þ C4me

s4y þ 4p0
�Dx

a

�

� �4 1

m5

� �
sin

m�x

a
ð7:35Þ

7.2.5 Circular structurally orthotropic plates

Circular plates with frequently arranged annular ribs (Fig. 7.3a) or with rectangular
corrugation (Fig. 7.3b) can be considered as examples of structurally orthotropic
plates. These plates have a different stiffness in the radial and circumferential direc-
tions. In this case, as mentioned in Sec. 7.2.1, an inhomogeneouty of elastic proper-
ties of the plate in different directions is explained not by material properties, which
are assumed to be isotropic and homogeneous, but the plate structure only. Strictly

Fig. 7.3
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speaking, the flexural rigidity of such plates varies along a radius by some periodical
law: it has one value between ribs while another value along them. However, if the
ribs are arranged sufficiently close to one other, then it can be assumed that the
rigidity in the radial and circumferential directions has some average values, con-
stant or smoothly varying along the radius, and the plates themselves are structurally
orthotropic.

We derive the governing differential equation and general relationships for
structurally orthotropic circular plates in the context of Kirchhoff’s theory. As an
example, consider an axisymmetric bending of a circular plate with annular ribs (Fig.
7.3a). We assume that the state of stress in the annular rib is uniaxial, i.e.,
�z ¼ �r ¼ 0. In deriving this governing equation, we follow the approach discussed
in Sec. 4.8. Let # ¼ �dw=dr be the angle of rotation of the normal to the middle
surface (Fig. 4.17). For axisymmetric deformation of the circular plate and uniaxial
deformation of the rib, the following expressions for the strain and stress compo-
nents can be set up:

For the plate

"r ¼
d#

dr
z; "t ¼

#

r
z;

�r ¼
Ez

1� �2
d#

dr
þ � #

r

� �
; �t ¼

Ez

1� �2
#

r
þ d#

dr

� �
:

ð7:36aÞ

For the rib

"t ¼
#

r
z; �t ¼ Ez

#

r
; ð7:36bÞ

where the subscripts r and t denote the radial and circumferential strain and stress
components, respectively; z is a distance counted from the middle surface.

Integrating the stresses over the plate thickness and over the cross-sectional
area of the rib, we can obtain the bending moments (per unit length) (see Fig. 7.3c) as
follows:

Mr ¼
ðh=2
�h=2

�rzdz ¼ Dr

d#

dr
þ � #

r

� �
;

Mt ¼
ðh=2
�h=2

�tzdzþ
1

l

ð
A

�tzdA ¼ D
#

r
þ � d#

dr

� �
þ EIx

l

#

r
;

ð7:37Þ

or

Mt ¼ Dt

#

r
þ �Dr

d#

dr
; ð7:38Þ

where l is the spacing of the ribs; D ¼ Eh3=12ð1� �2Þ is the flexural rigidity of an
unstiffened plate; Dr ¼ D;Dt ¼ D 1þ EIx=Dlð Þ are transformed rigidities in the
radial and circumferential directions, respectively; and Ix ¼ b h31 � h3

� �
=12 is the

moment of inertia of the area of the rib.
Substituting the expressions for the bending moments, Eqs (7.37) and (7.38),

into the equation of equilibrium of a differential element of a circular axisymmetric
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plate, Eq. (4.83), we obtain, after some simple transformations, the following gov-
erning differential equation:

d2#

dr2
þ 1

r

d#

dr
� 1

r2
Dt

Dr

# ¼ Qr

Dr

: ð7:39Þ

Note that for isotropic plates, letting Dr ¼ Dt ¼ D, Eq. (7.39) coincides with Eq.
(4.89).

A solution of the corresponding homogeneous equation is sought in the fol-
lowing form:

#h ¼ Cr:

Substituting the above into Eq. (7.39) for zero right-hand side results in the following
characteristic equation:

2 ¼ Dt

Dr

; ð7:40Þ

the roots of which are

1 ¼
ffiffiffiffiffiffi
Dt

Dr

s
¼ ; 2 ¼ �

ffiffiffiffiffiffi
Dt

Dr

s
¼ �: ð7:41Þ

Then, the complementary solution, #h, is of the following form:

#h ¼ C1r
 þ C2r

�: ð7:42Þ
The particular solution of Eq. (7.39) depends on the type of loading. If, for example,
a plate is subjected to a uniformly distributed load of intensity p0, then

Qr ¼
p0r

2
;

and Eq. (7.39) takes the form

d2#

dr2
þ 1

r

d#

dr
� 2 1

r2
# ¼ p0

r

2Dr

: ð7:43Þ

The particular solution of this equation is sought in the following form of power
function:

#p ¼ Cr	:

Substitution of the above into Eq. (7.43) leads to

Cr 	�2ð Þð	2 þ 2Þ ¼ p0
r

2Dr

:

This equality must be satisfied for any value of r; thus, the following is determined:

r 	�2ð Þ ¼ r; 	� 2 ¼ 1 and 	 ¼ 3; and C ¼ p0

2Dr 9� 2� � :
Therefore, the particular solution of Eq. (7.39) for the case of a uniform loading is

#p ¼ p0r
3

2Dr 9� 2� � ; ð7:44Þ

and the general solution is of the form
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# ¼ C1r
 þ C2r

� þ pr3

2Dr 9� Dt
Dr

� � : ð7:45Þ

For the corrugated plate shown in Fig. 7.3b, the governing differential equa-
tion is of the same form as Eq. (7.39) but the flexural rigidities will be different –
namely

Dr ¼
Eh3

12 1� �2� � l
s
; Dt ¼

EIx

l 1� �2� � ; ð7:46Þ

where l is the spacing of the corrugation; s is an unfolded length of the middle line of
one corrugation; h is a thickness which is assumed to be constant; and Ix is the
moment of inertia of the cross section of one corrugation about the axis coinciding
with the middle plane. The expressions for the bending moments and stresses in the
corrugated plate have the form

Mr ¼ Dr

d#

dr
; Mt ¼ Dt

#

r
;

�r;max ¼
6Mr

h2
þ �Mtl

Ix
zmax; �t;max ¼

Mtl

Ix
zmax þ �

6Mr

h2
;

ð7:47Þ

where zmax is the largest distance from the plate middle plane.
Analysis of circular plates with radial ribs can also be performed using the

above-mentioned scheme of structural orthotropy (for a sufficiently larger number of
stiffeners). However, this case is more complicated because the distances between
such ribs vary along the plate radius and, therefore, the flexural rigidity is also
variable. In addition, for a one-sided arrangement of ribs, stretching of the plate
middle plane becomes significant and must be taken into account. Many references
are available for orthotropic plate design. An interested reader is referred to other
works [4–6,7].

7.3 THE EFFECT OF TRANSVERSE SHEAR DEFORMATION ON THE
BENDING OF ELASTIC PLATES

7.3.1 Introduction

Kirchhoff’s hypotheses, discussed in Sec. 1.3, permitted the creation of the classical
(Kirchhoff’s) bending theory of thin plates which for more than a century has been
the basis for the calculation and design of structures in various areas of engineering
and has yielded important theoretical and numerical results. However, just as for any
other approximation theory, Kirchhoff’s theory has some obvious drawbacks and
deficiencies, two of which are:

1. A well-known disagreement exists between the order of Eq. (2.24) and the
number of the boundary conditioners on the plate free edge. As a result,
the boundary conditions of the classical theory take into account only
two characteristics on the free edge of the plate rather than three char-
acteristics corresponding to the reality (see Sec. 2.5). Of the two condi-
tions of (2.37), only the first condition (imposed on the bending moment)
has a clear physical interpretation. The reduction of the twisting moment
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to a transverse shear force is not justified in the general case [8,9]. As a
result of the replacement of the transverse shear force QxðQyÞ and twist-
ing moment Mxy by their combination, effective shear force VxðVyÞ, the
self-balanced tangential stresses remain at the free edge of a plate and the
concentrated forces arise at the corner points of a rectangular or poly-
gonal plate when this reduction is used. The role of the latter forces is still
not clear [8,9].

2. Certain formal contradictions take place between the Kirchhoff plate
theory and the three-dimensional equations of elasticity. The most impor-
tant of the above contradictions is associated with Hooke’s law (Eq.
(1.8b)) for the transverse shear stresses �xz and �yz. In fact, the deforma-
tions �xz and �yz are absent according to the hypotheses of the classical
theory. However, the stresses �xz and �yz cannot be equal to zero, as it
would be expected from Eqs. (1.8b), because the shear forces Qx and Qy,
which are resultants of the above-mentioned stresses, are necessary for an
equilibrium of the plate differential element.

Notice that as a result of an inaccuracy of Kirchhoff’s theory, we cannot guarantee
that the stress distribution predicted by this theory will agree well with the actual
stresses in the immediate vicinity of the plate edge. The latter statement acquires a
practical importance of a refinement of the classical plate theory for plate fields
neighboring to a boundary or to openings whose diameter (or another typical dimen-
sion) is not too large compared with the plate thickness.

Numerous researchers have attempted to refine Kirchhoff’s theory and such
attempts continue to this day. E. Reissner made the most important advance in this
direction [10,11]. Reissner’s theory takes into account the influence of the transverse
shear deformation on the deflection of the plate and leads to a sixth-order system of
governing differential equations, and accordingly, to three boundary conditions on
the plate edge. Here it is unnecessary to introduce the effective transverse shear force.
Reissner’s theory is free from the drawbacks of Kirchhoff’s theory discussed above.

The correct interpretation of Reissner’s theory is complicated substantially by
the fact that this theory involves the variational procedure to derive the governing
equations, which was essentially based on the use of Kirchhoff’s theory to approx-
imate the stress distribution over the thickness of the plate. Therefore, another
approach is presented below for obtaining the governing differential equations of
the refined plate bending theory, which takes into account the transverse shear
deformations. According to this approach, the above equations are derived from
the equations of the theory of elasticity and certain physical hypotheses. This
approach was developed by Vasil’ev [12] and we follow the outline given in this
reference.

7.3.2 The governing equations of the refined plate bending theory

Let us introduce again three familiar hypotheses:

1. the straight line normal to the middle plane of the plate does not change
its length and remains rectilinear when the plate is subjected to bending;

2. the transverse normal stress �z is small compared with the stresses �x and
�y; and
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3. the middle plane remains unstrained subsequent to bending.

The only difference between these hypotheses and Kirchhoff’s hypotheses discussed
in Sec. 1.3 is that the former hypotheses do not require the straight line of the plate to
be orthogonal to the bent midsurface of the plate, In this case, the straight line
normal to the midsurface, called also the normal element, acquires three independent
degrees of freedom corresponding to the deflection w x; yð Þ and the angles of rotation
#x and #y which are not related to the deflection w as it has taken place in
Kirchhoff’s theory (see Eqs (2.5)).

It has been shown in Sec. 2.2 that the displacement components over the plate
thickness, according to the above-mentioned hypotheses, obey the following law (see
Eqs (2.3)–(2.5)):

u ¼ �z#x x; yð Þ; v ¼ �z#y x; yð Þ; w ¼ w x; yð Þ: ð7:48Þ
By repeating the derivation of relations (2.13) discussed in Sec. 2.3, we obtain

Mx ¼ �D
@#x
@x

þ � @#y
@y

� �
; My ¼ �D

@#y
@y

þ � @#x
@x

� �
;

Mxy ¼ � 1

2
D 1� �ð Þ @#x

@y
þ @#y
@x

� �
:

ð7:49Þ

Note that if the angles of rotation are related to the deflections by relations of the
type of (2.5), the bending and twisting moment equations (7.49) will coincide with
the relations (2.13) derived for the classical (Kirchhoff’s) theory.

The stresses �x; �y; and �xy are related to the stress resultants Mx;My; and Mxy

by relations (2.11) and the transverse shear forces, Qx and Qy are resultants of the
transverse shear stresses, �xz and �yz (see Eqs (2.12)). As mentioned previously, the
transverse shear forces cannot be obtained directly by integrating Eqs (2.12) in
Kirchhoff’s theory because of the hypotheses (2.1) adapted in this theory.
However, the refined theory makes it possible to obtain Qx and Qy in terms of the
deflection w and the angles of rotation #x and #y by integrating Eqs (2.12).
Substituting for �xz and �yz from Eq. (1.8b) into Eqs (2.12) and using the second
and third relations (1.5b) and (7.48), we obtain the following

Qx ¼ G

ðh=2
�h=2

@u

@z
þ @w
@x

� �
dz ¼ Gh �#x þ

@w

@x

� �
: ð7:50Þ

Thus, within the framework of the theory, one can obtain the transverse shear forces
as the stress resultants of the shear stress �xz and �yz. We have the following:

Qx ¼ Cx; Qy ¼ Cy; ð7:51Þ
where

C ¼ Gh; x ¼ �#x þ
@w

@x
; y ¼ �#y þ

@w

@y
ð7:52Þ

and C describes the shear stiffness of the plate in the planes xz and yz.
Considering the equilibrium of the plate element, as shown in Fig. 2.4, we

obtain Eqs (2.19) and (2.22). Substituting for the stress resultants from the relations
(7.49), (7.51) into Eqs (2.19) and (2.22), we arrive at the system of equations for
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#x; #y; and w. It is possible to simplify this system. To this end, we use Eq. (2.23). By
substituting the moments according Eqs. (7.49) into the above equation, we obtain

Dr2 @#x
@x

þ @#y
@y

� �
� p ¼ 0: ð7:53Þ

Let us introduce the so-called potential function � x; yð Þ of the displacement field in a
plane z ¼ const which satisfies the following relations:

#x ¼ @�

@x
; #y ¼

@�

@y
: ð7:54Þ

Using this function, we can reduce Eq. (7.53) to the form

Dr2r2� ¼ p: ð7:55Þ
Using Eqs (2.22), and substituting there the expressions (7.49) and (7.51) for
moments and forces together with relations (7.54), we obtain

@F�
@x

¼ 0;
@F�
@y

¼ 0; F� ¼
D

C
r2�� �þ w: ð7:56Þ

From the first two Eqs (7.56), it follows that F� ¼ const. The value of this constant is
unessential for the potential function and, hence, can be assumed to be equal to zero
without loss of generality. Then, F� ¼ 0 and we obtain the following from Eq. (7.56):

w ¼ ��D

C
r2�; ð7:57Þ

where the function � is given by Eq. (7.54). This potential is sometimes referred to as
the penetrating potential, because it describes solutions that penetrate into the plate
domain. However, this potential cannot describe completely the bending behavior of
the plate. It does not take into account the rotation of the plate element in its own
plane, which can be described by the so-called stream function  . This function may
be introduced as follows:

#x ¼ � @ 
@y

; #y ¼
@ 

@x
;w ¼ 0: ð7:58Þ

It can be easily verified that the relations (7.58) represent the solution of the homo-
geneous equation (7.53) (i.e., for p ¼ 0).

Substituting the expressions (7.49) for the moments and expressions (7.51) and
(7.52) for the shear forces into Eqs. (2.22) and using Eqs (7.58), we obtain

@F 
@x

¼ 0;
@F 
@y

¼ 0; F ¼ � � k2 ; ð7:59Þ

where

k2 ¼ 2C

D 1� �ð Þ : ð7:60Þ

By repeating the reasoning that led to Eq. (7.57), we arrive at the Helmholtz equa-
tion:

r2 � k2 ¼ 0: ð7:61Þ
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Since the plate bending problem is assumed to be linear, we can use the method of
superposition and represent the angles of rotation of the normal element of the plate
as follows:

#x ¼
@�

@x
� @ 
@y

; #y ¼
@�

@y
þ @ 
@x
; ð7:62Þ

where the functions � and  are defined by Eqs (7.54) and (7.58), respectively.
Equations (7.55) and (7.61) represent the sixth-order system of governing differential
equations of the plate bending theory by taking into account the transverse shear
deformations. This theory is sometimes referred to as the shear or refined plate
theory.

The deflection w is given by Eq. (7.57). Taking into account the relations (7.49)
and (7.62), we can express the bending and twisting moments, as well as shear forces,
in terms of the following functions � and  :

Mx ¼ �D
@2�

@x2
þ � @

2�

@y2
� 1� �ð Þ @

2 

@x@y

" #
;

My ¼ �D
@2�

@y2
þ � @

2�

@x2
þ 1� �ð Þ @

2 

@x@y

" #
;

Mxy ¼ �D 1� �ð Þ @2�

@x@y
þ 1

2

@2 

@x2
� @

2 

@y2

 !" #
; ð7:63Þ

Qx ¼ �D
@

@x
��þ C

@ 

@y
; Qy ¼ �D

@

@y
��þ C

@ 

@x
: ð7:64Þ

As C ! 1 (i.e., the transverse shear deformation is ignored) it follows from Eqs
(7.57) and (7.61) that ¼ 0 andw ¼ � and the resulting systemof Eqs (7.55) and (7.61)
degenerates into the governing differential equation (2.24) of the Kirchhoff theory.

From the above it follows that the effect of the transverse shear strains is
twofold. Consider the second term on the right-hand side of Eq. (7.57). It deter-
mines the effect of the shear strain on the deflection. The asymptotic analysis,
conducted in Ref. [12], showed that the coefficient r2� in Eq. (7.57) contains the
factor of h2=a2, where a is the characteristic length of the plate. Since h2=a2 is a
very small value for thin plates, we can set w ¼ � with a high degree of accuracy.
The second effect of the shear strains is associated with the existence of the
Helmholtz equation (Eq. (7.61)). The key difference between Kirchhoff’s theory
and the refined theory presented is directly related to that equation. It was
established [12,13] that the Helmholtz equation determines the state of stress of
the plate near the plate edge or other perturbation line along which the continuity
of the plate geometry is violated, or in the vicinity of the applied load, etc. It is
known that solutions of this equation vary rapidly only when remote from the
edge. Therefore, the potential  is a function of the boundary layer type, i.e., it
describes solutions that decay with increasing distance from the boundary. It was
established that  decays at a distance equal approximately to two thicknesses
from the boundary. At interior points of the plate domain that are farther than
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2h from the boundary, therefore, the solution is described practically exactly by
the penetrating potential �. This, of course, does not mean that the boundary
layer potential  can be ignored, because it may influence significantly the pene-
trating potential via the boundary conditions.

Let us determine the stress components corresponding to the displacements
(7.48). Repeating the derivation of the stress–moments relations (2.15), it can be
shown that the stresses �x; �y; and �xy are defined by the same relations (2.15) as
in the case for Kirchhoff’s plate bending theory.

Now we can proceed to determining the shear stresses �xz and �yz. If we sub-
stitute for the transverse shear strains �xz and �yz from Eq. (1.5b), together with the
relations (7.48), into the constitutive equations (1.8b) for the transverse shear stres-
ses, we obtain

�xz ¼ G �#x þ
@w

@x

� �
; �yz ¼ G �#y þ

@w

@y

� �
: ð7:65Þ

These stresses do not satisfy the following static boundary conditions

�xz ¼ 0
		
z¼�h

2

; �yz ¼ 0
		
z¼�h

2

ð7:66Þ
because the theory under consideration is based on the displacement approximation
in the form of Eq. (7.48). Note that these relations also do not coincide with the
relations (2.16), which follow from the equilibrium equations. Kirchhoff’s theory is
free from this contradiction because it does not involve the constitutive relations
(1.8b).

Boundary conditions

As mentioned earlier, Eqs (7.55) and (7.61) form a sixth-order system of differential
equations; hence, the corresponding boundary value problem requires three bound-
ary conditions. To be specific, we consider the typical boundary conditions for the
edge x ¼ const:

(a) The edge x ¼ const is perfectly fixed
For this edge the boundary conditions are

u ¼ 0; v ¼ 0; w ¼ 0: ð7:67Þ
Using Eqs (7.48) and (7.62), we can rewrite these boundary conditions in terms of the
functions � and  , as follows

@�

@x
¼ @ 

@y
;

@�

@y
¼ � @ 

@x
; ��D

C
�� ¼ 0: ð7:68Þ

(b) The edge x ¼ const: is free
This type of boundary conditions implies that the stresses �x; �xy; and �xz must
vanish. For the bending problems of thin plates described by the refined theory
presented above, these requirements can be reduced to the following conditions:

Mx ¼ 0; Mxy ¼ 0; Qx ¼ 0: ð7:69Þ
Applying the relations ((7.63) and (7.64), we can rewrite these boundary conditions
in terms of the functions � and  , as follows:
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@2�

@x2
þ � @

2�

@y2
� 1� �ð Þ @

2 

@x@y
¼ 0;

@2�

@x@y
þ 1

2

@2 

@x2
� @

2 

@y2

 !
¼ 0;

D

C

@

@x
��� @ 

@y
¼ 0:

ð7:70Þ

Let us transform the second boundary condition (7.70). Eliminating @2 =@x2 with
the use of (7.61), differentiating with respect to y (along the plate edge), and elim-
inating � with the use of the third condition (7.70), we obtain

@

@x

@2�

@x
þ 2� �ð Þ @

2�

@y2
�D

C
ð1� �Þ @

2

@y2
��

" #
¼ 0: ð7:71Þ

If ¼ 0 andC ! 1, then the third condition (7.71) disappears and the first boundary
condition (7.70) and Eq. (7.70) become equivalent to the conditionsMx ¼ 0 andVx ¼
0 in Kirchhoff’s theory. Note that the condition Vx ¼ 0 is obtained without reduction
of the twisting moment to a force performed in Kirchhoff’s theory (see Sec. 2.4).
(c) The edge x ¼ const is simply supported
The shear plate bending theory allows two types of boundary conditions for a simply
supported edge in contrast to Kirchhoff’s theory:

– The first case corresponds to a plate whose contour is supported by the diaphragms
that are absolutely rigid in their own planes. We then have

w ¼ 0; Mx ¼ 0; #y ¼ 0: ð7:72Þ
Using the relations (7.63), we can represent these conditions in terms of functions �
and  after some transformations, as follows [12]:

� ¼ 0;
@2�

@x2
¼ 0;

@ 

@x
¼ 0: ð7:73Þ

– The second possible case of a simply supported edge corresponds to a plate free-
resting on a supporting contour. The corresponding boundary conditions for this
edge are

w ¼ 0; Mx ¼ 0; Mxy ¼ 0: ð7:74Þ
Again, using Eqs (7.63), we can rewrite these conditions in terms of the following
functions � and  :

��D

C
�� ¼ 0;

@2�

@x2
þ � @

2�

@y2
� 1� �ð Þ @

2 

@x@y
¼ 0;

@2�

@x@y
þ 1

2

@2 

@x2
� @

2 

@y2

 !
¼ 0:

ð7:75Þ

Note that the governing differential equations (7.57) and (7.63) can be obtained from
the following conditions of the minimum for the Lagrange functional:
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U ¼
ð ð

1

2
Mx

@#x
@x

þMy

@#y
@y

þMxy

@#x
@y

þ @#y
@x

� ���

þQxx þQyy

�
� pw

�
dxdy:

ð7:76Þ

7.3.3 Application of the refined theory

In order to illustrate an application of this theory, let us consider the classical
commonly encountered problem: a simply supported rectangular plate with sides a
and b (0 � x � a; 0 � y � bÞ subjected to a uniformly distributed load of intensity p
(see Fig. 3.5). This problem has been analyzed comprehensively by Kirchhoff’s
theory in Sec. 3.3. The deflected surface of the plate was given by Eq. (3.21a). We
have ascertained that the edge supporting reactions (Vx and Vy) did not balance the
given uniform load exerted on the plate (see Example 3.1). Note that the contour
transverse shear forces, Qx and Qy, balance the external load, but according to
Kirchhoff’s theory they cannot be treated as the edge supporting reactions. Thus,
as already discussed in the above example, there will be the concentrated reactions,
S, at each corner to satisfy the equilibrium conditions for the plate as a solid.

Let us now consider the solution of this problem using the shear plate bending
theory discussed above. To satisfy the boundary conditions (7.73), we seek the
solution in the form of the series

� ¼
X
m

X
n

�mn sin �mx sin �ny;  ¼
X
m

X
n

 mn cos �mx cos �ny; ð7:77Þ

where

�m ¼ m�

a
; �n ¼

n�

b
: ð7:78Þ

By substituting the second series into Eq. (7.61), we obtain  mn ¼ 0, i.e.,  ¼ 0.
Inserting the first series into Eqs (7.55) and expanding the surface load pðx; yÞ into
a similar series, we find �mn and then, using relation (7.57), we obtain the following
expression for the plate deflections:

w ¼ 1

D

X
m

X
n

pmn 1þD
C �2m þ �2n
� �h i

�2m þ �2n
� �2 sin �mx sin �ny: ð7:79Þ

For a thin plate, the numerical difference between the solutions (3.21a) and (7.79) is
small, but these solutions are sufficiently different. Unlike Kirchhoff’s theory, in the
shear theory the supporting reactions coincide with the contour transverse shear
forces, Qx and Qy, given by Eqs (7.64); these forces balance the applied uniform
load p exerted on the plate and exclude the existence of any corner forces. As
mentioned earlier, the existence of these corner forces is also not confirmed by the
solution of the three-dimensional theory of elasticity for this problem. Thus,
Kirchhoff’s plate bending theory leads to the edge supporting reactions that differ
significantly from the reactions resulting from the refined plate theory discussed
above.
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Concluding remarks

The refined plate theory presented above is referred to as a first-order shear theory
because it deals with the resultant stresses (the forces and moments). There are a
number of first-order shear theories of plate bending developed by E. Reissner
[10,11], Timoshenko [4], Vasil’ev [12], Green [14], Mindlin [15], etc. All these theories
were constructed in a reasonably correct manner and are reducible to a sixth-order
system of equations which may be different from Eqs (7.55) and (7.61). However, it
is significant that these theories, independently of particular hypotheses on which
they are based, can be reduced to a biharmonic equation similar to Eq. (7.55) and to
the Helmholtz equation of the type of Eq. (7.61). In essence, all these theories differ
from the classical (Kirchhoff’s) theory.

A refined higher-order theory of plates was developed by Reddy [16]. The
distinction between the first- and second-order theories is associated with the accu-
racy of the shear stress-free conditions (7.66) on the plate surfaces �h=2. Reddy’s
theory satisfies the stress-free boundary conditions and accounts for shear rotations
and parabolic variations of the transverse shear stresses.

Concluding our general observations on the influence of shear deformations
on the state of stress in plate bending problems, we can note the following. The
nondimensional analysis shows that the stresses �x; �y; and �xy are of order
pa2=h2, whereas �xz and �yz are of the order pa=h, and �z is of order p; where
a is the characteristic length of the plate. Therefore, for thin plates with the ratio
a=h > 10, the transverse normal �z and shear stresses �xz and �yz are negligible
when compared with the remaining stresses �x; �y; and �xy. Then, as mentioned
earlier, the influence of the transverse shear strains on the deflections is also very
small and can be neglected. Its application gives no practical improvement of
results obtained by Kirchhoff’s theory for thin plates. Thus, for thin isotropic
plates, the refined (shear) plate bending theory is of a fundamental rather than
applied nature. This theory makes it possible to eliminate the contradictions and
drawbacks of the classical (Kirchhoff’s) theory discussed above. In particular, one
of the significant corrections to the classical plate bending theory is associated
with the effective shear forces that appear in this theory as a formal quantity for
matching the number of the natural boundary conditions on a free edge with the
order of the governing differential equation (2.24).

However, the transverse shear strain correction is of considerable importance
for analyzing the state of stress in plate fields adjacent to the boundary or to various
geometrical and load discontinuities (cracks, holes whose diameter is so small as to
be of the order of magnitude of the plate thickness, concentrated load, etc.). Also it
has been observed that the effect of the shear strains is more pronounced in ortho-
tropic plates than in isotropic plates.

7.4 LARGE-DEFLECTION THEORY OF THIN PLATES

7.4.1 General

The Kirchhoff’s linear plate bending theory discussed in earlier chapters, is valid
only for small deflections (w � 0:2h). In this case, the theory gives sufficiently accu-
rate results and lateral loads are carried by a bending action of the plate only. The
linear theory ignores straining of the middle surface of the plate and the correspond-
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ing in-plane stresses are neglected. However, if the magnitude of the lateral deflec-
tions increases beyond a certain level (w � 0:3h), these deflections are accompanied
by stretching of the middle surface. Coincidentally, the load-carrying mechanism of
a plate is changed: the membrane forces produced by such stretching help appreci-
ably in resisting the lateral loads (such a plate is referred to as a flexible plate – see
Sec. 1.1). As the ratio w=h increases, the role of the membrane forces becomes more
pronounced. When the magnitude of the maximum deflection reaches the order of
the plate thickness (w � h), the membrane action becomes comparable to that of
bending. Beyond this (w > h), the membrane action predominates (as mentioned in
Sec. 1.1., such a plate is called a membrane). When constructing the large-deflection
plate bending theory, we use two assumptions: the hypothesis of the straight normals
(assumption 4 of Sec. 1.3) and the hypothesis of an absence of reciprocal pressure of
horizontal layers (assumption 5 of Sec. 1.3). However, the assumption about absence
of membrane deformations of the middle plane (assumption 6 of Sec. 1.3) is dropped.

The large-deflection theory assumes that the deflections w are sufficiently large
(they can be comparable with the plate thickness or larger), but they should remain
small relative to the other dimensions of the plate (except for its thickness). Thus, the
bent (deformed) midsurface of the plate may be considered as a shallow surface due
to the smallness of the w=a ratio, where a is some typical dimension of the plate
middle plane. Moreover, the displacement components u and v that were neglected in
the linear theory are taken into account. But these components will be assumed to be
small compared with deflections, i.e., juj � jwj, jvj � jwj. This assumption is quite
understandable: the deflection w occurs in the direction of the least rigidity, while the
displacements u and v occur in the direction of the largest rigidity of the plate. It is
also assumed that the derivatives of the displacements u and v with respect to the x
and y coordinates are small compared with the values of @w=@x and @w=@y. It should
be also noted that the deflections of the plate are not assumed to be small, compared
with its thickness, but at the same time still sufficiently small to justify an application
of the simplified formulas (2.7) for the plate curvatures. Finally, the large-deflection
theory deals with finite deflections. However, the relative deformations (strains) are
assumed to be small quantities (for instance, in steel structures they are of the order
of 1/1000).

Flexible plates and membranes are widely used in engineering. For example, a
part of a plane skin of an aircraft wing, reinforced by the longitudinal stiffeners
(stringers) and transverse ribs, should be classified as a flexible plate. Flexible plates
also occupy a highly permanent place in shipbuilding. The skin of a ship bottom is
subjected to compression and it also participates in the overall bending of the ship
hull; in addition, the ship’s bottom undergoes a significant water pressure. As a rule,
the deflections of the skin are comparable with its thickness. The theory of flexible
plates can also be applied to the stress analysis of a ship’s deck because for certain
positions of a ship with respect to the crests of waves, the deck is found to be strongly
compressed. Therefore, the stress analysis of such decks requires an application of
the large-deflection theory.

In designing thin-walled beams with high and thin webs in civil engineering
structures, the web should be analyzed as a flexible plate: buckling can occur due to
shear, with formation of inclined bulgings.

Circular flexible plates and membranes are frequently met in instrument-mak-
ing. For example, corrugated membrane plates with initial imperfections are used as
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elastic-sensitive elements of manometric devices. They can undergo significant
deflections.

7.4.2 The rectangular flexible plates

In deriving the governing differential equations for large deflections in rectangular
plates, the Cartesian coordinate system will be used. We consider all the three sets of
equations: equilibrium of a plate element; compatibility conditions; and constitutive
relations.

We begin our analysis with the equilibrium equations. Note that in the large-
deflection force analysis of thin plates, in-plane forces Nx;Ny; and Nxy depend now
not only on external forces applied at the middle plane but also on the stretching of
the middle surface caused by its bending. A fundamental feature of the large-deflec-
tion plate bending problems is that the equations of static equilibrium must be set up
for the deformed (bent) configuration of plates. However, in the case of a shallow
bent surface of the plate, this point is of fundamental importance only for analyzing
the force summation in the z direction. Thus, the assumptions adapted in the large-
deflection theory, and discussed in Sec. 7.4.1, make it possible to employ the equili-
brium equations (3.90) and (3.91) in the force analysis of a plate under transverse
loading, resulting in relatively large elastic deflections.

We are coming now to the analysis of deformations of the middle surface of the
plate caused by its bending. Let us attach the Cartesian fixed coordinate axes x and y
to the middle plane of the plate. Consider three points A x; y; 0ð Þ; B xþ dx; y; 0ð Þ; and
C x; yþ dy;0ð Þ on the undeformed midplane of the plate (Fig. 7.4).

After deformation, the coordinates of these points will be

A1 xþ u; yþ v;wð Þ;B1 xþ dxþ uþ @u

@x
dx; yþ vþ @v

@x
dx;wþ @w

@x
dx

� �
;

C1 xþ uþ @u
@y

dy; yþ vþ @v

@y
dy;wþ @w

@y
dy

� �
;

where u; v; and w are the displacement components of any point of the plate middle
surface along the x; y; and z axes, respectively. Determine the distance between
points A1 and B1:

A1B1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxþ @u

@x
dx

� �2

þ @v

@x
dx

� �2

þ @w

@x
dx

� �2
s

: ðaÞ

Fig. 7.4
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The relative stretching of the line segment AB ¼ dx on the plate middle surface in the
direction of the x axis is

"x ¼ A1B1 � AB

AB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dxþ @u

@xdx
� �2

þ @v
@x dx
� �2

þ @w
@x dx
� �2r

� dx

dx

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

@u

@x
þ @u

@x

� �2

þ @v

@x

� �2

þ @w

@x

� �2
s

� 1:

ðbÞ

Due to the smallness of displacements u and v, one can neglect @u=@xð Þ2 and @v=@xð Þ2
under the radical sign (if w is comparable with the plate thickness, we can assume
that @u=@x and @v=@y has the same order of smallness as the values @w=@xð Þ2 and
@w=@yð Þ2, respectively). Thus, we can rewrite "x as follows:

"x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2

@u

@x
þ @w

@x

� �2
s

� 1; ðcÞ

and after approximately taking the root, we obtain

"x ¼ @u

@x
þ 1

2

@w

@x

� �2

: ð7:80aÞ

Similarly,

"y ¼
@v

@y
þ 1

2

@w

@y

� �2

: ð7:80bÞ

Now we can proceed to determining a shear strain at point A (Fig. 7.4). Let us
introduce the following designations:

S1 is the distance A1B1; S2 is the distance A1C1; S is the distance B1C1:

From the triangle A1B1C1 we obtain

S2 ¼ S2
1 þ S2

2 � 2S1S2 cos 
; ðdÞ
where 
 represents the angle between line segments A1B1 and A1C1. Solving the
above equation for cos
, yields

cos 
 ¼ �S2 � S2
1 � S2

2

2S1S2

: ðeÞ

The distance S1 may be found from Eq. (a), as follows:

S2
1 ¼ 1þ @u

@x

� �2

þ @v

@x

� �2

þ @w

@x

� �2
" #

dx2 ¼ 1þ "xð Þ2dx2:

Similarly, we can determine the following

S2
2 ¼

@u

@x

� �2

þ 1þ @v

@x

� �2

þ @w

@y

� �2
" #

dy2 ¼ 1þ "y
� �2

dy2;

S2 ¼ 1þ @u

@x

� �
dx� @u

@y
dy

� �2
þ @v

@x
dx� 1þ @v

@y

� �
dy

� �2
þ @w

@x
dx� @w

@y
dy

� �2
:
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Substitution of the above into Eq. (e) yields the following:

cos 
 ¼
@u

@y
1� @u

@x

� �
þ @v

@x
1þ @v

@y

� �
þ @w
@x

@w

@y

1þ "xð Þ 1þ "y
� � :

Since the strain components are assumed to be small, we can drop "x and "y com-
pared with unity and the products

@u

@y

@u

@x
;
@v

@x

@v

@y

may also be dropped compared with

@w

@x

@w

@y
:

Finally, we obtain

cos 
 ¼ @u

@y
þ @v

@x
þ @w
@x

@w

@y
:

The shear strain �xy is defined as follows:

�xy ¼
�

2
� 
 � sin

�

2
� 


� �
¼ cos
:

Thus, the shear strain in the plate middle surface is

�xy ¼
@u

@y
þ @v

@x
þ @w
@x

@w

@y
: ð7:81Þ

Finally, the strain components in the plate middle surface are

"x ¼ @u

@x
þ 1

2

@w

@x

� �2

; "y ¼
@v

@y
þ 1

2

@w

@y

� �2

; �xy ¼
@u

@y
þ @v

@x
þ @w
@x

@w

@y
: ð7:82Þ

Eliminating the tangential components of displacements u and v from Eqs (7.82), one
can obtain the following equation of the compatibility of deformations in the middle
surface of the plate:

@2"x
@y2

þ @
2"y

@x2
� @

2�xy
@x@y

¼ @2w

@x@y

 !2

� @
2w

@x2
@2w

@y2
: ð7:83Þ

Consider now the constitutive equations. It should be noted that due to the
adapted assumptions in Sec. 7.4.1, the constitutive relations for the large-deflection
plate analysis are of the same form as for the classical plate theory. In particular, the
strain–membrane force relations, according to Hooke’s law, are of the form

"x ¼ 1

Eh
Nx � �Ny

� �
; "y ¼

1

Eh
Ny � �Nx

� �
; �xy ¼

Nxy

Gh
: ð7:84Þ

Upon substitution of Eqs (7.84) into Eqs (7.83), we derive the following:

1

Eh

@2

@y2
Nx � �Ny

� �þ @2

@x2
Ny � �Nx

� �� 2 1þ �ð Þ @
2Nxy

@x@y

" #
¼ @2w

@x@y

 !2

� @
2w

@x2
@2w

@y2

ð7:85Þ
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Thus, the system of the four equations (Eqs (3.90), (3.91), and (7.85)) is found to be
closed, i.e., it involves the four unknown functions, Nx;Ny;Nxy; and w. However,
this system of four equations can be reduced to the corresponding system of two
equations by introducing a stress function � for in-plane stress components, as
follows:

Nx ¼ @2�

@y2
; Ny ¼

@2�

@x2
; Nxy ¼ � @2�

@x@y
; ð7:86Þ

where � ¼ �h. In doing so, as it can be easily verified, Eqs (3.90) are identically
satisfied. Substituting for � from Eqs (7.86) into Eqs (7.85) and (3.91), we obtain

@4�

@x4
þ 2

@4�

@x2@y2
þ @

4�

@y4
¼ Eh

@2w

@x@y

 !2

� @
2w

@x2
@2w

@y2

2
4

3
5;

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ 1

D

�
pþ @

2�

@y2
@2w

@x2
þ @

2�

@x2
@2w

@y2
�2

@2�

@x@y

@2w

@x@y

�
:

ð7:87Þ

These are the governing differential equations for large deflections of thin plates.
Equations (7.87) are coupled, nonlinear, partial differential equations, each of fourth
order. The first equation can be interpreted as an equilibrium equation, while the
second one is a compatibility equation in terms of the stress function. They were first
introduced in 1910 by von Karman [17].

Once the stress function � and the deflection w have been determined, the in-
plane forces Nx;Ny; and Nxy, as well the bendingMx;My and twisting Mxy moments
can be obtained through the use of Eqs (7.86) and (2.13). The functions � and w
must satisfy not only Eqs (7.87) but also the prescribed boundary conditions. If we
consider a rectangular plate, then two conditions must be imposed on the functions
� and w separately on each side of the plate. In the large-deflection theory of plate
bending, the support conditions (simple support, built-in support, etc.) require some
correction [17]. In particular, for built-in or hinged supports, the boundary condi-
tions mentioned above will be similar to those of shallow shells discussed later in Sec.
17.4.

Unfortunately, where realistic problems are concerned, solving these coupled,
nonlinear, partial differential equations represents a stubborn mathematical task.
The usual numerical procedure is to reduce the nonlinear differential equations
(7.87) to a system of nonlinear algebraic equations using the variational methods,
finite difference methods, or finite element methods. Inasmuch as the analytical
solution of these nonlinear algebraic equations is possible only in the exceptional
cases, an iterative numerical procedures can be used (see Sec. 18.7). Only as a result
of recent progress in the development of various numerical approaches has the large-
deflection analysis of plates been treated satisfactory [17–20].

The governing differential equations (7.87) have been derived assuming that
the material of the plate was isotropic. For plates made of orthotropic material (in
the case when the axes of elastic symmetry coincide with the coordinate axes x and
y), equations analogous to Eqs (7.87) have the following form [3]:

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



1

h
Ay

@4�

@x4
þ 2Axy

@4�

@x2@y2
þ Ax

@4�

@y4

 !
¼ @2w

@x@y

 !2

� @
2w

@x2
@2w

@y2
;

Dx

@4w

@x4
þ 2H

@4w

@x2@y2
þDy

@4w

@y4
¼ pþ @2�

@y2

 
@2w

@x2
� 2

@2�

@x@y

@2w

@x@y

þ @
2�

@x2
@2w

@y2

!
;

ð7:88Þ

where Dx;Dy; and H are given by Eqs (7.28) and (7.30). Ax ¼ 1=Ex;Ay ¼ 1=Ey;Axy

¼ 1=2G� @y=Ey ¼ 1=2G� @x=Ex:
Example 7.4

Consider a rectangular plate subjected to a uniformly distributed load of intensity p
(Fig. 7.5a). The plate is supported along all the edges by diaphragms that are abso-
lutely rigid in their own plane and flexible out of their plane. This corresponds to the
following boundary conditions:

w ¼ 0;
@2w

@x2
¼ 0; Nx ¼ 0; v ¼ 0

					
x¼0;a

: ðaÞ

Similarly, the boundary conditions can be formulated on edges y ¼ 0 and y ¼ b.
Carry out a qualitative bending analysis of the plate.

Solution

The solution of Eqs (7.87) will be sought in the following form:

w ¼
X
m;n

fmn sin
m�x

a
sin

n�y

b
; � ¼

X
i;j

�ij sin
i�x

a
sin

j�y

b
; ð7:89Þ

where fmn and �ij are unknown constants. It can be easily verified that the functions w
and � in the form of (7.89) satisfy the prescribed boundary conditions (a).

We use the Galerkin method (see Sec. 6.5) to determine constants fmn and �ij .
Substitute the expansions (7.89) into Eqs (7.87) and multiply the first equation by
sin ði�x=aÞ sin ðj�y=bÞ and the second one by sin ðm�x=aÞ sin ðn�y=bÞ. Integrating
each of the expressions obtained over the plate area and equating the results to

Fig. 7.5
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zero, we obtain the system of nonlinear algebraic equations for the constants fmn and
�ij.

The numerical procedure is illustrated for the case when only one term is
retained in the expansion (7.89), i.e.,

w ¼ f sin
�x

a
sin
�y

b
; � ¼ � sin

�x

a
sin
�y

b
:

Upon substitution of the above into Eqs (7.87), one obtains

E
ð1Þ
1 ¼ � 1

Eh

�2

a2
þ �

2

b2

 !2

sin
�x

a
sin
�y

b

� f
�4

a2b2
cos2

�x

a
cos2

�y

b
� sin2

�x

a
sin2

�y

b

� �
;

E
ð1Þ
2 ¼ fD

�2

a2
þ �

2

b2

 !2

sin
�x

a
sin
�y

b

� 2f �
�4

a2b2

 !
sin2

�x

a
sin2

�y

b
� cos2

�x

a
cos2

�y

b

� �
� p;

where E
1ð Þ
1 and E

ð1Þ
2 are the first term approximation of the residual error functions of

the first and second equations (7.87), respectively. Applying the Galerkin method
(see Sec. 6.5), multiply E

1ð Þ
1 and E

ð1Þ
2 by sin ð�x=aÞ sin ð�y=bÞ and integrate over the

plate area. We have

�
�2

a2
þ �

2

b2

 !2

þ f 2
16�2Eh

3a2b2
¼ 0;

fD
�2

a2
þ �

2

b2

 !2

� f �
32�2

3a2b2
¼ 16

�2
p:

ð7:90Þ

This system of two equations can be reduced to one equation for the deflection
amplitude f11. For example, if a=b ¼ 1, we have

f

h
þ 128 1� �2� �

3�4
f 3

h3
¼ B; ð7:91Þ

where

B ¼ 4pa4

�6Dh
:

Equation (7.91) enables one to carry out a qualitative large-deflection bending
analysis of the square plate. In order to obtain a more accurate result, it is neces-
sary to retain in the expressions (7.89) a larger number of terms. Figure 7.5b
illustrates the relationship of f =h versus B corresponding to the bending of square
stiff (curve 1) and flexible (curve 2) plates for � ¼ 0:3. A difference of 10% is
already reached for the stiff plate for f =h � 0:5 in this case. The above example
is taken from Ref. [21].
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7.4.3 Axisymmetric bending of circular flexible plates and
membranes

We use the polar coordinate system for the axisymmetric bending analysis of the
flexible circular plates and membranes (see Fig. 4.1). Let u be a radial displacement
of points in the middle surface, and "r and "t are the strain components in the radial
and tangential (i.e., perpendicular to the radial) directions, respectively. In the ana-
lysis of flexible circular plates and membranes subjected to axisymmetric load p we
follow the outline of Ref. [19].

Using the line of reasoning as in Sec. 7.4.2, we can conclude that "r is expressed
by the relation similar to Eq. (7.80a) by replacing the partial derivatives in x with the
ordinary derivatives in r. We have

"r ¼
du

dr
þ 1

2

dw

dr

� �2

: ð7:92aÞ

Since for axisymmetric deformation of circular plates, v ¼ 0 and @kð. . .Þ=@’k ¼ 0
ðk ¼ 1; 2; . . .Þ, the in-plane circumferential (or tangential) strain, "t, can occur as a
result of the radial displacements only. So, if points on an infinitesimal arc length
ds ¼ rd’ displace along the plate radius r by an amount u, then, after deformation,
the arc length becomes (rþ uÞd’ and the corresponding circumferential strain com-
ponent is

"t ¼
ðrþ uÞd’� rd’

rd’
or

"t ¼
u

r
:

ð7:92bÞ

The shear deformation is zero in axisymmetric bending. Substituting u ¼ "tr into Eq.
(7.92a) results in the following compatibility of deformations equation:

d

dr
ðr"tÞ � "r ¼ � 1

2

dw

dr

� �2

: ð7:93Þ

The middle surface curvatures in the radial, �r, and tangential, �t, directions, can be
obtained from Eqs (2.7) using the relations (4.4) and the conditions of axial sym-
metry discussed above. Thus, we have

�r ¼ � d2w

dr2
; �t ¼ � 1

r

dw

dr
: ð7:94aÞ

The twist of the middle surface, �rt ¼ 0.
Let # be the angle of rotation of the normal to the plate middle surface (see Fig.

4.17), introduced by Eq. (4.86). Then, Eqs (7.94a) can be rewritten in terms of the
above angle #, as follows:

�r ¼
d#

dr
; �t ¼

#

r
: ð7:94bÞ

Consider now the state of moments and shear forces on an infinitesimal ele-
ment of the plate, described in polar coordinates and shown in Fig. 7.6a. The x and y
axes are taken in the radial and tangential directions, respectively, in the middle
surface, as shown in Fig. 7.6a.
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The condition that the sum of the x-directed forces equals zero leads to

Nr þ dNrð Þ rþ drð Þd’�Nrrd’� 2Ntdr
d’

2
¼ 0:

Neglecting the high-order terms in the above equation yields

rdNr þNrdr�Ntdr or

d

dr
rNrð Þ �Nt ¼ 0:

ð7:95aÞ

The equilibrium of moments about the x axis is governed by the following equation:

Mr þ dMrð Þ rþ drð Þd’�Mrrd’þQrd’dr� 2Mtdr
d’

2
þ prd’dr

dr

2
¼ 0 :

Omitting the higher-order terms yields

dMr

dr
þMr

r
�Mt

r
¼ �Q: ð7:95bÞ

Fig. 7.6
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To describe equilibrium of the circular plate in the z direction, it is necessary, as we
have seen in Sec. 3.9, to consider the plate in the deflected state. For the forces in Fig.
7.6b, acting on the interior part of the circular plate of radius r, from

P
Fz ¼ 0, we

have

Qð2�rÞ þNrð2�rÞ# ¼;R; ð7:96Þ
where

R ¼
ðr
0

pð2�rÞdr ð7:97Þ

is the resultant of the external distributed load.
Introduce the load function �, as follows:

� ¼ 1

r

R

2�
¼ 1

r

ðr
0

prdr: ð7:98Þ

Then, the shear force, Q; can be found from Eq. (7.96), as follows:

Q ¼ ��Nr#; ð7:99Þ
and the load intensity is given by

p ¼ 1

r

d

dr
ðr�Þ: ð7:100Þ

The in-plane force–strain relations can be obtained by transforming Eqs (7.84) from
Cartesian to polar coordinates. Solving the above equations for the in-plane forces,
we obtain

Nr ¼
Eh

1� �2 "r þ �"tð Þ;Nt ¼
Eh

1� �2 ð"t þ �"rÞ: ð7:101Þ

The bending moment–curvature relations are given by Eqs (4.14).
The equation of equilibrium (7.95a) will be satisfied if one introduces the stress

function � by the following relations:

Nr ¼
1

r

d�

dr
; Nt ¼

d2�

dr2
: ð7:102Þ

Comparing Eqs (7.95b) and (7.99), one finds

dMr

dr
þMr

r
�Mt

r
¼ ��þNr#: ð7:103Þ

Substituting for Mr from the first equation of Eq. (4.14) into Eq. (7.103) and using
Eqs (7.102) and (4.86), we obtain, after some mathematics,

D
d

dr

1

r

d

dr
r
dw

dr

� �� �
¼ �þ 1

r

d�

dr

dw

dr
ð7:104Þ

or in the following form

D
d

dr
r2w
� � ¼ �þ 1

r

d�

dr

dw

dr
; ð7:105Þ
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where

r2w ¼ 1

r

d

dr
r
dw

dr

� �
ð7:106Þ

is the Laplace operator in the polar coordinates for axisymmetric deformation.
Let us express the strain components in terms of the stress function �. We

obtain

"r ¼
1

Eh

1

r

d�

dr
� � d

2�

dr2

 !
; "t ¼

1

Eh

d2�

dr2
� �

r

d�

dr

 !
: ð7:107Þ

Introducing the above relations into the compatibility equation (7.93), one obtains

d3�

dr3
þ 1

r

d2�

dr2
� 1

r2
d�

dr
¼ �Eh

2

dw

dr

� �2

: ð7:108Þ

Applying again the Laplace operator (7.106), we can rewrite the above equation, as
follows:

d

dr
r2�
� � ¼ �Eh

2r

dw

dr

� �2

: ð7:109Þ

Thus, the governing differential equations for an axisymmetrically loaded, flexible
circular plate have the following form

D
d

dr
r2w
� � ¼ �þ 1

r

d�

dr

dw

dr
; ð7:110aÞ

d

dr
r2�
� � ¼ �Eh

2r

dw

dr

� �2

: ð7:110bÞ

For the small-deflection stiff, axisymmetrically loaded circular plates, Eq. (7.110b) is
omitted and Eq. (7.110a) appears in the form

D
d

dr
r2w
� � ¼ �: ð7:111Þ

Differentiating both parts of this equation with respect to r, one obtains Eq. (4.17),
as expected. On the contrary, for an absolutely flexible plate (i.e., membrane), the
term containing D should be neglected and we obtain the following system of differ-
ential equations:

1

r

d�

dr

dw

dr
¼ ��; ð7:112aÞ

d

dr
r2�
� � ¼ �Eh

2r

dw

dr

� �2

: ð7:112bÞ

Let us consider now the boundary conditions for flexible circular plates,
described by Eqs (7.110). If a circular plate is simply supported along edge r ¼ a,
then the boundary conditions are

w ¼ 0jr¼a;
d2w

dr2
þ �

r

dw

dr

 !
¼ 0jr¼a: ð7:113aÞ
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If a circular plate is fixed along edge r ¼ a, then the boundary conditions are of the
form

w ¼ 0jr¼a;
dw

dr
¼ 0jr¼a: ð7:113bÞ

For solid plates having no concentric circular hole, the above boundary conditions
must be complemented by the condition of no slope at the plate center, i.e.,

# ¼ � dw

dr
¼ 0jr¼a: ð7:114Þ

Let us describe the boundary conditions for the stress function �.
In the case when the edge points of the plate cannot displace in the radial

direction, the following condition must be satisfied:

u¼ 0jr¼a: ð7:115Þ
Using the relations (7.92b) and (7.107), one obtains

u

r
¼ Eh

d2�

dr2
� �

r

d�

dr

 !
;

and the boundary conditions (7.115) can be written in the form

d2�

dr2
� �

r

d�

dr

 !
¼ 0

					
r¼a

: ð7:116Þ

If the edge points of the plate are free to displace in the radial direction, then the
corresponding boundary condition is of the form

Nr ¼
1

r

d�

dr
¼ 0

				
r¼a

: ð7:117Þ

The conditions (7.116) and (7.117) must be supplemented by the condition of bound-
edness of the derivative of the stress function, d�=dr, for the entire plate: in parti-
cular, at r ¼ 0. The value of Nr, and hence, �r, should be also bounded. Then, as seen
from the expression (7.102), the following condition must be satisfied:

d�

dr
¼ 0

				
r¼0

: ð7:118Þ

Example 7.5

Consider a flexible circular plate of radius a with clamped edge under a uniform load
p0, as shown in Fig. 4.3a. Find the bending moments and normal stresses.

Solution

Let us approximate the deflected surface of the flexible circular plate with clamped
edge by the expression

w ¼ f 1� r2

a2

 !2

; ðaÞ
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where f is the maximum deflection at the plate center, i.e., at r ¼ 0. Note that this
equation corresponds to the solution of the same problem for stiff circular plates
according to the small-deflection plate bending theory (see Sec. 4.3).

Substituting for w from Eq. (a) into Eq. (7.110b), gives

d

dr
r2�
� � ¼ � 8Ehf 2

a2r

r

a
� r3

a3

 !2

:

Integrating this equation, one obtains

r2� ¼ � 8Ehf 2

a2
r2

2a2
� r4

2a4
þ r6

6a6

 !
þ C1:

Multiplying this equation by r and integrating repeatedly, we obtain

d�

dr
¼ � 2Ehf 2

a

r3

2a3
� r5

3a5
þ r7

12a7

 !
þ C1

r

2
þ C2

1

r
: ðbÞ

The constant C2 ¼ 0 due to the condition (7.118). The constant C1 is evaluated from
boundary conditions on the plate edge. We consider below two types of possible
boundary conditions for function �.

(a) Points of the plate edge are free to displace in the plane of the middle surface
Using the condition (7.117), one finds

C1 ¼
Ehf 2

r2
: ðcÞ

Then, we obtain

d�

dr
¼ Ehf 2

6a
3
r

a
� 6

r3

a3
þ 4

r5

a5
� r7

a7

 !
: ðdÞ

Since p ¼ p0 ¼ const, the function � in (7.98) is shown next:

� ¼ p0r

2
:

On the other hand,

r2w ¼ � 8f

a2
1� 2

r2

a2

 !
:

Hence,

d

dr
r2w
� � ¼ 32fr

a4
: ðeÞ

Let us apply the Galerkin method in the form of the principle of virtual work (see
Sec. 6.5) to solving Eq. (7.110a). In this case, the differential operator of the problem
is of the form

D
d

dr
ðr2wÞ ��� 1

r

d�

dr

dw

dr
:
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It has a sense of bending moments in dimension. Seeking the deflected surface of the
plate in the form of the series

w ¼
XN
i¼1

AiiðrÞ; ðfÞ

we can represent the Galerkin equation (6.39), according to the principle of virtual
work for solving Eq. (7.110a), as follows

ða
0

EðwNÞ
dj
dr

rdr ¼ 0; j ¼ 1; 2; . . . ;N: ðgÞ

Retaining only one term in the expansion (f) and setting according to (a),

1 ¼ 1� r2

a2

 !2

:

Hence, the function Eðw1Þ is equal to

E1ðwÞ ¼ D
32fr

a4
� p0r

2
þ 2

3

Eh

r
f 3

5� 3�

1� �
r

a

�
� 6

r3

a3
þ 4

r5

a5
� r7

a7

!
r

a
� r3

a3

 !
:

Introducing the dimensionless variable

� ¼ r

a
;

and substituting for E and 1 from the above equations into Eq. (g), one obtains

ð1
0

32Df �� 1

2
p0�a

4 þ 2

3

Eh

�
f 3

5� 3�

1� � �� 6�3 þ 4�5 � �7
� �

�� �3� �� �
�d� ¼ 0:

Evaluating this integral, we obtain the following equation:

6

7
�3 þ 16

3ð1� �2Þ � ¼ p; ðhÞ

where

� ¼ f

h
; p ¼ p0

E

a

h

� �4
: ðiÞ

For � ¼ 0:3, the above equation appears in the form

0:857�3 þ 5:862� ¼ p:

Solving this equation, gives �. Having determined �, we can determine the deflec-
tions, bending moments, and normal stresses. The bending moments can be deter-
mined from Eqs (4.14) by substituting for w from Eq. (a). We have

Mr ¼ 4D
f

a2
ð1þ �Þ � ð3þ �Þ�2� �

; ðjÞ

Mt ¼ 4D ð1þ �Þ � ð1þ 3�Þ�2� �
: ðkÞ
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The in-plane normal stresses, �r0 and �t0, are given by

�r0 ¼
Nr

h
¼ 1

hr

d�

dr
; �t0 ¼

Nt

h
¼ 1

h

d2�

dr2
;

or substituting for d�=dr from Eq. (b), and (c), and determining d2�=dr2, we obtain

�r0 ¼
Ef 2

6a2
3� 6�2 þ 4�4 � �6� �

;

�t0 ¼
Ef 2

6a2
3� 18�2 þ 20�4 � 7�6
� �

:

ðlÞ

It is seen from the above equations that, near the plate edge, the tangential stresses
�t0 are compressive.

The bending normal stresses, �rb and �tb, are shown next:

�rb ¼
6Mr

h2
; �tb ¼

6Mt

h2
:

At the plate center, the bending normal stresses are (for � ¼ 0:3Þ
�rb ¼ �tb ¼ 2:86�; ðmÞ

and near the plate edge the above stresses are

�rb ¼ 4:4�; �tb ¼ 1:32�; ðnÞ
where

�rb ¼
�rb
E

a

h

� �2
; �tb ¼

�tb
E

a

h

� �2
: ðoÞ

(b) The edge points are not displaced in the radial direction
From Eq. (7.116), it follows that the constant C1 in Eq. (b) is equal to

C1 ¼
Ehf 2

3a2
5� 3�

1� � ;

from which

d�

dr
¼ Ehf 2

6a

5� 3�

1� � �� 6�3 þ 4�5 � �7
� �

:

In this case of the boundary conditions, the Galerkin equation (6.39) is of the form

ð1
0

32Df �� 1

2
p0�a

4 þ 2

3

Ehf 3

�

5� 3�

1� � �� 6�3 þ 4�5 � �7
� �

ð�� �3Þ
" #

ð�� �3Þ�d� ¼ 0:

Evaluating this integral, yields the following equation:

2

21

23� 9�

1� � �3 þ 16

3ð1� �2Þ � ¼ p; ðpÞ

or for � ¼ 0:3;
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2:762�3 þ 5:862� ¼ p: ðqÞ
The in-plane normal stresses are

�r0 ¼
Ef 2

6a2
5� 3�

1� � � 6�2 þ 4�4 � �6
� �

;

�t0 ¼
Ef 2

6a2
5� 3�

1� � � 18�2 þ 20�4 � 7�6
� �

:

ðrÞ

At the plate center these stresses are

�r0 ¼ �t0 ¼
5� 3�

6ð1� �Þ �
2;

and near the plate edge the in-plane normal stresses are given by

�r0 ¼
1

3ð1� �Þ �
2; �t0 ¼

�

3ð1� �Þ �
2:

The bending normal stresses are determined by the previous equations (m)
and (n).

7.5 MULTILAYERED PLATES

Plates composed of two or more thin bonded layers of isotropic or anisotropic
materials are called multilayered plates. Such plates offer certain advantages over
homogeneous plates. When suitably designed, they combine a moderate weight with
a sufficient strength. Such multilayered plates are used extensively for flight struc-
tures, in plywood laminates, and ‘‘sandwich’’ structural assemblies; each layer may
possess a different thickness orientation of the principal axes, and anisotropic prop-
erties. In formulating the governing differential equations within the frame of the
classical plate bending theory, we assume that the individual layers are isotropic and
that sliding between them is prevented. So, the strain–displacement relations for the
kth layer (Fig. 7.7) can be written as follows:

Fig. 7.7
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" kð Þ
x ¼ �zk

@2w

@x2
; " kð Þ

y ¼ �zk
@2w

@y2
; � kð Þ

xy ¼ �2zk
@2w

@x@y
ð7:119Þ

From Hooke’s law, Eqs (2.9), we obtain

� kð Þ
x ¼ Ek

1� �2k
" kð Þ
x þ �k" kð Þ

y

� �
; � kð Þ

y ¼ Ek

1� � kð Þ
k

" kð Þ
y þ �k" kð Þ

x

� �
;

� kð Þ
xy ¼ Ek

2 1þ �kð Þ �
kð Þ
xy :

ð7:120Þ

Substituting the strains defined by Eqs (7.119) into the above, integrating over each
layer and summing the results, we obtain the following bending and twisting
moments:

Mx

My

Mxy

8><
>:

9>=
>; ¼

X
k

ðzk
zk�1

�x

�y

�xy

8><
>:

9>=
>;

kð Þ

zdz: ð7:121Þ

The stress components defined in the kth layer can be calculated from

� kð Þ
x ¼ �zk

Ek

1� �2k
@2w

@x2
þ �k

@2w

@y2

 !
; � kð Þ

y ¼ �zk
Ek

1� �2k
@2w

@y2
þ �k

@2w

@x2

 !
;

� kð Þ
xy ¼ �zk

Ek

1þ �k
@2w

@x@y
:

ð7:122Þ
The governing differential equation for multilayered plates can be derived similarly,
as described in Sec. 2.4. This equation will be similar to that for homogeneous plates,
but replacing the rigidity D by the so-called transformed rigidity, Dt, of the multi-
layered plates, as follows [22,23]:

Dtr2r2w x; yð Þ ¼ p x; yð Þ; ð7:123Þ
where Dt is given by Pister and Dong in the form [22]

Dt ¼
AC � B2

A
; ð7:124Þ

and the constants A;B; and C are given by

A ¼
X
k

Ek

1� �2k
zk � zk�1ð Þ;B ¼

X
k

Ek

1� �2k
z2k � z2k�1

2

 !
;

C ¼
X
k

Ek

1� �2k
z3k � z3k�1

3

 !
:

ð7:125Þ

The deflected surface of the multilayered plates can be determined by the same
analytical and numerical methods as those discussed for homogeneous plates in
Chapters 3, 4, and 6.
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If multilayered plates are composed from 2nþ 1 symmetrical isotropic layers,
about the midplane then the transformed flexural rigidity Dt and Poisson’s ratio �t
can be determined from [21]

Dt ¼
2

3

Xn
k¼1

Ek

1� �2k
h3k � h3kþ1

� �þ Enþ1h
3
nþ1

1� �2nþ1

" #
;

�t ¼
2

3Dt

Xn
k¼1

Ek�k
1� �2k

h3k � h3kþ1

� �þ Enþ1�nþ1h
3
nþ1

1� �2nþ1

" #
:

ð7:126Þ

Lekhnitskii [3] and Ambartsumyan [23] gave similar expressions for multilayered
orthotropic plates.

7.6 SANDWICH PLATES

Sandwich plates are frequently used in aerospace structures, shipbuilding, building
structures, etc. There are many varieties of sandwich construction, but the basic
notion is to separate two thin flat sheets (skins or faces) of strong material (metal
or fiber composite) by a core material that is lightweight and comparatively weak.
The latter is a hardened foam or has a honeycomb or corrugated construction.

Figure 7.8 shows a rectangular sandwich plate of dimensions a	 b. The middle
plane of the plate lies in the xy plane. The faces are each of thickness t and the core is
of thickness c. The small-deflection theory of the sandwich plates was first developed
by Libove and Batdorf [24]. The difference between the sandwich and classical plate
bending theories is the low transverse shear stiffness of the core, which can no longer
be neglected and must be included in all sandwich calculations.

Following Libove and Batdorf [24], we present below the small-deflection plate
bending theory. It is based on the following assumptions:

(a) The faces are made from different orthotropic materials and they are
assumed to be thin in comparison with the thickness of the core, i.e.,
t � c. Thus, the flexural rigidity of the faces can be neglected.

(b) The faces carry all the bending and twisting moments. The core makes no
contribution to the bending stiffness of the sandwich plate.

(c) The core may also be orthotropic. The material of the core is assumed to
be absolutely rigid in the direction perpendicular to the middle surface of

Fig. 7.8
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the plate and quite compliant in the tangential direction. Therefore, only
the transverse shear stresses �xz and �yz arise in the core material. They are
nearly uniform throughout the thickness of the core.

(d) The x and y axes are the principal axes of orthotropy.
(e) A general small-deflection theory for flat orthotropic plates, in which

deflections due to shear are taken into account, is applied to the sandwich
plate. It is assumed that the sandwich behaves essentially as a plate,
provided certain physical constants serve to describe the sandwich plate
flexural behavior and they may be regarded as the fundamental properties
of the plate.

These constants are:
– flexural and twisting stiffnesses, Dx, Dy, and Dxy:

Dx ¼ � Mx

@2w=@x2
; Dy ¼ � My

@2w=@y2
; Dxy �

Mxy

@2w=@x@y
:

– the two transverse stiffnesses, DQx and DQy:

DQx ¼ Qx

�xz
; DQy ¼

Qy

�yz
: ð7:127Þ

– the two Poisson’s ratios, �x and �y:

�x ¼
@2w=@y2

@2w=@x2
; �y ¼ � @

2w=@x2

@2w=@y2
:

The four constants, Dx;Dy; �x; and �y are not independent of each other. If three of
them are known, the fourth can be determined from the following relation:

�xDy ¼ �yDx;

which can be derived from Betti’s reciprocal theorem [4]. For simpler types of
sandwich construction the physical constants can be evaluated theoretically from
the geometry and physical properties of the material used. For more complicated
types of construction, these constants can be evaluated experimentally only. In the
general case of the orthotropic faces and core, the expressions for the rigidities
introduced above are presented for some practically important cases in Refs [26,27].

Let w be the deflection of the middle surface of the sandwich plate; the stress
resultants and stress couples are also associated with the plate middle surface. We
apply the same sign convention for the bending moments, and shear and in-plane
forces as for homogeneous plates in Chapter 2. The deflection of the sandwich plates
is produced by bending in the faces and by shear in the core. Thus, the curvatures in
the xz and yz directions are made up of the components that are due to the bending
moments, Mx and My, and that are due to the variation of the shear forces, Qx and
Qy. The differential equations for the bending curvatures @2w=@x2 can be represented
in the form

@2w

@x2
¼ �Mx

Dx

þ �y
My

Dy

þ 1

DQx

@Qx

@x
;

@2w

@y2
¼ �x

Mx

Dx

�My

Dy

þ 1

DQy

@Qy

@y
: ð7:128aÞ
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The twist, @2w=@x@y, is also made up of the components due to the twisting moment,
Mxy, and that due to the variation of the shear forces, Qx and Qy. The differential
equation of the twist curvature is given by

@2w

@x@y
¼ �Mxy

Dxy

þ 1

2

1

DQx

@Qx

@y
þ 1

2

1

DQy

@Qy

@x
: ð7:128bÞ

It is convenient to invert Eqs (7.128) as follows:

Mx ¼ �D
x

@

@x

@w

@x
� Qx

DQx

� �
þ �y

@

@y

@w

@y
� Qy

DQy

 !" #
;

My ¼ �D
y

@

@y

@w

@y
� Qy

DQy

 !
þ �x

@

@x

@w

@x
� Qx

DQx

� �" #
;

Mxy ¼ �Dxy

2

@

@x

@w

@y
� Qy

DQy

 !
þ @

@y

@w

@x
� Qx

DQX

� �" #
;

ð7:129Þ

where

D
x ¼

Dx

1� �x�y
; D

y ¼
Dy

1� �x�y
: ð7:130Þ

Substituting the relations (7.129) into the equilibrium equations, Eqs (2.19)–(2.22),
one finds

ðDxy þ �yD
xÞ
@3w

@x@y2
þD

x

@3w

@x3
¼ D

x

DQx

@2Qx

@x2
þ 1

2

Dxy

DQx

@2Qx

@y2

þ 1

2

Dxy

DQy

þ �yD

x

DQy

 !
@2Qy

@x@y
�Qx; ð7:131aÞ

Dxy þ �xD
y

� � @3w
@x2@y

þD
y

@3w

@y3
¼ D

y

DQy

@2Qy

@y2
þ 1

2

Dxy

DQy

@2Qy

@x2

þ 1

2

Dxy

DQx

þ �xD

y

DQx

� �
@2Qx

@x@y
�Qy; ð7:131bÞ

@Qx

@x
þ @Qy

@y
¼ �p: ð7:131cÞ

This is the system of the governing differential equations in w;Qx; and Qy for the
small-deflection theory of sandwich plate bending problems based on the assumptions
introduced earlier.

Assuming general values for the middle surface deflection w and the shear
forces Qx and Qy, which satisfy Eqs (7.131) and the relevant boundary conditions,
it is possible to solve a number of bending problems of sandwich plates. The bound-
ary conditions on the edges of the sandwich plate should be consistent with Eqs
(7.131). We present below a simplified variant of the boundary conditions: namely,
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(a) Simply supported edge (y ¼ const) in which all points in the boundary are pre-
vented from moving parallel to the edge.

w ¼ 0; My ¼ 0;
Qx

DQx

¼ 0: ð7:132aÞ

(b) Free edge (y ¼ constÞ
My ¼ 0; Mxy ¼ 0; Qy ¼ 0: ð7:132bÞ

(c) Clamped edge (y ¼ const) in which the points in the boundary are prevented from
moving parallel to the edge.

w ¼ 0;
Qx

DQx

¼ 0;
@w

@y
� Qy

DQy

¼ 0: ð7:132cÞ

Similarly, the boundary conditions may be formulated on edges x ¼ const.
Let us consider a special case of the sandwich plate having isotropic faces of

equal thicknesses and an isotropic non-direct stress-carrying core. For this special case,
assuming that t � c, we have

D
x ¼ D

y ¼ Ds ¼
Ef td

2

2ð1� �2f Þ
; �x ¼ �y ¼ �f ;

DQx
¼ DQy

¼ DQ ¼ Gc

d2

c
; Dxy ¼ Dsð1� �f Þ;

ð7:133Þ

where Ef and �f are the modulus of elasticity and Poisson’s ratio, respectively, of
isotropic sandwich plate faces; Gc is the modulus of rigidity of the isotropic core; d ¼
cþ t is the distance between the centerlines of the faces; Ds and DQ are the flexural
and transverse shear stiffnesses of the isotropic sandwich plate.

For this special case, the system of the three governing differential equations
(7.131) can be reduced to a single equation. In fact, the equations of equilibrium (Eqs
(2.19)–(2.22)) are reduced to Eq. (2.23). Substituting for Mx;My; and Mxy from Eqs
(7.129) into Eq. (2.23) and taking into account the relations (7.133), one obtains

Dsr2r2w� Ds

DQ

@3Qx

@x3
þ @

3Qy

@y3
þ @3Qx

@x@y2
þ @3Qy

@x2@y

 !
¼ p: ð7:134Þ

It can be easily verified that the following equality takes place:

@3Qx

@x3
þ @

3Qy

@y3
þ @3Qx

@x@y2
þ @3Qy

@x2@y
¼ r2 @Qx

@x
þ @Qy

@y

� �
¼ �r2p:

Thus, Eq. (7.134) finally can be rewritten in the following form:

Dsr2r2w ¼ 1� Ds

DQ

r2

� �
p: ð7:135Þ

This is the governing differential equation of the isotropic sandwich plate. In the limit-
ing case when Gc ! 1, Eq. (7.135) is reduced to the governing differential equation
of isotropic homogeneous plate bending, Eq. (2.24) with the flexural stiffness Ds, i.e.,
with the stiffness of the composed section consisting of the two layers of thickness t
each and separated by a distance c. In another limiting case when Gc ! 0, Eq.
(7.135) is reduced to the corresponding equation for the separated faces.

Here only basic concepts have been given of the theory of sandwich plates. The
interested reader is referred to Refs [24–28].
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PROBLEMS

7.1 Calculate the maximum deflection and maximum moments in Example 7.1 of Sec. 7.1.

Take m ¼ n ¼ 1, T ¼ T0z=h; b ¼ 2a; � ¼ 0:3:
7.2 Redo Problem 7.1 for the temperature field given by T ¼ T0 2z=hð Þ.
7.3 With reference to Eqs. (7.8), derive the additional potential energy for the thermal

bending and thermal stretching into the total potential energy of the plate (Eq.

(2.60)).

7.4 Consider a built-in edge, rectangular plate (�a=2 � x � a=2, �b=2 � y � b=2) under a
transverse temperature field T ¼ T0 z2=h

� �
. Find the expression for the deflection sur-

face of the plate. Use the Ritz method and results of the Problem 7.3. Assume that w is

given by

w ¼ 1

4
w0 1þ cos

2�x

a

� �
1þ cos

2�y

b

� �
:

7.5 A simply supported plate with sides a ¼ 35 in: and b ¼ 45 in: and having a thickness of

3 in. is heated from both top and bottom such that, at a certain time, three thermo-

couples read Tðþh=2Þ ¼ 350
F; Tð0Þ ¼ 100
F, and Tð�h=2Þ ¼ 350
F. If the stress-free
temperature is 80
F, calculate the maximum deflection of the plate. Retain only one

term (m ¼ n ¼ 1Þ in the series solution. Assume that the plate is made of aluminum

with the following mechanical parameters: Eal ¼ 10	 106 psi, 	al ¼ 10	 10�6in:=in:
F
; and � ¼ 0:3.

7.6 Verify Eq. (7.32).

7.7 A rectangular, simply supported plate with sides a and b (b ¼ 1:5aÞ is reinforced by

single equidistant stiffeners (Fig. 7.1a). Compute the maximum deflection, wmax. The

plate and stiffeners are made of steel with E ¼ 200GPa; � ¼ 0:3. Take a ¼ 1280mm;
t ¼ 180mm; h ¼ 40mm; and H1 ¼ 80mm.

7.8 Determine the rigidities of a steel bridge deck that may be approximated as a steel plate

reinforced by a set of equidistant ribs in one direction (Fig. 7.1b). Take h ¼ 12 mm,

H1 ¼ 36 mm, t ¼ 120 mm, E ¼ 210 GPa, � ¼ 0:3, and the torsional rigidity of one rib

is C ¼ JG ¼ 0:246b3ðH1 � hÞG.
7.9 A rectangular, simply supported building floor slab with sides a and b is made of

reinforced concrete. It is subjected to a uniformly distributed load of intensity p0.

Determine the expressions for (a) the deflection surface and (b) the bending moments.

Take b ¼ 2a, m ¼ n ¼ 1, t1 ¼ a=10, t2 ¼ a=8, h ¼ a=15, d2 ¼ d1 ¼ h=10,
Ec ¼ 21:4GPa, �c ¼ 0:15, Es ¼ 200 GPa, �s ¼ 0:28.

7.10 Find the maximum stresses in a simply supported rectangular plate with sides a and b.

The plate is subjected to a uniformly applied load of intensity p0. It is constructed of a

alumina/epoxy laminate with Ex ¼ 33; 000 ksi; Ey ¼ 3000 ksi; G ¼ 1000 ksi; �x ¼ 0:28,
and �y ¼ 0:3. Let a ¼ 35 in:; b ¼ 20 in:; and h ¼ 0:20 in: Compare the result with that

of an equivalent isotropic plate of E ¼ 17400 ksi and � ¼ 0:35:
7.11 An infinitely long plate of Example 7.3 of Sec. 7.2 is reinforced by a set of equidistant

ribs in the x direction (Fig. 7.1b). The plate is subjected to a uniformly distributed load

of intensity p0. Determine the deflections and bending moments in the plate if a ¼
12 ft:; t ¼ 12 in:; h ¼ 0:2 in:; H1 ¼ 2:5 in:; and b ¼ 1:5 in: Assume that the plate and

ribs are made of the same material with E ¼ 30,000 ksi and � ¼ 0:3. Retain only one

term in the series solution.

7.12 Verify Eq. (7.39).

7.13 Determine the particular solution of Eq. (7.39) for an orthotropic circular plate sub-

jected to a concentrated force P applied at its center.

7.14 A circular, simply supported plate of radius R is reinforced by equidistant annular ribs

(Fig. 7.3a). The plate is subjected to a uniform load p0. Determine the maximum

allowable value of p0 if wmax ¼ 0:2 in. Take R ¼ 10 ft; h ¼ 1 in:; t ¼ 10 in:; b ¼ 4 in:;
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and h1 ¼ 6 in: Assume that the plate and ribs are made of the same material with E ¼
29,000 ksi and � ¼ 0:29.

7.15 Verify Eqs (7.55) and (7.56).

7.16 Verify the boundary conditions for the free edge given by Eqs (7.70).

7.17 Solve the problem of Example 3.1 within the framework of the refined (shear) plate

bending theory. Determine the deflection surface w and the bending moments Mx and

My. Check the overall equilibrium of the plate.

7.18 Verify Eq. (7.87).

7.19 Transform Eqs (7.86) to plane polar coordinates r and ’. Show that in this case

Nr ¼
1

r

@�

@r
þ 1

r2
@2�

@’2
; Nt ¼

@2�

@r2
; Nrt ¼ � @

@r

1

r

@�

@’

� �
; and ðP7:1Þ

r2r2� ¼ � 1

2
EhLðw;wÞ;

r2r2w ¼ 1

D
pþ Lðw;�Þ½ �; ðP7:2Þ

where

Lðw;�Þ ¼ @2w

@r2
1

r

@�

@r
þ 1

r2
@2�

@’2

 !
þ 1

r

@w

@r
þ 1

r2
@2w

@’2

 !
@2�

@r2

� 2
@

@r

1

r

@�

@’

� �
@

@r

1

r

@w

@’

� � ðP:7:3Þ

and Lðw;wÞ is obtained by replacing � with w in the above equation.

7.20 Consider a rectangular isotropic, sandwich plate shown in Fig. 7.8. Following

Plantema [28], introduce wb and ws as follows

w ¼ wb þ ws; �xz ¼
@ws

@x
; �yz ¼

@ws

@y
; ðP:7:4Þ

where wb and ws are the deflections of the above plate due to bending and shear,

respectively. Show that Eqs (7.127), (7.129), and (7.135) will be transformed in terms

of the partial deflections to the following relations and equations

Mx ¼ �Ds

@2wb

@x2
þ � @

2wb

@y2

 !
; My ¼ �Ds

@2wb

@y2
þ � @

2wb

@x2

 !
;

Mxy ¼ �Dsð1� �Þ
@2wb

@x@y
;

Qx ¼ DQ

@ws

@x
; Qy ¼ DQ

@ws

@y
; ðP7:5Þ

r2r2wb ¼
1

Ds

pðx; yÞ: ðP7:6Þ

Verify also that the relationship between the partial deflections is of the form

ws ¼ � Ds

DQ

r2wb þ C; ðP7:7Þ

where C is an arbitrary integration constant which is to be determined from boundary

conditions prescribed for ws on the plate edges (see [27] for more detail). For a ver-

ification of Eq. (P7.7), use Eqs (2.22) together with Eqs (P7.2).
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8

Buckling of Plates

8.1 INTRODUCTION

Thin plates of various shapes used in naval and aeronautical structures are often
subjected to normal compressive and shearing loads acting in the middle plane of the
plate (in-plane loads). Under certain conditions such loads can result in a plate
buckling. Buckling or elastic instability of plates is of great practical importance.
The buckling load depends on the plate thickness: the thinner the plate, the lower is
the buckling load. In many cases, a failure of thin plate elements may be attributed
to an elastic instability and not to the lack of their strength. Therefore, plate buck-
ling analysis presents an integral part of the general analysis of a structure.

In this chapter, we consider a systematic but simplified analysis of plate buck-
ling and obtain some useful relations between the critical loads and plate parameters.

8.2 GENERAL POSTULATIONS OF THE THEORY OF STABILITY OF
PLATES

This section contains some fundamentals of classical stability analysis of thin elastic
plates. It should be noted that the stability analysis of plates is qualitatively similar
to the Euler stability analysis of columns [1].

Consider an ideal thin, elastic plate which is assumed initially to be perfectly
flat and subjected to external in-plane compressive and shear loads acting strictly in
the middle plane of the plate. The resulting deformations of this plate are character-
ized by the absence of deflections (u 6¼ 0; v 6¼ 0; and w ¼ 0) and, consequently, of the
bending and twisting moments, as well as the transverse shear forces. Such a plane
stress condition of the plate is referred to as an initial or flat configuration of equili-
brium, assuming the equilibrium conditions between applied external loads and the
corresponding in-plane stress resultants.
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Depending mainly on values of the applied in-plane loads, an initial, flat
configuration of a plate equilibrium may be stable or unstable. The initial config-
uration of elastic equilibrium is stable, if when the plate is displaced from this
equilibrium state by an infinitesimal disturbance, say a small lateral force, the
deflected plate will tend to come back to its initial, flat configuration when the
disturbance is removed. The initial configuration of equilibrium is said to be
unstable if, when the plate is displaced from this equilibrium position by a small
lateral load, it will tend to displace still further when the load is removed. The
unstable plate will find other (new) equilibrium state(s), which may be in the
vicinity of the initial state or may be far away from the initial equilibrium config-
uration. If the plate remains at the displaced position even after the small lateral
load is removed, it is said to be in neutral equilibrium; thus, the plate in neutral
equilibrium is neither stable nor unstable.

The transition of the plate from the stable state of equilibrium to the unstable
one is referred to as buckling or structural instability. The smallest value of the load
producing buckling is called the critical or buckling load.

The importance of buckling is the initiation of a deflection pattern, which if the
loads are further increased above their critical values, rapidly leads to very large
lateral deflections. Consequently, it leads to large bending stresses, and eventually to
complete failure of the plate.

It is important to note that a plate leading from the stable to unstable config-
uration of equilibrium always passes through the neutral state of equilibrium, which
thus can be considered as a bordering state between the stable and unstable config-
urations. In the mathematical formulation of elastic stability problems, neutral equi-
librium is associated with the existence of bifurcation of the deformations. According
to this formulation, the critical load can be identified with the load corresponding to
the bifurcation of the equilibrium states, or in other words, the critical load is the
smallest load at which both the flat equilibrium configuration of the plate and slightly
deflected configuration are possible.

The goal of the buckling analysis of plates is to determine the critical buckling
loads and the corresponding buckled configuration of equilibrium. We consider
below the linear buckling analysis of plates based on the following assumptions:

(a) Prior to loading, a plate is ideally flat and all the applied external loads
act strictly in the middle plane of the plate.

(b) States of stress is described by equations of the linear plane elasticity. Any
changes in the plate dimensions are neglected prior to buckling.

(c) All the loads applied to the plate are dead loads; that is, they are not
changed either in magnitude or in direction when the plate deforms.

(d) The plate bending is described by Kirchhoff’s plate bending theory dis-
cussed in Chapter 2.

The linear buckling analysis of plates based on these assumptions makes it possible
to determine accurately the critical loads, which are of practical importance in the
stability analysis of thin plates. However, this analysis gives no way of describing the
behavior of plates after buckling, which is also of considerable interest. The post-
buckling analysis of plates is usually difficult because it is basically a nonlinear
problem. Some postbuckling plate problems will be discussed in Sec. 8.5. Classical
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buckling problems of plates can be formulated using (1) the equilibrium method, (2)
the energy method, and (3) the dynamic method.

The equilibrium method

Consider an initial state of equilibrium of a plate subjected to the external edge loads
acting in the middle plane of the plate. Let the corresponding in-plane stress resul-
tants in this initial state be Nx;Ny; and Nxy. They may be found from the solution of
the plane stress problem for the given plate geometry and in-plane external loading.
However, for a complex plate geometry and complex in-plane load configurations,
such a problem may involve sufficient difficulties. We confine the bucking analysis in
this chapter by considering such load configurations and plate geometry, when
determining the above-mentioned in-plane resultants presents no difficulties, and
they can be directly expressed via the given external forces. Note that such problems
are of a practical importance. Next, assume that for certain values of the external
forces, the plate has buckled slightly. We formulate the differential equation of
equilibrium for this neighboring state assuming that the latter represents a slightly
bent configuration of equilibrium. For the plate, the in-plane external edge loads that
result in an elastic instability as in the case of a beam column, are independent of the
lateral loads. Thus, the governing differential equation of the linear buckling analysis
of plates is obtained from Eq. (3.92) by making p equal zero. We have the following:

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
¼ 1

D
Nx

@2w

@x2
þ 2Nxy

@2w

@x@y
þNy

@2w

@y2

 !
; ð8:1Þ

where Nx;Ny; and Nxy are the internal forces acting in the middle surface of the plate
due to the applied in-plane loading. The right-hand side of Eq. (8.1) can be inter-
preted as some fictitious, transverse surface load, pf , created by the normal projec-
tions of the in-plane internal forces acting in the slightly curved configuration of the
plate.

Equation (8.1) is a homogeneous, partial differential equation. The mathema-
tical problem is to solve this equation with appropriate homogeneous boundary
conditions. In general, such a problem has only a trivial solution corresponding to
the initial, flat configuration of equilibrium (i.e., w ¼ 0). However, the coefficients of
the governing equation depend on the magnitudes of the stress resultants, which are,
in turn, connected with the applied in-plane external forces, and we can find values of
these loads for which a nontrivial solution is possible. The smallest value of these
loads will correspond to a critical load.

A more general formulation of the equilibrium method transforms the stability
problem into an eigenvalue problem. For this purpose, we multiply a reference value
of the stress resultants ( �NNx; �NNy; and �NNxy) by a load parameter �, i.e.,

Nx ¼ �� �NNx; Ny ¼ �� �NNy;Nxy ¼ �� �NNxy: ð8:2Þ
Substituting Eqs (8.2) into Eq. (8.1), we obtain an alternative form of the governing
differential equation of plate buckling problems:

r4wþ �

D
�NNx

@2w

@x2
þ �NNy

@2w

@y2
þ 2 �NNxy

@2w

@x@y

 !
¼ 0: ð8:3Þ
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The solution of Eq. (8.3), w x; yð Þ, obtained by some analytical or numerical
methods, introduced in Chapters 3 and 6, involves arbitrary constant coefficients Ci

i ¼ 1; 2; . . . ; nð Þ to be determined from the prescribed boundary conditions.
Consequently, Eq. (8.3) is reduced to a system of homogeneous, linear algebraic
equations in Ci. For an existence of a nontrivial solution of the system, its determi-
nant must be equal to zero. This results in the so-called characteristic equation in �.
Solving this characteristic equation, we obtain some specific values �1; �2; . . . ; �n (the
characteristic numbers or eigenvalues) and the corresponding nonzero solutions,
called characteristic functions or eigenfunctions. The smallest of the characteristic
numbers or eigenvalues not equal to zero will be the critical value, �cr, and the
corresponding eigenfunctions will be the buckling modes. Then, the critical load is
calculated by multiplying �cr and the corresponding reference value of the load.

The energy method

The energy method is based on the general theorems and principles of the equili-
brium of mechanical systems discussed in Sec. 2.6. As mentioned in Sec. 2.6, the
potential energy of a system has an extremum at equilibrium. Based on this state-
ment, we can reformulate the concepts of stability and instability presented earlier.
The equilibrium will be stable if the potential energy in that state has a minimum
value in comparison with values corresponding to any possible states close to the
state of equilibrium, unstable if the potential energy is a maximum, and neutral if the
potential energy in the equilibrium state is neither a maximum nor a minimum.

Let us apply this potential energy criterion to the buckling analysis of plates.
Two states of the plate are considered: an initial state of equilibrium under the given
in-plane edge loads, in which the middle surface remains flat; a neighboring state, in
which the middle surface is slightly curved due to small virtual displacements applied
to the plate. Let �0 and � be the potential energies in the flat and neighboring states
of equilibrium, respectively. The equilibrium will be stable if for all possible small
deflections �0 < �; unstable if �0 > �, and neutral if �0 ¼ �.

The increment in the total potential energy of the plate loaded by the edge in-
plane external loads, after the transition of this plate from an initial configuration of
equilibrium to the above-mentioned neighboring configuration of equilibrium is
given by the following relationship:

�� ¼ ���0 ¼ �U0 þUb þ���; ð8:4Þ
where �U0 is the increment of the strain energy of the plate middle surface in
buckling; Ub is the strain energy of bending and twisting of the plate; and ��� is
the increment in the potential of the in-plane external edge forces applied to the
plate. Bifurcation of an initial configuration of equilibrium (corresponding to the
neutral equilibrium) occurs when

�� ¼ 0: ð8:5aÞ
This is the general energy criterion for the buckling analysis of plates (and shells also).
The critical loads may be determined from this criterion at an additional condition of
the minimum of the load parameter �.

It can be shown [1,2] that the governing differential equation (8.1) can be
obtained from the condition (8.5a). The latter can also be employed for constructing
an approximate solution of the plate buckling problems, in particular for determin-
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ing the critical loads, by the Ritz method (see Sec. 6.6). In this case, the deflection
surface of the plate, w x; yð Þ, in the neighboring state of equilibrium is sought in the
form of Eq. (6.42). If all external forces acting on the plate vary in the proportion to
a load parameter �, then substituting Eq. (6.42) into the condition (8.5a) yields

�� ¼ �� �;C1;C2; . . . ;Cnð Þ ¼ 0; ð8:5bÞ

where Ci i ¼ 1; 2; . . . ;Cnð Þ are undetermined coefficients. Numerical implementation
of the conditions (8.5) requires the usual minimization process (Eq. (6.44)). The
latter also leads to a system of linear algebraic, homogeneous equations. So, apply-
ing the procedure discussed earlier for determining a nontrivial solution in the equi-
librium method, we can find all the characteristic numbers �i, and their smallest
value corresponding to the critical eigenvalue, �cr.

Dynamic or kinematic method

This method is the most general and universal and is associated with the mathema-
tical problem of the stability of motion. The method is based on examining trans-
verse oscillations of a thin plate subjected to in-plane edge loads. The smallest value
of the load that results in unbounded growth of the amplitude of these oscillations in
time is considered as a critical value of the applied loads.

The equilibrium and energy methods are now discussed in more detail.

8.3 THE EQUILIBRIUM METHOD

8.3.1 Buckling of rectangular plates

According to the equilibrium method, the critical values of applied in-plane forces
may be found from the solution of the governing differential equation (8.1) or its
equivalent analog (8.3). As mentioned in Sec. 8.2, this equation is a homogeneous,
linear partial differential equation with, generally speaking, variable coefficients. It is
impossible to find its analytical solution in the general case. However, for some
particular but practically important cases this equation makes it possible to obtain
an exact solution. The following examples illustrate the equilibrium method for
obtaining the exact solutions associated with determining the critical forces in rec-
tangular plates.

Example 8.1

Determine the critical buckling load for a simply supported plate subjected to a
uniformly distributed compressive edge load qx acting in the x direction, as shown
in Fig. 8.1.

Solution

For this particular case Nx ¼ �qx and Ny ¼ Nxy ¼ 0. The differential equation (8.1)
becomes

Dr2r2wþNx

@2w

@x2
¼ 0: ð8:6Þ
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We seek the solution of this equation in the form of Eq. (3.15a) that satisfies the
simply supported boundary conditions. Inserting this solution into Eq. (8.1) leads to
the following equation:

X1
m¼1

X1
n¼1

D�4
m2

a2
þ n2

b2

 !2

�qx�
2 m

2

a2

2
4

3
5wmn sin

m�x

a
sin

n�y

b
¼ 0:

One possible solution is wmn ¼ 0; however, this represents the trivial solution,
w x; yð Þ ¼ 0, and corresponds to an equilibrium in the unbuckled, flat state of the
plate and is of no interest. Another possible solution is obtained by setting the
quantity in square brackets to zero, or

�4D
m2

a2
þ n2

b2

 !2

�qx�
2 m

2

a2
¼ 0;

from which

qx ¼ �2D

b2
mb

a
þ n2a

mb

 !2

: ðaÞ

The constants wmn remain undetermined. Expression (a) gives all values of qx corre-
sponding to m ¼ 1; 2; 3; . . . ; n ¼ 1; 2; 3; . . . as possible forms of the defected surface
(Eq. (3.15a)). From all of these values one must select the smallest, which will be the
critical value. Evidently the smallest value of qx is obtained for n ¼ 1. For n ¼ 1 the
formula for qx takes the form

Nx ¼ �2D

b2
mb

a
þ a

mb

� �2

ð8:7aÞ

or, in an equivalent form,

qx ¼ K
�2D

b2
; ð8:7bÞ

where

K ¼ mb

a
þ a

mb

� �2

ð8:8Þ

Fig. 8.1
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is the buckling load parameter. For a given value of m; the parameter K depends only
on the ratio a=b, called the aspect ratio of the plate. As follows from Eqs (8.7) and
(8.8), the smallest value of qx, and consequently, the value of the critical force qx;cr,
depends on the number of half-sine waves in the longitudinal direction, m. For a
given aspect ratio the critical load is obtained by selecting m so that it makes Eq.
(8.7b) a minimum. Since only K depends on m, we have the following:

dK

dm
¼ 2

mb

a
þ a

mb

� �
b

a
� a

m2b

� �
¼ 0:

Since the first factor in parentheses of the above is nonzero, we obtain

m ¼ a

b
: ð8:9Þ

This provides the following minimum values of the critical load:

min qx ¼ qx;cr ¼
4�2D

b2
: ð8:10Þ

The corresponding value of the buckling load parameter is K ¼ 4. The correspond-
ing critical stress is found to be

�x;cr ¼
Nx;cr

h
¼ qx;cr

h
¼ 4�2D

b2h
¼ �2E

3 1� v2
� � h

b

� �2

: ð8:11Þ

Thus, the critical values of qx and �x correspond to such plate dimensions when its
width, b, fits in its length, a, by whole numbers. In this case a bent plate is subdivided
into square cells of side dimensions b. In the general case, qx;cr may be determined
from Eqs (8.7) and (8.8).

The variation of the buckling load parameter K as a function of the aspect
ratio a=b for m ¼ 1; 2; 3; 4 is shown in Fig. 8.2. Referring to this figure, the magni-
tude of qx;cr and the number of half-waves m (in the direction of the applied com-
pressive forces) for any value of the aspect ratio can readily be found. For example, if
a=b ¼ 1:5, we can find that K ¼ 4:34 and m ¼ 2. The corresponding critical load for
this particular case is

Fig. 8.2
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qx;cr ¼ 4:34
�2D

b2
:

The plate will buckle under this load into two half-waves in the direction of the
applied compressive loads and one-half in the perpendicular direction.

An analysis of the curves in Fig. 8.2 shows that for short and broad plates (for
a=b < 1) a minimum value of the critical force is obtained for m ¼ 1. For a=b � 1,
that is for very short and broad plates, the ratio a=b can be neglected compared with
the ratio b=a in Eq. (8.8). As a result, min.K ffi b2=a2 and the value of the critical
force for this particular case is

qx;cr ¼
�2D

a2
:

Thus, in this case, the critical force does not depend on the plate width and depends
only upon its length. The above expression represents the Euler critical load for a
strip of unit width and of length a whose smallest value of flexural rigidity, EI , is
replaced with the flexural rigidity of the plate, D.

Example 8.2

Determine the buckling critical load for a plate subjected to a uniformly distributed
compressive edge load acting in the x direction. Assume that the edges x ¼ 0 and
x ¼ a are simply supported, the edge y ¼ 0 is fixed, and the edge y ¼ b is free, as
shown in Fig. 8.3.

Solution

It is convenient for this problem to employ Levy’s method (see Sec. 3.5) for the
solution. The boundary conditions at the edges x ¼ 0 and x ¼ a will be automati-
cally satisfied by setting

w x; yð Þ ¼
X1
m¼1

fm yð Þ sinm�x
a
: ðaÞ

For this case, we also can set Nx ¼ �qx and Ny ¼ Nxy ¼ 0. Substituting the
above into Eq. (8.1) and imposing the condition that at least one of the terms
multiplying sin m�x=að Þ must vanish, we determine for fm yð Þ the following ordinary
differential equation:

Fig. 8.3
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dy4

� 2
m�

a

� �2d2f
dy2

þ m�

a

� �4
� qx

D

m�

a

� �2� �
fm ¼ 0: ð8:12Þ

The solution of Eq. (8.12) is shown below:

fm yð Þ ¼ C1e
�	y þ C2e

	y þ C3 cos 
yþ C4 sin 
y; ð8:13Þ
where

	; 
 ¼ � m�

a

� �2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qx
D

m�

a

� �2r" #1=2

: ð8:14Þ

The constants Ci i ¼ 1; 2; 3; 4ð Þ are evaluated from the boundary conditions pre-
scribed on the edges y ¼ 0 and y ¼ b, i.e.,

w ¼ 0jy¼0;
@w

@y
¼ 0

				
y¼0

ð8:15aÞ

My ¼ �D
@2w

@y2
þ � @

2w

@x2

 !
¼ 0

y¼b

;Vy ¼ �D
@3w

@y3
þ ð2� �Þ @

3w

@x@y2

" #
¼ 0

						
						
y¼b

:

ð8:15bÞ
Introducing (a) with (8.13) into the boundary conditions (8.15a), we obtain two alge-
braic equations for the unknown constants. Solving the above equations, one finds

C1 ¼ �C3

2
þ 
C4

2	
; C2 ¼ �C3

2
� 
C4

2	
: ðbÞ

Substituting the above into Eq. (8.13), gives

fm yð Þ ¼ C3 cos
y� cosh	yð Þ þ C4 sin 
y� 

	
sinh 	y

� �
: ð8:16Þ

Introducing wðx; yÞ with fm yð Þ in the form of Eq. (8.16) into the boundary conditions
(8.15b) results in two simultaneous homogeneous algebraic equations. In order to
obtain a nontrivial solution, we equate the determinant of these equations to zero,
and obtain

2gh g2 þ �2� �
cos
b cosh 	b ¼ 1

	

	2�2 � 
2g2� �

sin 
b sinh 	b; ð8:17Þ

where

g ¼ 	2 � � m�

a

� �2
; � ¼ 
2 þ � m�

a

� �2
:

For m ¼ 1, the minimum eigenvalue of Eq. (8.17), i.e., the critical value of the
applied force is

qx;cr ¼ K
�2D

b2
; ð8:18Þ

where for � ¼ 0:25, K ¼ 1:328.
It can be observed that a type of the plate boundary support has an effect on

values of critical forces and buckling modes. For example, fixed supports increase a
plates stability compared with hinged supports; the presence of a free edge leads to a
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sharp decrease in critical forces, etc. If the boundary conditions of a plate differ from
simply supported ones, determining the critical forces even for simple cases of load-
ings represents a sufficiently complicated mathematical problem and can be obtained
by numerical methods only [2–8].

For rectangular plates subjected to uniform compressive forces acting in the
direction of one coordinate axis only (either the x or the y axis) with various bound-
ary conditions, the critical stress, �cr, can be determined from the expression

�cr ¼ K
�2D

b2h
; ð8:19Þ

where the coefficients K are given in Fig. 8.4 versus the aspect ratios a=b [4].

Example 8.3

Determine the critical forces for the rectangular plate with simply supported edges
and uniformly compressed in two directions, as shown in Fig. 8.5.

Fig. 8.4

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Solution

For this problem, first analyzed by Bryan [9] in 1861, the stress resultants may be
easily found: they are Nx ¼ �qx; Ny ¼ �qy; Nxy ¼ 0. Equation (8.1) for this type of
loading becomes

@4w

@x4
þ 2

@4w

@x2@y2
þ @

4w

@y4
þ 1

D
Nx

@2w

@x2
þNy

@2w

@y2

 !
¼ 0: ð8:20Þ

Let us take w in the form of the expression (3.15a). The deflection surface equation in
this form satisfies the simply supported boundary conditions. Substituting the above
into Eq. (8.20) gives

wmn

m2

a2
þ n2

b2

 !2

� 1

�2D
qx

m2

a2
þ qy

n2

b2

" #8<
:

9=
; ¼ 0: ð8:21Þ

The trivial solution of this equation is wmn ¼ 0. As mentioned earlier, this solution
corresponds to unbuckled, i.e., flat, configuration of equilibrium of the plate and is
of no interest for buckling analysis. A nontrivial solution can be obtained by equat-
ing the term in braces in Eq. (8.21) to zero, i.e.,

qx

�
m

a

�2

þ qy

�
n

b

�2

¼ D�2
�
m

a

�2

þ
�
n

b

�2
" #2

: ð8:22Þ

Let us consider several particular cases:
1. Assume, first, that qx ¼ qy ¼ q ¼ const (a uniform all-round compression).

In this case, it follows from Eq. (8.22) that

q ¼ �2D

b2
n2 þ mb

a

� �2
" #

:

Fig. 8.5
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It can be easily shown that the minimum value of q; qcr, corresponds to m ¼ n ¼ 1.
Thus,

qcr ¼
�2D

b2
1þ b

a

� �2
" #

: ð8:23Þ

In particular, for the square plate (a ¼ b), the above expression appears, as follows:

qcr ¼ 2
�2D

b2
:

Hence, if the square plate is compressed in two directions by the two equal system of
forces, q, the critical value of these forces is two times less than that for the square
plate compressed by the same force acting in one direction only (see Example 8.1).

2. Assume now that the compressive forces qx and qy applied to the plate of
Fig. 8.5 will increase in the proportion to one parameter. For example, qx ¼ � and
qy ¼ 	�, where 	 > 0 is some fixed known parameter. Then, from Eq. (8.22), we
obtain

� ¼ �2D

b2

mb
a

� �2
þn2

� �
mb
a

� �2
þ	n2

: ð8:24Þ

For a > b, the minimum value of � may be reached for n ¼ 1 only. Thus,

�cr ¼ K
�2D

b2
; ð8:25Þ

where

K ¼ mb=að Þ2þ1
� �
mb=að Þ2þ	 : ð8:26Þ

For each ratio of a=b and each value of 	 it should be selected a number of the half-
sine waves m from the condition of minimum of K as discussed in Example 8.1.

8.3.2 Buckling of circular plates

Circular plates in some measuring instruments are used as sensitive elements react-
ing to a change in the lateral pressure. In some cases – in temperature changes, in the
process of their assembly – these elements are subjected to the action of radial
compressive forces from a supporting structure. As a result, buckling of the circular
plates can take place.

Let us consider a circular solid plate subjected to uniformly distributed in-
plane compressive radial forces qr, as shown in Fig. 8.6. We confine our buckling
analysis to considering only axisymmetric configurations of equilibrium for the plate.

We can use the polar coordinates r and ’ to transfer the governing differential
equation of plate buckling (Eq. (8.1)), derived for a rectangular plate, to a circular
plate. For the particular case of axisymmetric loading and equilibrium configura-
tions, we have

Nx ¼ Ny ¼ Nr ¼ �qr; Nxy ¼ 0: ð8:27Þ
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Denoting

�2 ¼ qr
D
; ð8:28Þ

and using the relations between the polar and Cartesian coordinates, Eqs (4.1)–(4.4),
we obtain the following differential equation of the axisymmetrically loaded circular
plate subjected to in-plane compressive forces qr:

d4w

dr4
þ 2

r

d3w

dr3
� 1

r2
d2w

dr2
þ 1

r3
dw

dr
þ �2 d2w

dr2
þ 1

r

dw

dr

" #
¼ 0: ð8:29Þ

Let us introduce the following new variable:

� ¼ �r; ð8:30Þ
which represents a dimensionless polar radius. Using the new variable �, we can
rewrite Eq. (8.29), as follows:

d4w

d�4
þ 2

�

d3w

d�3
þ 1� 1

�2

� �
d2w

d�2
þ 1

�
1þ 1

�2

� �
dw

d�
¼ 0: ð8:31Þ

This is a fourth-order linear, homogeneous differential equation. The general solu-
tion of this equation is given by [1] as

w �ð Þ ¼ C1 þ C2 ln �þ C3J0 �ð Þ þ C4Y0 �ð Þ; ð8:32Þ
where J0 �ð Þ and Y0 �ð Þ are the Bessel functions of the first and second kind of zero
orders, respectively. They are tabulated in Ref. [10]. In Eq. (8.32), Ci i ¼ 1; . . . ; 4ð Þ
are constants of integration. Since w �ð Þ must be finite for all values of �; including
�¼ 0, then the two terms ln � and Y0 �ð Þ, having singularities at � ¼ 0, must be
dropped for the solid plate because they approach an infinity when �! 1. Thus,
for the solid circular plate, Eq. (8.32) must be taken in the form

w �ð Þ ¼ C1 þ C3J0 �ð Þ: ð8:33Þ
Determine the critical values of the radial compressive forces, qr, applied to the
middle plane of solid circular plates for two types of boundary supports.

Fig. 8.6
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(1) Circular plate with fixed edge

Let the radius of the plate be R. We denote the corresponding value of �R by 
, i.e.,

 ¼ �R: The boundary conditions are

w 
ð Þ ¼ 0
		
�¼
; # 
ð Þ ¼ 0

		
�¼
; ðaÞ

where the slope of the plate midsurface, #ð�Þ, is given by

# �ð Þ ¼ �
dw

d�
¼ �C3

d

d�
J0 �ð Þ: ðbÞ

From the Bessel function theory [10], that it follows

J1 �ð Þ ¼ � d

d�
J0 �ð Þ: ðcÞ

Thus, we can write the following representations for the slope

# �ð Þ ¼ ��C3J1 �ð Þ; ð8:34Þ
and

# 
ð Þ ¼ ��C3J1 
ð Þ on the boundary; ð8:35Þ
where J1ð Þ is the Bessel function of the first kind of the first order.

Substituting the expressions (8.34) and (8.35) into the boundary conditions (a)
yields the following system of two linear homogeneous equations:

C1 þ C3J0 
ð Þ ¼ 0;

��C3J1 
ð Þ ¼ 0:

For a nontrivial solution of these equations:

J1 
ð Þ ¼ 0:

From the tables of roots of the Bessel functions [10] it follows that the smallest root
of the function J1 
ð Þ is 
min ¼ 3:8317.

Noting that 
2 ¼ �Rð Þ2¼ qr=DR2, we obtain the critical value of the compres-
sive forces as

qr;cr ¼ 3:8317ð Þ2 D
R2

¼ 14:68
D

R2
: ð8:36Þ

(2) Circular plate with simply supported edge

The boundary conditions for this type of support are

w 
ð Þ ¼ 0j�¼
;Mr 
ð Þ ¼ 0j�¼
: ðdÞ
The radial bending moment, Mr, for an axisymmetrically loaded circular plate is
given by Eq. (4.14). When passing from variable r to the variable �, the expression
for Mr becomes

Mr ¼ �D�2 d2w

d�2
þ �

�

dw

d�

 !
: ð8:37Þ
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Using Eq. (8.33) for the deflections and Eq. (8.37) for the radial bending moments,
we can represent the second boundary condition (d) in the form

�D�2 d2

d�2
J0 �ð Þ þ �

�

d

d�
J0 �ð Þ

" #
¼ 0

					
�¼

: ð8:38Þ

Using the relationships between the Bessel functions of the first kind [10], we have

d2

d�2
J0 �ð Þ ¼ �J0 �ð Þ þ 1

�
J1 �ð Þ: ðeÞ

Substituting the expression for the deflections (8.33) into the boundary conditions (d)
and taking into account Eqs (8.38) and (e), we arrive at the following system of linear
homogeneous equations:

C1 þ C3J0 
ð Þ ¼ 0

�D�2C3 
J0 
ð Þ � 1� �ð ÞJ1 
ð Þ½ � ¼ 0
ðfÞ

A nontrivial solution of this system of equations leads to the following:


J0 
ð Þ � 1� �ð ÞJ1 
ð Þ ¼ 0: ðgÞ
Letting � ¼ 0:3 and using the tables of the Bessel function [10], we can determine the
smallest nonzero root of Eq. (g). We have


min ¼ 2:0485;

and the critical value of an intensity of the radial compressive forces is

qr;cr ¼ 4:196
D

R2
: ð8:39Þ

Comparing the values of the critical compressive forces for the clamped and simply
supported circular solid plates, we can conclude that the replacement of the sup-
ported edges with clamped ones increases the critical force by a factor of 3.5.

8.4 THE ENERGY METHOD

Practical application of the equilibrium method runs into serious mathematical
obstacles when determining the buckling loads of the plates with complex geometry
and mixed boundary conditions. Under these circumstances a possibility for obtain-
ing a rigorous solution of the differential equation (8.1) becomes very doubtful and,
practically, impossible. Therefore, the use of the energy method can be very advan-
tageous.

We will apply the energy criterion (8.5) to the buckling analysis of plates. The
increment in the total potential energy of the plate upon buckling is given by Eq.
(8.4). Let us derive the expression for the increment in the strain energy of the middle
surface of the plate. In deriving this expression, we assume that the in-plane stress
resultants are entirely due to external edge loading in the plane of the plate, in which
case they are unchanged during bending (created by buckling). The increment of the
strain energy of the plate middle surface due to buckling can be obtained from the
general expression of the potential energy of an elastic body given by Eq. (2.51).
Based on the assumptions 4 and 5 of the classical plate theory, the above expression
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is simplified and has the following form for the above-mentioned increment of the
middle surface:

�U ¼ 1

2

ð ð
V

ð
�x"x þ �y"y þ �xy�xy
� �

dV : ðaÞ

This increment of the strain energy can also be expressed in terms of the in-plane
stress resultants. The latter are related to the stress components as follows:

�x ¼
Nx

h
; �y ¼

Ny

h
; and �xy ¼

Nxy

h
: ðbÞ

Substituting the above into Eq. (a) and integrating over the plate thickness, h, results
in the following expression for the increment in the strain energy of the plate middle
surface:

�U0 ¼
ð ð

A

Nx"x þNy"y þNxy�xy
� �

dxdy: ð8:40Þ

Note that there is no 1/2 coefficient in Eq. (8.40), since the in-plane stress resultants
are already acting when additional middle surface strains (due to the buckling)
occur. For the sake of simplicity, we derive the expression for �U0 for a rectangular
plate of dimensions a	 b. Inserting Eqs (7.82) into Eq. (8.40) results in the following
expression for the increment of the strain energy of the plate middle surface:

�U0 ¼
ðb
0

ða
0

Nx

@u

@x
þNy

@v

@y
þNxy

@u

@y
þ @v

@x

� �� �
dxdy

þ 1

2

ðb
0

ðb
0

Nx

@w

@x

� �2

þNy

@w

@y

� �2

þ2Nxy

@w

@x

@w

@y

" #
dxdy:

ð8:41Þ

We transform the first integral of the right-hand side of Eq. (8.41). Integrating this
expression term-by-term, we obtain

ðb
0

ða
0

Nx

@u

@x
þNy

@v

@y
þNxY

@u

@y
þ @v

@x

� �� �
dxdy ¼

ðb
0

Nxu
		 		a

0
þ Nxyv
		 		a

0

h i
dy

þ
ðb
0

Nyv
		 		b

0
þ Nxyu
		 		b

0

h i
dx�

ðb
0

ða
0

u
@Nx

@x
þ @Nxy

@y

� �
dxdy

�
ðb
0

ða
0

v
@Nxy

@x
þ @Ny

@y

� �
dxdy:

ð8:42Þ

Using Eqs (3.90a) and (3.90b), we can conclude that the two last integrals on
the right-hand side in the above expression vanish. The first two integrals on the
right-hand side of Eq. (8.42) represent the work, We, done by the in-plane external
forces applied to the middle surface of the plate. Thus, the expression (8.42) can be
represented in the form
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�U0 ¼ We þ
1

2

ðb
0

ða
0

Nx

@w

@x

� �2

þNy

@w

@y

� �2

þ2Nxy

@w

@x

@w

@y

" #
dxdy: ð8:43Þ

It can be shown that the expression for �U0 in the form of Eq. (8.43) is valid
(replacing the limits of integration) for a plate of any geometry, not necessarily,
rectangular.

The increment in the potential of the external, in-plane forces applied to the
plate is equal to the negative value of the work done by these forces, i.e.,

��� ¼ �We: ð8:44Þ
The strain energy of the bending and twisting of a plate, Ub, is given by Eq. (2.53).
Therefore, the increment in the total potential energy of the plate upon buckling,
��, can be obtained by substituting Eqs (2.53) and (8.43) with taking into account
Eq. (8.44) on the right-hand side of Eq. (8.4).

�� ¼ 1

2

ð ð
A

D
@2w

@x2
þ @

2w

@y2

 !2

þ2 1� �ð Þ @2w

@x@y

 !2

� @
2w

@x2
@2w

@y2

2
4

3
5

8<
:

9=
;dxdy

þ 1

2

ð ð
A

Nx

@w

@x

� �2

þNy

@w

@y

� �2

þ2Nxy

@w

@x

@w

@y

" #
dxdy

ð8:45Þ

As mentioned in Sec. 8.2, the energy criterion (8.5) may be employed be obtain the
exact and approximate solutions of the plate buckling problems. In the latter case,
this criterion may be combined with, for instance, the Ritz method together with the
eigenvalue technique introduced in Sec. 8.2.

Note that in practice �� ¼ 0 only if the form chosen for the deflection is exact.
Any approximation form, when Eq. (8.45) is applied, will give a value of the critical
force higher than the true value. Let us demonstrate the advantages of the energy
criterion in illustrative examples.

Example 8.4

Using the Ritz method, determine the critical buckling load for the plate with three
simply supported edges x ¼ 0; a and y ¼ 0 and one free edge y ¼ b, as shown in Fig.
8.7. The plate is loaded by linearly distributed compressive in-plane forces
qx ¼ q 1þ  y

b

� �
along the simply supported edges x ¼ 0; a, where  > 0 is some fixed

parameter.

Solution

The deflection surface of the plate can be approximated, as follows:

w ¼ sin
n�x

a

XN
i¼1

Ciy
i: ðaÞ

This approximate solution satisfies exactly the prescribed geometric boundary con-
ditions, i.e.,

w ¼ 0jx¼0;a; w ¼ 0jy¼0: ðbÞ

Retaining only one term (i ¼ 1) in the series (a), we can find the following:
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@w

@x
¼ C1y

n�

a
cos

n�x

a

� �
;
@2w

@x2
¼ �C1y

n�

a

� �2
sin

n�x

a
;

@2w

@x@y
¼ C1

n�

a
cos

n�x

a

� �
;
@2w

@y2
¼ 0:

For this type of loading, the solution of the plane stress problem is Nx ¼ �qx,
Ny ¼ Nxy ¼ 0. Substituting the above into Eq. (8.45), and performing the operations
of integration, we obtain

�� ¼ C2
1

ab

4
D

b2

3

n�

a

� �4
þ2 1� �ð Þ n�

a

� �2" #
� q

n�

a

� �2
b2

1

3
þ 

4

� �( )
:

The eigenvalues of the load qx can be found from equation @�=@C1 ¼ 0. We have

qn ¼
n2�2D

b2
b2=a2 þ 6 1� �ð Þ=n2�2

1þ 3=4

" #
:

For n ¼ 1, the smallest eigenvalue is approximately equal to the critical value, i.e.,

qcr ¼
b2=a2 þ 6 1� �ð Þ=�2

1� 3=4
� �

2D

b2
: ð8:46Þ

Example 8.5

Determine the critical value of uniformly distributed in-plane shear forces qxy for the
simply supported rectangular plate shown in Fig. 8.8.

Solution

We assume that the deflection surface is adequately approximated as follows:

w ¼ C1 sin
�x

a
sin
�y

b
þ C2 sin

2�x

a
sin

2�y

b
; ðaÞ

where C1 and C2 are two unknown coefficients. It is obvious that w in the form of (a)
satisfies exactly the prescribed geometrical boundary conditions (w ¼ 0 on the
boundary).

Fig. 8.7
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Substituting for w from (a) into the potential energy expression �� given by
Eq. (8.45) and setting Nxy ¼ �qxy; Nx ¼ Ny ¼ 0, we obtain

�� ¼ ��
4

8
Dab

1

a2
þ 1

b2

� �2

C2
1 þ 16C2

2

� �� 32

9
qxyC1C2: ðbÞ

Applying the conditions for a stationary value of �� – namely, @ð��Þ=�C1 and
@ ��ð Þ=@C2 ¼ 0 – results in the following two homogeneous linear equations:

�4

4
Dab

1

a2
þ 1

b2

� �2

C1 �
32

9
qxyC2 ¼ 0;

� 32

9
SC1 þ 4�4Dab

1

a2
þ 1

b2

� �2

C2 ¼ 0:

A nontrivial solution can be obtained by equating the determinant of these equations
to zero. Consequently, we have

�8D2a2b2 a�2 þ b�2
� �4� 32qxy

9

� �2

¼ 0;

which gives the following approximation for the critical shear forces:

qxy;cr ¼ � 9

32
�4Dab

1

a2
þ 1

b2

� �2

: ð8:47Þ

This result, which is larger by 15% than an exact solution for a square plate (a ¼ b)
[1], can be improved by retaining more terms in the expression (a) [1–3].

8.5 BUCKLING ANALYSIS OF ORTHOTROPIC AND STIFFENED
PLATES

8.5.1 Orthotropic plates

Consider a rectangular orthotropic plate whose elastic properties are characterized
by four independent constants: the moduli of elasticity Ex and Ey in the two

Fig. 8.8
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mutually perpendicular principal directions x and y; the shear modulus G; and
Poisson’s ratio �x. The second Poisson’s ratio �y is related to �x by the expression
(7.24). The constitutive equations, stress resultants–curvature equations, and the
governing differential equation for the orthotropic plate in the framework of
small-deflection plate bending theory have been derived in Sec. 7.2. Repeating the
derivation of Eq. (3.92), we can represent the governing differential equation of the
orthotropic plate buckling, as follows:

Dx

@4w

@x4
þ 2H

@4w

@x2@y2
þDy

@4w

@y4
þNx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y
¼ 0: ð8:48Þ

Let us analyze the stability of a rectangular, simply supported orthotropic plate
subjected to in-plane compressive forces qx, as shown in Fig. 8.1. The boundary
conditions for simply supported edges of the orthotropic plate are

w ¼ 0jx¼0;a
y¼0;b

;
@2w

@x2
þ �y

@2w

@y2
¼ 0

					
x¼0;a

;
@2w

@y2
þ �x

@2w

@x2
¼ 0

					
y¼0;b

: ðaÞ

We take the deflection surface of the plate in the form

w ¼ w11 sin
m�x

a
sin

n�y

b
: ðbÞ

The deflection surface in the form of (b) satisfies exactly the boundary conditions (a).
Substituting (b) into Eq. (8.48) and letting Nx ¼ �qx; Ny ¼ Nxy ¼ 0, we obtain from
the solution of this equation the following expression for the compressive forces qx:

qx ¼ �2
ffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
b2

ffiffiffiffiffiffi
Dx

Dy

s
mb

a

� �2

þ 2Hffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p n2 þ
ffiffiffiffiffiffi
Dy

Dx

s
a

mb

� �2
" #

: ð8:49Þ

It is evident that a minimum value of qx is reached for n ¼ 1. The critical value of the
compressive force can be obtained by varying a number of half-waves m. For a plate
that is lengthened along the x axis (a � b), we have the following:

qx;cr ¼
2�2

ffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
b2

1þ Hffiffiffiffiffiffiffiffiffiffiffiffi
DxDy

p
 !

: ð8:50Þ

For a plate with a finite ratio of sides, it should be taken [4], that

m ¼ 1 for 0 <
a

b
<

ffiffiffiffiffiffiffiffiffi
4
Dx

Dy

4

s
;

m ¼ 2 for

ffiffiffiffiffiffiffiffiffi
4
Dx

Dy

4

s
<

a

b
<

ffiffiffiffiffiffiffiffiffiffiffiffi
36

Dx

Dy

4

s
;

m ¼ 3 for

ffiffiffiffiffiffiffiffiffiffiffiffi
36

Dx

Dy

4

s
<

a

b
<

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144

Dx

Dy

4

s
; and so on:
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Making Dx ¼ Dy ¼ H ¼ D, we obtain the expression (8.10) for qx;cr in a rectangular,
simply supported isotropic plate.

8.5.2 Stiffened plates

In the stability analysis of stiffened plates, two modes of buckling are usually con-
sidered. One possible mode is the local buckling of the plate between the stiffeners,
provided that the plate is reinforced with strong stiffeners. In the second case, an
overall buckling of the plate–stiffener combination occurs. The latter is called pri-
mary buckling in the pertinent literature.

A more economical design can be obtained if we permit simultaneous local and
primary buckling at about the same stress level. Consequently, in the elastic stability
analysis of stiffened plates, the structural interaction of plate and stiffeners should be
taken into account.

Two approaches to the stability analysis of stiffened plates are possible. If a
plate is reinforced with many equally spaced parallel stiffeners of the same size (or
with a grid-stiffening arrangement), such an assembly can effectively be approxi-
mated by the orthotropic (structurally orthotropic) plate theory. This approach
makes it possible to consider Eq. (8.48) for the buckling analysis of structurally
orthotropic plates, and the rigidities on the left-hand side of this equation are deter-
mined according to the procedure introduced in Sec. 7.2.3. Evidently, this approach
is applicable only in the case when the stiffeners are located close to one another: the
value 1=n (n is the number of stiffeners or ribs taken over all the width of the plate)
should be small compared with unity.

Another approach involves the buckling analysis of a plate which is reinforced
with few stiffeners. For such a type of stiffened plates, the convenient orthotropic
plate idealization cannot be used to obtain reliable values for the critical loads. Since
the stiffeners are rigidly fastened to the plate, we should treat the plate and stiffeners
as a structural unit; consequently, at mutual points, the stiffener deflects and twists in
the same way as the plate. Since the numerical procedure of the first approach is
quite similar to the one discussed in Sec. 8.5.1 and involves no new ideas and
principles, the second approach will be introduced below only. The critical load
may be determined by the equilibrium or energy methods. The following examples
illustrate the application of both methods for the buckling analysis of the stiffened
plate.

Example 8.6

This problem was analyzed by Timoshe [1]. Determine the critical load for a simply
supported rectangular plate which is reinforced by a single longitudinal rib located
along its centerline, as shown in Fig. 8.9. The plate is subjected to the in-plane
compressive forces qx uniformly distributed along the edges x ¼ 0; a.

Solution

In our buckling analysis, we take into account only the bending stiffness of the rib in
the plane perpendicular to the middle plane of the plate. We apply the differential
equation (8.6) to one of the halves of the plate. Its integral is represented in the form

w x; yð Þ ¼ F yð Þ sinm�x
a
: ð8:51Þ
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Substituting the above into Eq. (8.6) and letting Nx ¼ �qx; Ny ¼ 0;Nxy ¼ 0, gives

d4F yð Þ
dy4

� 2
m�

a

� �2d2F yð Þ
dy2

þ m�

a

� �2 m�

a

� �2
� qx

D

� �
F yð Þ ¼ 0: ð8:52Þ

Its solution is of the form

F yð Þ ¼ C1 cosh	yþ C2 sinh 	yþ C3 cos
yþ C4 sin 
y; ð8:53Þ
where

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� �þ

ffiffiffiffiffi
qx
D

r� �s
; 
 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

ffiffiffiffiffi
qx
D

r
� �

� �s
and � ¼ m�

a
: ð8:54Þ

The boundary conditions on the edge y ¼ b=2 are

w ¼ 0;
@2w

@y2
¼ 0

					
y¼b=2

: ð8:55Þ

Assume that the plate is buckled together with the rib; then the bent surface of the
plate must be symmetric about the line y ¼ 0. This results in the following condition:

@w

@y
¼ 0

				
y¼0

: ð8:56Þ

The difference in the reaction forces from the two strips of the plate given by the
expression

Ry ¼ �D
@3w

@y3
þ 2� �ð Þ @

3w

@y@x2

" #
ð8:57Þ

will be transmitted to the rib. Assume that the plate and rib are made of one and the
same material. Due to the assumption adopted above for deformations of the rib, it
can be easily shown that only the first term in the brackets of Eq. (8.57) should be
taken into account. If we assume that the rib together with the plate is subjected to

Fig. 8.9
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the compressive forces qx, then the equation for the elastic curve of the rib may be
represented in the form

EIi
@4w

@x4
þ qx

@2w

@x2
þ 2D

@3w

@y3

 !
y¼0

¼ 0;

or replacing qx ¼ Nx ¼ �xAi for the rib, we obtain

EIi
@4w

@x4
þ �xAi

@2w

@x2
þ 2D

@3w

@y3

 !
y¼0

¼ 0; ð8:58Þ

where Ii and Ai are the second moment of inertia and area of the rib cross section,
respectively.

Let us introduce the following parameters:

� ¼ a

b
; � ¼ EIi

Db
; � ¼ Ai

bh
: ð8:59Þ

Introducing Eq. (8.53) into the conditions (8.55), (8.56), and (8.58), we obtain a
system of linear algebraic homogeneous equations for C1; . . . ;C4. Equating the
determinant of this system to zero, yields the following equation:

1

b	
tanh

b	

2
� 1

b

tan

b


2

� �
�m2

	2
� K�

 !
m2�2

	2
� 4

m

	

ffiffiffiffi
K

p
¼ 0; ð8:60Þ

where

K ¼ �x;cr
�x;E

ð8:61Þ

and

�x;cr ¼
qx;cr
h
; �x;E ¼ 4

�2D

b2h
ð8:62Þ

where �x;E is the critical stress for a rectangular, simply supported, unstiffened plate
with the dimensions of Fig. 8.9 (see Eq. (8.11)). Equation (8.60) may be solved by the
method of trial and errors. For m ¼ 1 and � > 2, its solution, using the parameters
introduced in Eqs (8.59), gives the following expression for �x;cr:

�x;cr ¼
�2D

b2h

1þ �2� �2þ2�

�2 1þ 2�ð Þ : ð8:63Þ

Now we analyze the stability problems for stiffened plates by the energy method.

Example 8.7

Determine the critical value of the in-plane compressive forces qx acting on the plate
reinforced by two equally spaced stiffeners, as shown in Fig. 8.10. The plate is simply
supported on all edges. Let Ai and Bi (Bi ¼ EIi) be the area of the cross section and
the bending stiffness of a stiffener, and ci be spacing of the stiffeners.
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Solution

The expression for the increment in the total potential energy in buckling for the
plate reinforced by the discrete stiffeners, ��s, may be represented as follows:

��s ¼ ��þUi �Wi; ð8:64Þ
where �� is the increment in the potential energy of the unstiffened plate given by
Eq. (8.45), Ui is the strain energy of the stiffener in bending, andWi is the work done
by the compressive forces qxi ¼ qxAi=h acting on the stiffener, as shown below:

Ui ¼
Bi

2

ða
0

@2w

@x2

 !
y¼ci

dx ð8:65Þ

and

Wi ¼
qxi
2

ða
0

@w

@x

� �2

y¼ci

dx: ð8:66Þ

Let the deflection surface of the plate be approximated by Eq. (3.15a). Substituting
for w from the above equation into Eqs (8.45), (8.65), and (8.66), and finally, into Eq.
(8.64) for ��s, we obtain the following:

��s ¼
�4D

2

ab

4

X
m

X
n

wmn
2 m2

a2
þ n2

b2

 !2

� qx
2

ab

4

X
m

X
n

m2�2

a2
w2
mn

þ �
4Bi

4a3

X
m

m4 wm1 sin
�ci
b

þ wm2 sin
2�ci
b

þ . . .

� �2

� qxiAi

h

�2

4a

X
m

m2 wm1 sin
�ci
b

þ wm2 sin
2�ci
b

þ . . .

� �2

;

ð8:67Þ

where D is the flexural rigidity of the unstiffened plate. The critical value of the
applied compressive forces, qx;cr, may be found from the energy criterion (8.5).
Differentiating ��s in the form of (8.67) with respect to wmn, we can determine
qx;cr from the nontrivial solution of the system of linear algebraic homogeneous
equations, equating the determinant of this system to zero. Dropping the intermedi-
ate algebra, we present the final results. The critical force is given by

Fig. 8.10
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qx;cr ¼
�4D

b2
1þ �2� �þ 3�

�2 1� 3�ð Þ ; ð8:68Þ

where �; �; and � are given by formulas (8.59). The solution (8.68) is done in the first
approximation, i.e., for m ¼ n ¼ 1. If a rectangular, simply supported plate is rein-
forced by i equally spaced stiffeners then the critical value of the compressive forces
is the following:

qx;cr ¼
�2D

b2

1þ �2� �2þ2
P
i

�i sin
2 �ci=bð Þ

�2 1þ 2
P
i

�i sin
2 �ci=bð Þ

� � : ð8:69Þ

8.6 POSTBUCKLING BEHAVIOR OF PLATES

8.6.1 Large deflections of plates in compression

Using the linearized buckling analysis introduced in Sec. 8.2, we have considered
only the initial elastic buckling of flat plates and the critical forces and stresses have
been found for some typical loadings and boundary conditions. The critical force is
the force at which bifurcation of equilibrium states occurs and is of fundamental
significance to the designer. So, the critical loads found in the previous sections
represent merely the loads at which buckling begins. It should be noted that the
postbuckling behavior of plates is markedly different from that of thin rods. While a
small increase in the critical load for rods will produce a complete collapse, the load-
carrying capacity of the plate is not exhausted and elastic plate can carry stresses
higher than �cr. It can be explained, first of all, by the effect of large deflections in the
postbuckling stage and, then, by the fact that the longitudinal edges of the plate are
usually constrained to remain straight. Thus, the postbuckling mechanism of elastic
plates is characterized not only by bending but also by the direct (or in-plane)
stresses. It is important that the latter become comparable in magnitude with the
former stresses.

The use of an additional strength due to the postbuckling effects is of great
practical importance in the design of ship and aerospace structures. By considering
the postbuckling behavior of plates, considerable weight savings can be achieved. In
these structures, the edges of the plates are usually supported by stringers in such a
way that they remain straight during buckling. After buckling, the central part of the
plate bulges out, and an increasingly larger portion of the load is carried by the
material close to the supported edges (stringers) of the plate.

The nonlinear, large-deflection plate bending theory, discussed in Sec. 7.4, can
be used for the analysis of the postbuckling behavior of plates. Because of a non-
linearity of the governing differential equations of this analysis, the resulting math-
ematical difficulties are considerable and exact solutions can very seldom be
obtained. The most generally used techniques for the treatment of postbuckling of
plates are based on numerical methods [11,12].

For some simple cases an analytical solution can be obtained under some
assumptions regarding the plate behavior, boundary conditions, etc. Consider a
rectangular, simply supported plate, as shown in Fig. 8.1. The plate is subjected to
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the in-plane compressive forces qx. An approximate expression for the buckled
middle surface of the plate is taken in the following form (m ¼ n ¼ 1):

w ¼ w11 sin
�x

a
sin
�y

b
: ð8:70Þ

The governing differential equations for the investigation of the postbuckling beha-
vior of thin plates of a constant thickness are von Karman’s large-deflection equa-
tions (7.87), derived in Sec. 7.4. Assuming that the lateral load p is zero, we can
rewrite these equations in terms of the stress function � (� ¼ �=hÞ, as follows:

1

E
r4� ¼ @2w

@x@y

 !2

� @
2w

@x2
@2w

@y2
; ð8:71aÞ

D

h
r4w ¼ @2�

@y2
@2w

@x2
þ @

2�

@x2
@2w

@y2
� 2

@2�

@x@y

@2w

@x@y
: ð8:71bÞ

Substituting for w from Eq. (8.70) into Eq. (8.71a), we obtain

1

E
r4� ¼ 1

2
w2
11

�4

a2b2
cos

2�x

a
þ cos

2�y

b

� �
: ð8:72Þ

Assume that the edge supports do not prevent the in-plane motions of the plate in
the y direction or, in other words, the in-plane shear stresses are zero. A particular
integral of Eq. (8.72) is taken, as follows:

�p ¼ A cos
2�x

a
þ B cos

2�y

b
:

Determine the unknown coefficients A and B by calculating r4�p and comparing the
left- and right-hand sides of Eq. (8.72). We obtain the following:

�p ¼ E
w2
11

32

�
a

b

�2

cos
2�x

a
þ b

a

� �2

cos
2�y

b

" #
: ð8:73Þ

Assuming that the edge supports do not prevent the in-plane motions of the plate in
the y direction, we take the solution of the homogeneous Eq. (8.72) in the form

�h ¼ � qxy
2

2h
: ð8:74Þ

Finally, the general solution of Eq. (8.72) is

� ¼ �p þ �h ¼ E
w2
11

32

a

b

� �2
cos

2�x

a
þ b

a

� �2

cos
2�y

b

" #
� qxy

2

2h
: ð8:75Þ

In-plane stresses in the plate middle surface are

�x ¼
@2�

@y2
¼ �E

�2

8

w11

a

� �2
cos

2�y

b
� qx

h
; �y ¼

@2�

@x2
¼ �E

�2

8

w11

b

� �2
cos

2�x

a
;

�xy ¼ � @2�

@x@y
¼ 0:

ð8:76Þ
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As seen, the in-plane shear stresses are zero. Let us apply the Galerkin method to
solve Eq. (8.71b). Using the general procedure of the method discussed in Sec. 6.5,
we obtainða

0

ðb
0

E sin
�x

a
sin
�y

b
dxdy ¼ 0; ð8:77Þ

where

E � D

h
r4w� @

2�

@y2
@2w

@x2
� @

2�

@x2
@2w

@y2
þ 2

@2�

@x@y

@2w

@x@y
: ð8:78Þ

Substituting for w and � from Eqs (8.70) and (8.75) into (8.77) and performing
the corresponding operations of differentiation and integration, yields the
following:

D
�4ab

4
w11

1

a2
þ 1

b2

� �2

� qxw11

�2

a2
ab

4
þ E

�4w3
11

64
h

1

a4
þ 1

b4

� �
ab ¼ 0: ð8:79Þ

Assuming that w11 6¼ 0, we obtain

qx ¼ Nx ¼ �xh ¼ D
�2

b2
b

a
þ a

b

� �2

þE
�2h

16b2
w2
11

b2

a2
þ a2

b2

 !
: ð8:80Þ

Since the first term on the right-hand side of the above equation represents the
critical force of the linear buckling analysis, qx;cr, introduced in Sec. 8.3, it is evident
that the plate can sustain a compression load greater than the linear buckling. It
should be noted that the load-carrying capacity is more pronounced when the
unloaded edges are constrained to remain straight (Ny 6¼ 0).

The first detailed analysis of the postbuckling behavior of plates loaded by
compressive loads was conducted by von Karman et al. [13], who suggested a sim-
plified approach to obtain an estimate for the ultimate load carried by the buckled
plate. Based on experimental observations, this simplified method assumes that the
ultimate buckling load of the plate is carried exclusively by two strips of equal width
(the so-called effective width), located along the unloaded edges, and the stringers,
jointly with the effective width portion of the plate, act as columns. A detailed
numerical analysis of the postbuckling behavior of thin plates with various boundary
conditions using the simplified method based on the effective width concept in
compression for routine design purposes was developed by Marguerre [14], Cox
[2], Schade [15], etc. The interested reader is referred to these references and to
Refs [1,3].

8.6.2 Load-carrying capacity of plates in compression

We have seen that a plate after buckling may carry in some cases a compressive force
that is many times higher than the critical load at which buckling begins. So, in cases
when issues of weight economy are of fundamental importance, as for example in the
aircraft industry, it is expedient to determine not only the critical load but also the
ultimate load which the plate can carry without failure, which corresponds to the
plate load-carrying capacity in compression.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



We consider below a rectangular plate that is pin-connected along its edges
with rigid stiffeners. The plate is subjected to compressive forces in one direction, as
shown in Fig. 8.11a.

Prior to buckling of the plate, the compressive stresses are uniformly distrib-
uted over its width, b, but after buckling the distribution of stresses along the loaded
edges becomes progressively nonlinear: they increase more intensively in the vicinity
of the plate edges and the stresses differ little from their critical values in the central
part of the plate. A typical compressive stress distribution along the plate cross
section is shown in Fig. 8.11b. The actual distribution of the compressive stresses
depends on the boundary conditions and on the length-to-width ratio, a=b, provided
that this ratio is less than 3.

When failure of the plate is impending, almost the total compressive load is
carried by two strips, located along the unloaded edges.

Following the simplified approach proposed by von Karman et al. [13], we
determine the ultimate load carried by the compressed plate. This approach is based
on the following assumptions:

Fig. 8.11
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(a) The initial (unloaded) plate is perfectly flat.
(b) The ultimate buckling load is carried exclusively by two strips of equal

width, be, located along the unloaded edges.
(c) The maximum stress in the edge fiber of the plate, located in the middle

surface, �u, is uniformly distributed over the two plate strips, be, as shown
in Fig. 8.11c.

(d) The supporting stiffeners remain straight during the buckling and, jointly
with the effective width portion of the plate, be, they act as columns.

Since the normal compressive stress is not uniform along the plate cross section, let
us introduce the mean compressive stress, �m. From the above assumptions, it fol-
lows that the effective width, be, is

be ¼
1

�u

ðb
0

�mdy: ð8:81Þ

Now we can determine the effective width of the bunched plate by using the reference
value of the critical stress, �cr, in the following form:

�cr ¼
N1cr

h
¼ K

D

h

�

b

� �2
: ð8:82Þ

Due to the assumption (b), an expression similar to Eq. (8.82) can be written for the
equivalent plate of width be:

�u ¼ K
D

h

�

be

� �2

: ð8:83Þ

Comparing Eqs (8.82) and (8.83) yields the following:

be ¼ b

ffiffiffiffiffiffi
�cr
�u

r
: ð8:84Þ

A more accurate postbuckling analysis estimates be as follows [16]:

be ¼ b �
ffiffiffiffiffiffi
�cr
�u

3

r
: ð8:85aÞ

Koiter [17] received the expressions for the effective width of flat plate in the form

be ¼ b 1:2
�cr
�u

� �0:4

� 0:65
�cr
�u

� �0:8

þ0:45
�cr
�u

� �1:2
" #

: ð8:85bÞ

The ultimate load carried by the compressed plate is

Pu ¼ �ubeh: ð8:86Þ
To obtain estimates for the maximum edge stresses, �u, two cases are considered:

1. If the supporting stiffeners are relatively strong, the yield criterion can be
conveniently used, in connection with the effective width concept, to
determine �u the plate is able to carry. In this case, �u is simply equal
to the yield stress �y, provided that the stiffeners and the adjacent plate
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strips reach the yield stresses simultaneously without buckling. The ulti-
mate load carried by the plate in this case is

Pu ¼ �ybeh: ð8:87Þ
2. If the supporting stiffeners are relatively weak, they may fail by buckling

before yield stress is developed. In this case, a trial and error procedure
should be used to obtain an estimate for the maximum edge stresses, �u.
First, we assign an effective width be in the first approximation as
be ¼ ð0:3� 0:6Þb, and determine �ð1Þu , considering that the longitudinal
supporting stiffener and the effective width portion of the plate act as a
column. Using the �ð1Þu value obtained, a new estimate for bð2Þe can be
calculated, etc. The procedure is repeated until the interrelationship
between these two variables is satisfied.

8.7 BUCKLING OF SANDWICH PLATES

The stability analysis of sandwich plate structure has to be taken with regard to
various types of its buckling modes as a whole and its separate elements. Let a
sandwich plate be loaded by the external in-plane edge loads (compressive and/or
shear) symmetrically with respect to its middle plane. Two possible modes of buck-
ling should be distinguished: a general, resulting from bending of the middle surface
of the sandwich plate; a local, manifested as bending (wrinkling) of the upper and
lower sheets and occurring without bending of the plate as a whole. In this book we
consider only the buckling analysis of the general stability of sandwich plates. The
local stability problems for sandwich plates were studied in Ref. [18].

The governing differential equations of the small-deflection bending theory of
orthotropic and isotropic sandwich plates were derived in Sec. 7.6. The above equa-
tions will be valid for the buckling analysis if, according to the general procedure
introduced in Sec. 8.2 for plate stability problems, instead of the transverse surface
load p, a fictitious load pf (see Sec. 8.2) is inserted in Eqs (7.131) for orthotropic
sandwich plates or in Eq. (7.135) for isotropic ones:

pf ¼ Nx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y
; ð8:88Þ

where Nx;Ny; and Nxy are the internal forces acting in the middle plane of the plate
corresponding to the applied in-plane loading. Thus, the stability problem of the
sandwich orthotropic plate is described by a system of governing equations consisting
of Eqs (7.131a) and (7.131b), and (7.131c), where the latter equation is of the form

@Qx

@x
þ @Qy

@y
¼ �pf ; ð8:89Þ

pf is given by Eq. (8.88). In a special case, substituting for pf from Eq. (8.88) into Eq.
(7.135), we obtain the following governing differential stability equation for isotropic
sandwich shells:

Dsr2r2w ¼ 1� Ds

DQ

r2

� �
Nx

@2w

@x2
þNy

@2w

@y2
þ 2Nxy

@2w

@x@y

 !
ð8:90Þ
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Example 8.8

A rectangular simply supported isotropic sandwich plate of Fig. 7.8 is subjected to
an in-plane edge compressive load of intensity qx, as shown in Fig. 8.1. Determine
the critical value of this load if a ¼ 20 in:; b ¼ 10 in:; t ¼ 0:02 in:; c ¼ 0:2 in:, Ef ¼
10	 106 psi; Gc ¼ 12,000 psi, � ¼ 0:3.

Solution

The simply supported boundary conditions in terms of the deflections are given by
Eqs (3.14). For the problem under consideration, Nx ¼ �qx and pf ¼ �qx@

2w=@x2.
Therefore, Eq. (8.90) simplifies to the following form:

Dsr2r2wþ qx 1� Ds

DQ

r2

� �
@2w

@x2
¼ 0: ðaÞ

Equation (a) is a constant-coefficient equation. A solution of the form

w ¼ C1 sin
m�x

a
sin

n�y

b
; m; n ¼ 1; 2; 3; . . . ; ðbÞ

where C1 is a constant, is seen to satisfy the boundary conditions (3.14). Introduction
of that expression for w into Eq. (a) and rearrangement gives

qx ¼ �2Ds

b2
ðmb=aÞ þ ðn2a=mbÞ� �2
1þ  ðmb=aÞ2 þ n2

� � ; ðcÞ

where m and n are positive integers and

 ¼ �2Ds

b2DQ

: ðdÞ

Equation (c) may now be written in the following alternative form:

qx ¼ Ks

�2Ds

b2
; ðeÞ

where the nondimensional buckling coefficient Ks for sandwich plates is defined as

Ks ¼
½mb=aþ n2a=mbÞ�2
1þ  n2 þ ðmb=aÞ2� � : ðfÞ

For given values of the plate aspect ratio a=b and the shear stiffness parameter  , the
value of the wave–length parameters m and n may be chosen by trial to give the
smallest value of qx; i:e:; qx;cr.

It is seen that for Gc ! 1;  ¼ 0 and the buckling parameter Ks ! K given
by Eq. (8.8) (for n ¼ 1). Thus, for this particular case when the transverse shear
deformation is neglected, Eq. (c) reduces to the corresponding expression (8.7b)
derived for buckling of homogeneous plates.

Using the numerical data of the problem, let us compute the rigidities. We have
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Ds ¼
Estðcþ tÞ2
2ð1� �2Þ ¼ 5318 lb-in; DQ ¼ Gc

ðcþ tÞ2
c

¼ 2904 lb/in,

 ¼ �2Ds

b2DQ

¼ 1:831:

Introduction of these data into Eq. (f) reveals that the smallest value of the coefficient
Ks corresponds to n ¼ 1 and m ¼ 3. For this value Eq. (g) gives qx;cr ¼ 973:2 lb/in.

If the core were omitted and the two face sheets bonded together to form a thin
homogeneous plate 0.04 in. thick, the corresponding critical load would be only
23.4 lb.

PROBLEMS

8.1 Figure 8.2 shows the variation of the buckling load parameter K as a function of aspect

ratio a=b for m ¼ 1; 2; 3; 4: Based on this figure, determine the condition at which a

transition from m to mþ 1 half-sine waves across the span of the plate, compressed in

the x direction by a uniform edge loads.

8.2 Calculate the critical value of the uniform compressive edge loads qx applied over two

simply supported edges of length b if two opposite edges of the length a are fixed. Use

a ¼ 2m; b ¼ 1m; h ¼ 0:1m; E ¼ 210GPa; and � ¼ 0:3.
8.3 Calculate the critical value of the uniformly applied compressive edge loads for a

rectangular plate of sides a and b with two simply supported opposite edges and two

other opposite edges free. Assume that the load is applied over the free edges. Take

a ¼ 10m; b ¼ 5m; h ¼ 0:15m; E ¼ 220GPa; and � ¼ 0:3.
8.4 Let a rectangular, simply supported plate of sides a and b be loaded by uniformly

distributed compressive qx and tensile qy forces. The qx forces are applied parallel to

the side a and qy forces act in the direction parallel to the side b. Find the nontrivial

solution of Eq. (8.20) for this type of loading and calculate the critical value of the

parameter � if qy ¼ �qx and a ¼ b. Compare this result with the case when the above

plate is compressed in two directions (see Fig. 8.5).

8.5 Consider a circular plate uniformly compressed by in-plane radial forces qr. Compare

the critical values of qr for two types of plate supports: (a) simply supported edge and

(b) fixed edge. Use the radius of the plate a ¼ 40 in:; h ¼ 2:5 in:; E ¼ 25,000 ksi; and
� ¼ 0:3.

8.6 Consider a rectangular plate of sides 2a and 2b. The origin of the Cartesian coordinate

system is taken at the plate center. The plate rests at its center upon columns and is

compressed by uniformly distributed forces qx applied parallel to the side 2a. Assuming

that the column support can be approximated by a point support, determine the critical

value of qx. Use the Ritz method and the approximate expression for the deflection in

the form

w ¼ C cos
�x

2a
þ cos

�y

2b

h i
:

8.7 Let a rectangular plate of sides a and b (a > bÞ with fixed edges be subjected to

compressive linearly varying loads qx ¼ q0ð1� y=bÞð < 1Þ. The load is applied to

short plate edges. The origin of the Cartesian coordinate system is attached at the

left upper corner of the plate. Determine the critical value of the applied compressive

load by the Ritz method. Assume that a ¼ 3m; b ¼ 1:5m; h ¼ 0:15m;  ¼ 0:5; E ¼
200GPa; and � ¼ 0:28, and the approximate expression for deflections is

w ¼ C x2 � a2
� �2

y2 � b2
� �2

:
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8.8 Derive Eq. (8.48).

8.9 Consider an unstiffened, simply supported rectangular plate of sides a and b and a

plate of the same geometry and boundary conditions but reinforced by a single long-

itudinal rib located along its centerline, as shown in Fig. 8.9. Compare the critical

values of the compressive forces qx uniformly distributed along the edges x ¼ 0; a
for the above two plates. Assume that a ¼ b ¼ 2m, h ¼ 0:15m, E ¼ 220GPa; and
� ¼ 0:3, and the rib has a cross section in the form of a channel section C75	 6. In

the buckling analysis, take into account the buckling stiffness of the rib in the plane

that is perpendicular to the plate middle plane.

8.10 A simply supported square plate is reinforced by three equally spaced stiffeners of

rectangular cross section of depth h1 and of width t. The plate is subjected to in-

plane uniform compressive forces qx that act parallel to the stiffeners. Determine the

critical value of the applied forces. Assume that the stiffeners and plate are made of the

same material and stiffeners are symmetrical about the plate middle plane. Use a ¼
5m; h ¼ 0:2m; h1 ¼ 0:4m; t ¼ 0:1m; E ¼ 210GPa; and � ¼ 0:3.

8.11 A long, simply supported rectangular plate (a=b ¼ 3Þ, subjected to uniform compres-

sive forces qx acting parallel to the long side a was reinforced by stiffeners symmetri-

cally placed about the plate middle surface. Three variants of locations of the stiffeners

had been discussed:

(a) First, the equally spaced transverse stiffeners (i.e., located in the perpendicular

direction with respect to qx) were suggested to locate at a distance equal to b;

(b) Secondly, the equally spaced transverse stiffeners were suggested to locate at a

distance b=2;
(c) Thirdly, only one longitudinal stiffener located along the plate centerline (i.e., in

the direction of the applied load) was suggested to apply.

Assuming buckling of the reinforced plate as a whole, determine the critical values of

the applied forces qx for all the above cases. If the geometrical and mechanical proper-

ties of the plate and stiffeners are known, draw conclusions about the efficient arrange-

ment of stiffeners for the problem under consideration from the point of view of the

buckling analysis.

8.12 Estimate the ultimate edge load of a rectangular plate, stiffened along both longitu-

dinal edges and uniformly compressed in the x direction. Assume that the plate is

simply supported along its edges and that the stiffeners and adjacent plate strips

simultaneously approach the compressive yield strength. Let a ¼ 900mm; b ¼ 450

mm; h ¼ 1mm; E ¼ 73GPa; � ¼ 0:3, and �y ¼ 415MPa:
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9

The Vibration of Plates

9.1 INTRODUCTION

In the preceding chapters, we have assumed that all external forces are applied
slowly: so slowly that the loads and the resulting stresses and deformations are
independent of time. In engineering practice, however, many components of
machines and structures are subjected to dynamic effects, produced by time-depen-
dent external forces or displacements. Dynamic loads may be created by moving
vehicles, wind gusts, seismic disturbances, unbalanced machine vibrations, flight
loads, sound, etc. Dynamic effects of time-dependent loads on structures are studied
in structural dynamics. Structural dynamics deals with time-dependent motions of
structures, primarily, with vibration of structures, and analyses of the internal forces
associated with them. Thus, its objective is to determine the effect of vibrations on
the performance of the structure or machine.

The dynamics of plates, which are continuous elastic systems, can be modeled
mathematically by partial differential equations based on Newton’s laws or by inte-
gral equations based on the considerations of virtual work. In practical applications
only the lateral vibration is of interest, and the effects of extensional vibrations in the
middle plane may be neglected. Therefore, the inertia forces, associated with the
lateral translation of the plate, are considered. In this chapter only the simplified
theory of plate vibrations is introduced; some physical phenomena, associated with,
for instance, damping effects, are not considered.

Damping effects are caused either by internal friction or by the surrounding
media. Although structural damping is theoretically present in all plate vibrations, it
has usually little or no effect on (a) the natural frequencies and (b) the steady-state
amplitudes; consequently, it can be safely ignored in the initial treatment of the
problem. We follow the same pattern, as used in earlier chapters, of looking first
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for exact solutions by solving the differential equations, then looking for approx-
imate solutions.

The derivation of the governing differential equation of motion of plates is, in
most cases, a simple extension of the static case by adding effective forces to the plate
that result from accelerations of the mass of the plate. These are the inertia forces.
For the most part, we take advantage of D’Alambert’s principle to add the inertia
forces as reversed effective forces. Other time-dependent forces may also be consid-
ered. The most common of these are damping forces.

We consider various kinds of motion of plates. There is a free vibration, which
occurs in the absence of applied loads but may be initiated by applying initial
conditions to the plate. The free vibration deals with natural characteristics of the
plates, and these natural vibrations occur at discrete frequencies, depending only on
the geometry and material of the plates. Then, there is a forced vibration, which
results from an application of time-dependent loads. Forced vibrations come in
two kinds: a harmonic response, when a periodic force is applied to the plate; and
a transient response, when the applied force is not a periodic force.

In deriving the governing differential equation of motion, we use the general
assumptions of Kirchhoff’s plate bending theory introduced in Sec. 1.3. To adapt the
elastic static equations derived for thin plates in Chapter 2, to model undamped
structural dynamics, we need to consider only the dependent variables (the deflec-
tions, strains, and stresses) as functions of time. Let the applied loads be some
functions of time, and explicitly include inertia forces in the surface lateral loads
according to D’Alambert’s principle. In this case, the forcing function appearing on
the right-hand side of the governing differential equation (2.24) for the bending of
thin plates becomes

p x; y; tð Þ � �h @
2w

@t2
x; y; tð Þ; ð9:1Þ

where both p and w are functions of time, as well as space; � is the mass density of
the material, and h is the plate thickness. In the forced vibrations p x; y; tð Þ causes the
dynamic response.

Thus, the differential equation of forced, undamped motion of plates has the
form

Dr2r2w x; y; tð Þ ¼ p x; y; tð Þ � �h @
2w

@t2
x; y; tð Þ: ð9:2Þ

9.2 FREE FLEXURAL VIBRATIONS OF RECTANGULAR PLATES

Consider a rectangular plate with arbitrary supports. Let us assume that certain
transverse surface loads distributed on the surface cause the particles, located in
the middle surface, to attain the deflections and velocities directed perpendicularly
to the initial (undeformed) middle surface. At a certain time, which is assumed to
be the initial, the plate is suddenly released from all external loads. The unloaded
plate, which has initial deflection and velocity, begins to vibrate. The particles
located in the middle surface move in the direction perpendicular to the plate
and, as a result, the plate becomes curved. Such vibrations are called free or
natural transverse vibrations. The plate will execute free or natural lateral vibrations.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



As stated previously, natural vibrations are functions of the material properties
and the plate geometry only, and are inherent properties of the elastic plate,
independent of any load. Thus, for natural or free vibrations, p x; y; tð Þ is set
equal to zero, and Eq. (9.2) becomes

Dr2r2w x; y; tð Þ þ �h @
2w

@t2
x; y; tð Þ ¼ 0: ð9:3Þ

Deflection w must satisfy the boundary conditions at the plate edge (these conditions
practically do not differ from those in the case of static equilibrium) and the follow-
ing initial conditions:

when t ¼ 0 : w ¼ w0 x; yð Þ; @w

@t
¼ v0 x; yð Þ; ð9:4Þ

where w0 and v0 are the initial deflection and initial velocity for point (x; y).
Equation (9.3) is the governing, fourth-order homogeneous partial differential

equation of the undamped, free, linear vibrations of plates. A complete solution of the
problem of a freely vibrating plate is reduced to determining the deflections at any
point for any moment of time. However, the most important part of the problem of
free flexural vibrations of plates is to determine the natural frequencies and the mode
shapes of the vibration (deflection surfaces in two dimensions) associated with each
natural frequency. For such a problem (like in buckling), Eq. (9.3) is an eigenvalue
problem. The natural frequencies are the eigenvalues and associated shape functions
are the eigenfunctions. Values of these parameters are necessary for establishing the
dynamic stresses caused by a variable load. A solution of Eq. (9.3) can be obtained
by applying the classical analytical and approximate methods discussed in Chapters
3, 4, and 6 for static plate bending problems.

Let us describe a general analytical method (the Fourier method) for determin-
ing the natural frequencies of a freely vibrating plate. To solve Eq. (9.3) and obtain
w x; y; tð Þ in general, one can assume the following solution:

w x; y; tð Þ ¼ A cos!tþ B sin!tð ÞW x; yð Þ; ð9:5Þ
which is a separable solution of the shape function W x; yð Þ describing the modes of
the vibration and some harmonic function of a time; ! is the natural frequency of the
plate vibration which is related to vibration period T by the relationship ! ¼ 2�=T .

Introducing Eq. (9.5) into Eq. (9.3), we have

Dr2r2W x; yð Þ � !2�hW ¼ 0: ð9:6Þ
Let us represent a solution of this equation in the form of a Fourier series. Requiring
the functionW to satisfy the boundary conditions and to be the solution of Eq. (9.6),
we obtain a system of homogeneous equations for the unknown constants. This
system has solutions that differ from zero only in the case when its determinant
� !ð Þ is equal to zero; therefore we obtain the frequency or characteristic equation,
which is

� !ð Þ ¼ 0: ð9:7Þ
This equation will have an infinite number of solutions which constitute the fre-
quency spectrum for a given plate. In general, the frequencies will depend on two
parameters: m and n (m ¼ 1; 2; . . . ; n ¼ 1; 2; . . .). The lowest frequency is called the
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frequency of the fundamental mode or the fundamental natural frequency and all other
frequencies are called the frequencies of higher harmonics, or overtones. For each
frequency !mn, there is a corresponding shape function Wmn x; yð Þ that, on the basis
of the homogeneous equations, is determined by a constant multiplier (which can be
assumed as being equal to unity). For example, in the case of a rectangular, simply
supported plate, the shape function may be taken as

W x; yð Þ ¼
X1
m¼1

X1
n¼1

Cmn sin
m�x

a
sin

n�y

b
; ð9:8Þ

where a and b are the plate dimensions and Cmn is the vibration amplitude for each
value of m and n. Substitution of Eq. (9.8) into Eq. (9.6) results in the homogeneous
algebraic equation

m4�4

a4
þ 2

m2�2

a2
n2�2

b2
þ n4�4

b4
� !

2�h

D
¼ 0: ð9:9Þ

Solving this equation for ! gives the natural frequencies

!mn ¼ �2
m2

a2
þ n2

b2

 ! ffiffiffiffiffiffi
D

�h

s
: ð9:10Þ

The fundamental natural frequency can be obtained by letting m ¼ 1; n ¼ 1. Note
that, again (as in the buckling analysis), the amplitude Cmn cannot be determined
from the linear eigenvalue problem.

For a square plate of dimension a, Eq. (9.10) becomes

!mn ¼
�2

a2

ffiffiffiffiffiffi
D

�h

s
m2 þ n2
� �

; ð9:11Þ

and the fundamental natural frequency is

!11 ¼
2�2

a2

ffiffiffiffiffiffi
D

�h

s
: ð9:12Þ

The fundamental mode of the flexural vibration is a single sine wave in the x and y
directions. Figure 9.1a shows a plate view executing the vibrations of the fundamen-
tal tone with the natural frequency !11. The maximum deflection is at the plate
center. The deflected surfaces that correspond to the natural frequencies !21 and
!12 are depicted in Fig. 9.1b and c; in each case there are the two maximum deflec-
tions and one of the axes of symmetry is a nodal line.

9.3 APPROXIMATE METHODS IN VIBRATION ANALYSIS

9.3.1 Variational methods

An exact solution of the governing differential equation (9.3) in closed form is
possible only for a limited number of cases regarding a plate’s geometry and its
boundary conditions. As mentioned previously, the natural fundamental frequencies
are of the greatest importance in practice. Therefore, one has to determine these
frequencies by the approximate methods discussed in Chapter 6.
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Here, we consider some variational methods for determining natural frequen-
cies of freely vibrating plates. First we apply Rayleigh’s principle for finding the
lowest natural frequency of a vibrating plate, which is of great interest in applied
vibration analysis. This principle is based on the following statement: if the vibrating
system is conservative (no energy is added or lost), then the maximum kinetic energy,
Kmax, must be equal to the maximum potential (strain) energy, Umax. Applying this
principle, we consider an elastic plate undergoing free vibrations with the funda-
mental mode as a system with one degree of freedom. Taking into account that only
free flexural vibrations are of interest, we can present the above principle as follows:

Umax ¼ Kmax: ð9:13Þ
This principle is essentially a restatement of the principle of conservation of energy
(see Sec. 2.6). The strain energy of the plate is described in detail in Sec. 2.6. The
kinetic energy of the plate is

K ¼ 1

2

ð ð
A

�h
@wðx; y; tÞ

@t

� �2
dxdy: ð9:14Þ

Assuming that the plate is undergoing harmonic vibrations, we can approximate the
vibrating middle surface of the plate by the equation

wðx; y; tÞ ¼ Wðx; yÞ sin!t; ð9:15Þ
where W x; yð Þ is a given continuous function that approximately represents the
shape of the plate’s deflected middle surface and satisfies at least the kinematic
boundary conditions and ! represents the unknown natural frequency of the plate
pertinent to the assumed shape function. Substituting the expression (9.15) into Eq.
(9.14) for the kinetic energy, we obtain

K ¼ !2

2
cos2 !t

ð ð
A

�hW2ðx; yÞdxdy: ð9:16Þ

It is evident, that the kinetic energy is a maximum when cos!t ¼ 1. Thus, we have

Fig. 9.1
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Kmax ¼
!2

2

ð ð
A

�hW2ðx; yÞdxdy ð9:17Þ

The strain energy is a maximum when the deflection is a maximum. For the deflected
middle surface, which is approximated by Eq. (9.15), Umax occurs when sin!t ¼ 1. It
can be easily shown that under this condition the maximum strain energy of the
vibrating plate is identical to Eq. (2.54), derived in Sec. 2.6 for the static case.

Substituting the expressions (2.54) and (9.17) for the maximum values of the
strain and kinetic energies, respectively, into Rayleigh’s principle (9.13), we obtain

!2 ¼ 2UmaxÐ Ð
A
�hW2ðx; yÞdxdy ; ð9:18Þ

where

Umax ¼
1

2

ð ð
A

D r2W
� �2þ2 1� �ð Þ @2W

@x@y

 !2

� @
2W

@x2
@2W

@y2

2
4

3
5

8<
:

9=
;dxdy: ð9:19Þ

The accuracy of determining the natural frequencies by Eq. (9.18) depends to a
considerable extent on the successful selection of the expression for W . Frequently,
the function W is chosen as an expression that is proportional to a static deflection
of a plate of interest with the same boundary conditions as for the plate of interest
under a uniformly distributed lateral surface load p. This is equivalent to the assump-
tion that the plate surface that corresponds to the fundamental mode is identical to
that deflected by a uniform distributed load. The approximate lowest or fundamental
frequency calculated from Rayleigh’s principle is always higher than the ‘‘exact’’
values, since we have arbitrarily stiffened the plate by assuming a modal shape,
thus increasing its frequency.

Equation (9.18) determines a frequency ! only in the first approximation. A
more accurate frequency value can be obtained by using the Ritz method discussed in
Sec. 6.6 for static plate problems. Being applied to the plate vibration problems, this
method represents a generalization of Rayleigh’s principle by including more than
one parameter in the expression of the shape function. In this way, not only a more
accurate value for the lowest natural frequency can be obtained but also additional
information concerning the higher frequencies and pertinent mode shapes is gained.

Assuming the shape function Wðx; yÞ in the form of a series, we can write

Wðx; yÞ ¼
Xn
i¼1

CiWiðx; yÞ: ð9:20Þ

The unknown coefficients Ci are obtained from the minimum total energy principle
(see Secs 2.6 and 6.6). Thus, based on Eq. (6.44), we may write

@ðUmax � KmaxÞ
@Ci

¼ 0 ði ¼ 1; 2; 3; . . . ; nÞ: ð9:21Þ

Inserting Eq. (9.20) into Eqs (9.17), (9.19) and performing the Ritz procedure,
described by Eq. (9.21), we obtain, after integration of the definite integrals, the set
of homogeneous linear algebraic equations in Ci. In order that at least one coefficient
be different from zero, we equate the determinant of this system to zero and obtain
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the frequency (or the characteristic) equation (9.7), whose solutions, as mentioned
previously, constitute the frequency spectrum for a given plate.

Example 9.1

Determine an approximate value of the natural frequencies for the clamped rectan-
gular plate with dimensions 2a and 2b, as shown in Fig. 9.2.

Solution

Assume that W x; yð Þ is given by the following expression (the first approximation):

W x; yð Þ ¼ C x2 � a2
� �2

y2 � b2
� �2

: ðaÞ

This function satisfies the boundary conditions on the plate edges, i.e.,

W ¼ @W

@x
¼ 0

				
x¼�a

;W ¼ @W

@y
¼ 0

				
y¼�b

:

Substituting the expression (a) into Eq. (9.18) and evaluating the integrals, we obtain
the fundamental natural frequencies in the form

!11 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

1

a4
þ 1

b4
þ 28

3272
1

a2b2

� �s ffiffiffiffiffiffi
D

�h

s
:

For a square plate a ¼ bð Þ, the frequency becomes

!11 ¼
9:08

a2

ffiffiffiffiffiffi
D

�h

s
:

This result agrees (within 1.04%) with the value obtained from more accurate com-
putation [1,2].

Approximate values of natural frequencies in rectangular plates with various
combinations of boundary conditions, obtained by the Ritz method, are given in
Ref. [2,3].

Fig. 9.2
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9.3.2 The Galerkin method

The Galerkin method, introduced in Sec. 6.5, also may be used for determining the
natural frequencies in vibrating plates. Assume again that a shape function for the
plate is approximated by a series (9.20), which satisfies, term by term, all boundary
conditions. Then, following the general procedure of the Galerkin method (see Sec.
6.5), the unknown coefficients Ci can be determined from the orthogonality con-
ditions (6.37). For the vibration plate problems described by Eq. (9.6), the ortho-
gonality conditions together with the expansion (9.20) result in the following
equation:

ð ð
A

D
Xn
i¼1

Cir2r2Wi � �h!2
Xn
i¼1

CiWi

 !
Wkdxdy ¼ 0; k ¼ 1; 2; . . . ; n:

ð9:22Þ
The numerical implementation of the above condition leads to the Galerkin

system of linear algebraic homogeneous equations of the form

a11C1 þ a12C2 þ . . . . . . . . . . . . . . . ¼ 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1C1 þ an2C2 þ . . . . . . . . . . . . . . . ¼ 0;

ð9:23Þ

where

aik ¼ aki ¼
ð ð

A

Dr2r2Wi � �h!2Wi

� �
Wkdxdy: ð9:24Þ

This system of homogeneous equations has a nontrivial solution if its determinant
made up of the coefficients aik is equal to zero. The latter results in the nth order
characteristic equation (9.7) for determining the natural frequencies.

Let us represent the shape function Wðx; yÞ for a rectangular plate with dimen-
sions a and b in the form

Wðx; yÞ ¼
X
i

X
k

CikWikðx; yÞ; ð9:25Þ

where Cik are unknown coefficients representing the amplitudes of the free vibration
modes and Wikðx; yÞ is the product of the pertinent eigenfunctions of lateral beam
vibrations,

Wikðx; yÞ ¼ FiðxÞFkðyÞ; ð9:26Þ
which satisfy the prescribed boundary conditions on the edges x ¼ 0; x ¼ a; and y ¼
0; y ¼ b. In Eq. (9.26), FiðxÞ and FkðyÞ represent the ith and kth modes of freely
vibrating beams with spans a and b, respectively.

Example 9.2

Determine the natural frequencies of the rectangular, simply supported plate of sides
a and b with a uniformly distributed mass m and with four concentrated masses M,
as shown in Fig. 9.3.
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Solution

We apply the Galerkin method for the solution of this problem. We modify slightly
Eq. (9.24) for the coefficients aik of Galerkin’s system of equations, to the present
problem, as follows:

aik ¼ aki ¼
ð ð

A

Dr2r2Wi �m!2Wi

� �
Wkdxdy�

X
M!2WiWk; ð9:27Þ

where m andM are uniformly distributed and concentrated masses, respectively. The
deflected surface of the vibrating plate is approximated by the series

W x; yð Þ ¼
X1
i¼1

X1
k¼1

Cik sin
i�x

a
sin

k�y

b
; ðaÞ

which satisfies the simply supported boundary conditions.

The first approximation

Retaining only the first term in the expansion (a), we obtain

a11 ¼
ð ð

A

D
@4W1

@x4
þ 2

@4W1

@x2@y2
þ @

4W1

@y4

 !
�m!2W1

" #
W1dxdy� 4M!2W1:

ð9:28Þ
Introducing in the above W1 ¼ sinð�x=aÞ sinð�y=bÞ and substituting for a11 from
(9.28) into the Galerkin equation (9.24), we obtain, after some operations, this
equation in the following form:

D�4
1

a2
þ 1

b2

� �2

�m!2

" # ða
0

ðb
0

sin2
�x

a
sin2

�y

b
dxdy� 4M!2 1

4
¼ 0: ðfÞ

Integrating Eq. (f) yields the following expression for the natural frequency:

! ¼ �2
1

a2
þ 1

b2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

mþ 4M
ab

vuut : ð9:29Þ

Fig. 9.3
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Using more additional terms in Eq. (a), the ‘‘exact’’ value of the natural frequency
may be obtained. The application of the fourth approximation to this problem for
the square plate (a ¼ b) has shown that the refinement over the first approximation
does not exceed 1.2%. Thus, the accuracy of the first approximation may be con-
sidered as quite satisfactory.

9.4 FREE FLEXURAL VIBRATIONS OF CIRCULAR PLATES

Let us consider a freely vibrating, solid, circular plate of radius a, having a constant
thickness h. Using the polar coordinates, r and ’, with the origin at the center of the
plate, we can rewrite the governing differential equation of the free vibration of
plates, Eq. (9.3), as follows:

Dr2
rr2

r wþ �h @
2w

@t2
¼ 0; ð9:30Þ

where r2
r is the Laplace operator given by Eq. (4.5). Assume that the deflection of the

middle surface of the plate can be approximated as

w r; ’; tð Þ ¼ W r; ’ð ÞF tð Þ: ð9:31Þ
Introducing the above into Eq. (9.30), yields

DF tð Þr2
rr2

rW þ �hW d2F

dt2
¼ 0 or

Dr2
rr2

rW

�hW
¼ �

d2F
dt2

F
: ð9:32Þ

Since the left-hand side of this equation is a function of variables r and ’ whereas the
right-hand side depends only on time variable t, we can conclude that the ratios in
the left- and right-hand sides of Eq. (9.32) must be constant. Denote the afore-
mentioned constant ratio on the right-hand side of Eq. (9.32) by !2, i.e.,

d2F

dt2
¼ �!2F; ð9:33Þ

where ! is the natural frequency of vibrations. Solving this for F , yields

F ¼ A sin !tþ ’0ð Þ; ð9:34Þ
where ’0 is an arbitrary constant. The shape functionW r; ’ð Þ satisfies the differential
equation

Dr2
rr2

rW

�hW
¼ !2 or r2

rr2
rW � �4W ¼ 0; ð9:35Þ

where

�4 ¼ !2�h

D
: ð9:36Þ

Let us go from the variable r to the dimensionless variable � ¼ �r. Then, Eq. (9.35)
becomes

@2

@�2
þ 1

�

@

@�
þ 1

�2
@2

@’2

 !2

W �W ¼ 0: ð9:37Þ
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Its solution is of the following form [4,5]:

W r; ’ð Þ ¼ C1Jn �ð Þ þ C2In �ð Þ þ C3Yn �ð Þ þ C4Kn �ð Þ½ � sin n’þ 	ð Þ; ð9:38Þ
where n ¼ 0; 1; . . . ;1; C1; . . . ;C4 are constants of integration; and JnðÞ; InðÞ; YnðÞ;
and KnðÞ are Bessel functions of the first and second kind of the real and imaginary
arguments, respectively [4,5], and 	 is a constant. Since the origin of the polar
coordinate system is taken to coincide with the center of the circular plate having
no internal holes or supports at the center, the terms Yn �ð Þ and Kn �ð Þ must be
discarded ito avoid infinite deflections and stresses at r ¼ 0. When these simplifica-
tions are employed, Eq. (9.38) becomes, for a typical mode,

W ¼ C1Jn �ð Þ þ C2In �ð Þ½ � sin n’þ 	ð Þ: ð9:39Þ
Assume that the plate is clamped along its contour. The boundary conditions are

W ¼ @W

@r
¼ 0

				
r¼a

ð9:40Þ

When Eq. (9.39) is substituted into the above boundary conditions, the existence of a
nontrivial solution yields the following characteristic determinant:

Jnð�Þ Inð�Þ
J 0
nð�Þ I 0

nð�Þ
				

				 ¼ 0; ð9:41Þ

where the primes are used to indicate a differentiation with respect to the argument,
in this case to �. Using the following recursion relationships [4,5]:

�J 0
n �ð Þ ¼ nJn �ð Þ � �Jnþ1 �ð Þ

�I 0
n �ð Þ ¼ nIn �ð Þ þ �Inþ1 �ð Þ;

ð9:42Þ

and expanding Eq. (9.41) gives

Jn �ð ÞInþ1 �ð Þ þ In �ð ÞJnþ1 �ð Þ ¼ 0: ð9:43aÞ
The eigenvalues � determining the frequencies ! are the roots of Eq. (9.43a). The
Bessel functions are widely tabulated for small values of n [4].

For circular plates simply supported all around (w ¼ 0 and Mr ¼ 0), the fre-
quency equation is of the form

Jnþ1ð�Þ
Jnð�Þ

þ Inþ1ð�Þ
Inð�Þ

¼ 2�

1� � : ð9:43bÞ

If a plate edge is completely free (Mr ¼ 0 and Vr ¼ 0), then the frequency equation
can be represented as follows (for � � n) [3]:

Jnð�Þ
J 0
nð�Þ

ffi �2 þ 2ð1� �Þn2� �
Inð�Þ=I 0

nð�Þ
� �� 2�ð1� �Þ

�2 � 2ð1� �Þn2 ð9:43cÞ

For more information concerning the above problems, see Ref. [3].
The natural frequencies and pertinent mode shapes for solid circular plates can

be also calculated by using the Ritz or Galerkin methods, as indicated in Sec. 9.3. Let
us illustrate this procedure.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Example 9.3

Determine the fundamental natural frequency of axisymmetric vibrations of a solid
circular plate with radius R. The plate is clamped along its boundary.

Solution

We take the shape function in the first approximation as follows:

W ¼ C R2 � r2
� �

:2 ðaÞ
Evidently, the above expression satisfies the given boundary conditions (w ¼ 0 and
@w=@r ¼ 0) exactly. We apply the Ritz method. It can be shown that for circular
plates with a fastened edge the expression for the potential energy (4.13) becomes
simplified:

Umax ¼
ð ð

A

D

2

@2W

@r2
þ 1

r

@W

@r
þ 1

r2
@2W

@’2

 !2

rdrd’: ð9:44aÞ

The corresponding expression for the kinetic energy in polar coordinates has the
form

Kmax ¼
!2

2

ð ð
A

�hW2ðr; ’Þrdrd’: ð9:44bÞ

Substituting for W from Eq. (a) into expressions (9.44) and evaluating the corre-
sponding integrals, one obtains

Umax ¼ C2D
�

2
R6 32

3
and Kmax ¼

!2

2
C2�R10 1

10
�h: ðbÞ

Then, the fundamental natural frequency (the first approximation) may be found
from Eq. (9.18), as follows:

!11 ¼
10:33

R2

ffiffiffiffiffiffi
D

�h

s
:

Notice that the second approximation of this frequency differs from the above value
by 1.175% only.

9.5 FORCED FLEXURAL VIBRATIONS OF PLATES

The equation of motion of plates under a variable, time-dependent, transverse load
p x; y; tð Þ is given by Eq. (9.2). A solution of the above nonhomogeneous, partial
differential equation must satisfy the prescribed boundary and initial conditions. An
exact solution can be obtained by using the following procedure. First, let us solve
the problem of free vibrations of a plate, and determine the natural frequencies !mn

and the corresponding mode shapes Wmn. Then, let us introduce a load p x; y; tð Þ in
the form of series extended in eigenfunctions (the mode shapes), i.e.,

p ¼
X1
m¼1

X1
n¼1

fmn tð ÞWmn x; yð Þ: ð9:45Þ
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We seek a solution of Eq. (9.2) in the form

w ¼
X1
m¼1

X1
n¼1

Fmn tð ÞWmn x; yð Þ: ð9:46Þ

The following equation takes place for the function Fmn:

€FFmn þ !2
mnFmn ¼

1

�h
fmn tð Þ; ð9:47Þ

from which

Fmn ¼ Amn cos!mntþ Bmn sin!mntþ F ðpÞ
mn tð Þ ð9:48Þ

and

w ¼
X1
m¼1

X1
n¼1

Amn cos!mntþ Bmn sin!mntþ F ðpÞ
mn tð Þ

h i
Wmnðx; yÞ ð9:49Þ

where F ðpÞ
mn is a particular solution of Eq. (9.2); its form depends on fmn, i.e., how a

given load p varies with time. The constants Amn and Bmn are determined from initial
conditions: namely, at t ¼ 0

w ¼ w0 x; yð Þ and
@w

@t
¼ v0 x; yð Þ: ð9:50Þ

Example 9.4

Determine the vibration modes for a simply supported rectangular plate with dimen-
sions a and b. The plate is subjected to a surface transverse load varying as
p ¼ p0 x; yð Þ cos�t, where � is the frequency of forced vibrations, which is equal
to the frequency of a disturbing loading.

Solution

Let us expand an applied load into the series

pðx; y; tÞ ¼ cos�po x; yð Þ ¼ cos�t
X1
m

X1
n

Amn sin 	mx sin 
ny; ð9:51Þ

where

Amn ¼
4

ab

ða
0

ðb
0

p0ðx; yÞ sin 	mx sin 
nydxdy; 	m ¼ m�

a
; 
n ¼

n�

b
: ð9:52Þ

The deflected surface of the vibrating plate can be approximated by the series (9.46)
where

Wmmðx; yÞ ¼ sin 	mx sin 
ny ð9:53Þ
The particular solution, F ðpÞ

mnðtÞ, may be found from Eq. (9.47) by letting fmnðtÞ ¼
cos�t:

We obtain

F ðtÞ
mn ¼

1

�h

cos�t

!2
mn ��2

ð9:54Þ
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Substituting the above into Eq. (9.49) and evaluating the constants Amn and Bmn

from the assumption that the plate is at rest at the initial moment (i.e., at
t ¼ 0 w ¼ 0 and @!=@t ¼ 0), we obtain the following expression for the deflected
surface of the vibrating plate:

w ¼ 1

�h

X1
m¼1

X1
n¼1

Amn

!2
mn ��2

ðcos�t� cos!mntÞ sin 	mx sin 
ny ð9:55Þ

In the case when the load frequency � will coincide with any natural frequen-
cies of the plate, the plate will vibrate in the resonance state. In fact, if for any m and
n, � ¼ !mn, then the corresponding term of the series (9.55) becomes indetermined of
the type 0=0. Evaluating this indeterminate form yields

wmn ¼
1

�h

Amn

2!mn

t sin!mnt sin 	mx sin 
ny: ð9:56Þ

This expression represents a vibration with an amplitude that indefinitely increases
with time.

If p0 ¼ const, then Amn ¼ 16p0=mn�2 for m ¼ 1; 3; 5 . . . ; n ¼ 1; 3; 5; . . .
Eq. (9.55) will be of the form:

w ¼ 16p0
�h�2

X1
m¼1;3;...

X1
n¼1;3;...

cos�t� cos!mnt

mnð!2
mn ��2Þ sin 	mx sin 
ny ð9:57Þ

Here, we did not take into account the resistance of surrounding media and
internal friction. These factors can have a pronounced effect on the vibration pro-
cess. As a result, the vibrations will have a gradually diminishing amplitude.

This chapter can serve only as introduction to the dynamic behavior of plates;
for further analysis, the interested reader is referred to other works [1,3,6,7].

PROBLEMS

9.1 Consider free harmonic vibrations of a rectangular plate with simply supported edges

x ¼ 0 and x ¼ a. Determine the natural frequencies and associated mode shapes if

(a) the edges y ¼ 0 and y ¼ b are free, (b) the edges y ¼ 0 and y ¼ b are clamped,

(c) the edge y ¼ 0 is simply supported and the edge y ¼ b is free, and (d) the edge y ¼
0 is simply supported and the edge y ¼ b is clamped. Use wðx; y; tÞ ¼ FðyÞ
sinðm�x=aÞ cos!t.

9.2 Determine an approximate value of the lowest natural frequency of a rectangular plate.

The edges x ¼ 0 and x ¼ a are built-in and the edges y ¼ 0 and y ¼ b are simply

supported. Use the Galerkin method. Take the shape function, Wðx; yÞ, in the form

of Eq. (9.25), where

FiðxÞ ¼ sin �ix� sinh �ix� aðcos �ix� cosh �ixÞ;
FkðyÞ ¼ sin�ky; and �i ¼ i�=a; �k ¼ k�=b; i ¼ ð2nþ 1Þ=2; ðn ¼ 1; 2; . . .Þ

9.3 Redo Problem 9.1 by employing the Ritz method. Take Wðx; yÞ in the form

Wðx; yÞ ¼
X1
m¼1

X1
n¼1

Amn 1� cos
2m�x

a

� �
sin

n�y

b
:
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9.4 Determine an approximate value of the fundamental natural frequency for a rectan-

gular plate. The edges y ¼ 0 and y ¼ b are simply supported while the edge x ¼ 0 is

clamped at the edge.

9.5 Consider free, axisymmetric harmonic vibrations of a circular solid plate with radius R.

Calculate the three lowest natural frequencies if (a) the plate edge r ¼ R is simply

supported and (b) the plate edge r ¼ R is clamped.

9.6 Determine the lowest natural frequency of the rectangular, simply supported plate of

sides a and b with a uniformly distributed mass m and with a concentrated mass M

applied at the plate center (x ¼ a=2 and y ¼ b=2).
9.7 Determine the amplitude of the forced vibrations of a rectangular simply supported

plate of sides a and b. The plate is subjected to the following time-dependent, trans-

verse surface load:

p ¼ p0 sin
�x

a
sin2

�y

a
sin �t:

.

9.8 For approximate description of elastic vibrations of a rectangular plate (0 � x � a;
0 � y � b) with thickness h, this plate is replaced by a single degree of freedom system.

The mass of the plate is concentrated at the plate center. Determine the corresponding

reduction coefficient (mass factor), ensuring such an equivalent replacement if the plate

is simply supported and its deflection surface is approximated by the following expres-

sion that satisfies all the boundary conditions:

W ¼ A cos
�x

2a
cos

�y

2b

(the origin of the coordinate system is taken at the plate center).

9.9 Redo Problem 9.8 for the plate clamped along edges x ¼ �a and y ¼ �b. Take W in

the form:

W ¼ A

a4b4
x2 � a2
� �2

y2 � b2
� �2

:
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10

Introduction to the General Shell
Theory

10.1 SHELLS IN ENGINEERING STRUCTURES

Thin shells as structural elements occupy a leadership position in engineering and, in
particular, in civil, mechanical, architectural, aeronautical, and marine engineering
(Fig. 10.1). Examples of shell structures in civil and architectural engineering are
large-span roofs, liquid-retaining structures and water tanks, containment shells of
nuclear power plants, and concrete arch domes. In mechanical engineering, shell
forms are used in piping systems, turbine disks, and pressure vessels technology.
Aircrafts, missiles, rockets, ships, and submarines are examples of the use of shells
in aeronautical and marine engineering. Another application of shell engineering is
in the field of biomechanics: shells are found in various biological forms, such as the
eye and the skull, and plant and animal shapes. This is only a small list of shell forms
in engineering and nature.

The wide application of shell structures in engineering is conditioned by their
following advantages:

1. Efficiency of load-carrying behavior.
2. High degree of reserved strength and structural integrity.
3. High strength : weight ratio. This criterion is commonly used to estimate a

structural component efficiency: the larger this ratio, the more optimal is
a structure. According to this criterion, shell structures are much superior
to other structural systems having the same span and overall dimensions.

4. Very high stiffness.
5. Containment of space.

In addition to these mechanical advantages, shell structures enjoy the unique posi-
tion of having extremely high aesthetic value in various architectural designs.

Part II

Thin Shells
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(a)

(b)

Fig. 10.1
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Contemporary engineers using scientifically justified methods of design tend to
develop a structure that combines maximum strength, functional perfection, and
economy during its lifetime. In addition, it is important that the best engineering
solution ensues, other things being equal, at the expense of the selection of structural
form and by not increasing the strength properties of the structure, e.g., by increas-
ing its cross section. Note that the latter approach is easier. Shell structures support
applied external forces efficiently by virtue of their geometrical form, i.e., spatial
curvatures; as a result, shells are much stronger and stiffer than other structural
forms.

10.2 GENERAL DEFINITIONS AND FUNDAMENTALS OF SHELLS

We now formulate some definitions and principles in shell theory. The term shell is
applied to bodies bounded by two curved surfaces, where the distance between the
surfaces is small in comparison with other body dimensions (Fig. 10.2).

The locus of points that lie at equal distances from these two curved surfaces
defines the middle surface of the shell. The length of the segment, which is perpendi-
cular to the curved surfaces, is called the thickness of the shell and is denoted by h.
The geometry of a shell is entirely defined by specifying the form of the middle
surface and thickness of the shell at each point. In this book we consider mainly
shells of a constant thickness.

Shells have all the characteristics of plates, along with an additional one –
curvature. The curvature could be chosen as the primary classifier of a shell because
a shell’s behavior under an applied loading is primarily governed by curvature (see
Sec. 10.4). Depending on the curvature of the surface, shells are divided into cylind-
rical (noncircular and circular), conical, spherical, ellipsoidal, paraboloidal, toroidal,
and hyperbolic paraboloidal shells. Owing to the curvature of the surface, shells are
more complicated than flat plates because their bending cannot, in general, be sepa-
rated from their stretching. On the other hand, a plate may be considered as a special
limiting case of a shell that has no curvature; consequently, shells are sometimes
referred to as curved plates. This is the basis for the adoption of methods from the
theory of plates, discussed in Part I, into the theory of shells.

There are two different classes of shells: thick shells and thin shells. A shell is
called thin if the maximum value of the ratio h=R (where R is the radius of curvature
of the middle surface) can be neglected in comparison with unity. For an engineering
accuracy, a shell may be regarded as thin if [1] the following condition is satisfied:

Fig. 10.2
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max
h

R

� �
� 1

20
: ð10:1Þ

Hence, shells for which this inequality is violated are referred to as thick shells. For a
large number of practical applications, the thickness of shells lies in the range

1

1000
� h

R
� 1

20
;

i.e., in the range of thin shells, and therefore the theory of thin shells presented in this
book is of great practical importance.

Note also that the inequality (10.1) defines very roughly the boundary between
thin and thick shells. In reality, it depends also upon other geometrical parameters of
shells, the character of their boundary conditions, smoothness of a variation of
external loads over the shell surface, etc.

10.3 BRIEF OUTLINE OF THE LINEAR SHELL THEORIES

The most common shell theories are those based on linear elasticity concepts. Linear
shell theories predict adequately stresses and deformations for shells exhibiting small
elastic deformations; i.e., deformations for which it is assumed that the equilibrium
equation conditions for deformed shell surfaces are the same as if they were not
deformed, and Hooke’s law applies.

For the purpose of analysis, a shell may be considered as a three-dimensional
body, and the methods of the theory of linear elasticity may then be applied.
However, a calculation based on these methods will generally be very difficult and
complicated. In the theory of shells, an alternative simplified method is therefore
employed. According to this method and adapting some hypotheses (see Sec. 12.1),
the 3D problem of shell equilibrium and straining may be reduced to the analysis of
its middle surface only, i.e. the given shell, as discussed earlier as a thin plate, may be
regarded as some 2D body. In the development of thin shell theories, simplification is
accomplished by reducing the shell problems to the study of deformations of the
middle surface.

Shell theories of varying degrees of accuracy were derived, depending on the
degree to which the elasticity equations were simplified. The approximations neces-
sary for the development of an adequate theory of shells have been the subject of
considerable discussions among investigators in the field. We present below a brief
outline of elastic shell theories in an historical context.

Love was the first investigator to present a successful approximation shell
theory based on classical linear elasticity [2]. To simplify the strain–displacement
relationships and, consequently, the constitutive relations, Love applied, to the shell
theory, the Kirchhoff hypotheses developed originally for the plate bending theory,
together with the small deflection and thinness of the shell assumptions. This set of
assumptions is commonly called the Kirchhoff–Love assumptions. The Love theory of
thin elastic shells is also referred to as the first-order approximation shell theory. In
spite of its popularity and common character, Love’s theory was not free from some
deficiencies, including its inconsistent treatment of small terms, where some were
retained and others were rejected, although they were of the same order. This meant
that, for certain shells, Love’s differential operator matrix on the displacements, in
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the equations of equilibrium, became unsymmetric. Obviously, this violated Betti’s
theorem of reciprocity. Love’s theory also contained some other inconsistencies. The
need for a mathematically rigorous two-dimensional set of the shell equations
employing the Kirchhoff–Love assumptions led to different versions of the first-
order approximation theories.

E. Reissner [3] developed the linear theory of thin shells (also the first-order
approximation theory) where some inadequacies of Love’s theory were eliminated.
He derived equations of equilibrium, strain–displacement relations, and stress resul-
tants expressions for thin shells directly from the three-dimensional theory of elas-
ticity, by applying the Love–Kirchhoff hypotheses and neglecting small terms of
order z=Ri (where Ri i ¼ 1; 2ð Þ are the radii of the curvature of the middle surface)
compared with unity in the corresponding expressions.

Sanders [4] also developed the first-order-approximation shell theory from the
principle of virtual work and by applying the Kirchhoff–Love assumptions. Sanders’
theory of thin shells has removed successfully the inconsistencies of the Love theory.
A version that retains terms of magnitude compatible with those retained by
E. Reissner and resolves the inconsistency in the expression for twist was developed
by Koiter [5].

Timoshenko’s theory of thin shells [6] was very close to the Love theory.
General relations and equations were obtained by applying the Kirchhoff–Love
hypotheses and neglecting terms z=Ri in comparison with unity. Naghdi [7,8] ana-
lyzed the accuracy of the Love–Kirchhoff theory of thin elastic shells.

A second class of thin elastic shells, which is commonly referred to as higher-
order approximation, has also been developed. To this grouping it is possible to
assign all linear shell theories in which one or another of the Kirchhoff–Love
hypotheses are suspended. First, we consider some representative theories in which
the thinness assumption is delayed in derivation while the rest of the postulates are
retained. In this case, the order of a particular approximate theory will be established
by the order of the terms in the thickness coordinate that is retained in the strain and
constitutive equations.

Lur’ye [9], Flügge [10], and Byrne [11] independently developed the second-
order approximation theory of shells. The general relations and equations of this
theory are the direct result of the application of the Kirchhoff hypotheses together
with the small-deflection assumption to the corresponding equations of the three-
dimensional theory of elasticity. The second-order approximation theory attempts a
more careful discard of terms z=Ri. It retains these terms in comparison with unity in
the strain–displacement relations and stress resultant equations. Applications of this
theory have generally been restricted to circular cylindrical shells. In addition, the
general relations and equations of this second-order approximation shell theory are
found to be cumbersome for application.

Novozhilov [1] developed another version of the second-order approximation
theory. Just as Lur’ye–Flügge–Byrne theory, he obtained the strain–displacement
relations from the three-dimensional theory of elasticity by applying Kirchhoff’s
assumptions. Then, he made use of the strain energy expression to derive the for-
mulas for the stress resultants and couples (again by applying the Kirchhoff hypoth-
eses) and for determining the terms to be disregarded. Novozhilov developed the
criterion for simplifying the governing equations and relations of the general theory
of thin shells based on Kirchhoff’s hypotheses. He proved that the errors introduced
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by Kirchhoff’s assumptions into the small-deflection shell theory were of the order
h=Ri in comparison with unity [12].

Valuable contributions to the general theory of thin shells were given by
Gol’denveizer [13]. He was the first to formulate the conditions for compatibility
of strain components in the general theory of shells.

The second-order approximation equations were derived by Vlasov [14]
directly from the general three-dimensional linear elasticity equations for a thick
shell. The assumption that the transverse normal and shear strain components
may be neglected for thin shells was made, and the remaining strains were repre-
sented by the first three terms of their series expansion. The assumption of zero
transverse normal strain as well as zero transverse shear strains permits a rapid
transition from the three-dimensional theory to the two-dimensional equations of
the thin shell theory.

Another class of second-order approximation theories appeared in which the
assumptions on the vanishing of the transverse normal strain and on the preserva-
tion of the normals was abandoned. Such theories, which incorporated the trans-
verse shear and normal stress effects, were proposed by E. Reissner [15,16], Naghdi
[17], and others. A comprehensive analysis of the first- and higher-order approxima-
tion theories and of the corresponding governing equations for elastic shells was
made by Kraus [18], Leissa [19], etc.

The small-defection shell theories discussed above were formulated from the
classical linear theory of elasticity. It is known that the equations of these theories,
which are based on Hooke’s law and the omission of nonlinear terms in both the
equations for strain components and equilibrium equations, have a unique solution
in every case. In other words, a linear shell theory determines a unique position of
equilibrium for every shell with prescribed load and constraints. In reality, however,
a solution of physical shell problems is not always unique. A shell under identical
conditions of loading and constraints may have several possible positions of equili-
brium. A theory that takes into account finite or large deformations is referred to as
a geometrically nonlinear theory of thin shells. Additionally, a shell may be physically
nonlinear with respect to the stress–strain relations.

E. Reissner [20] derived a nonlinear theory of symmetrically loaded shells of
revolution. In this theory, the small-deflection assumption was abandoned while the
remaining assumptions of the general higher-order approximation theories were
retained. Derivations of a more general geometrically nonlinear theory of thin shells
have been carried out by Naghdi and Nordgren [21], Sanders [22], and Koiter [23].
Vlasov [14] derived a set of equations for nonlinear shallow shells. From these
equations, as a particular case, von Karman equations describing finite deformations
for plates, discussed in Sec. 7.4, followed. A subsequent development of the general
nonlinear theory of thin shells has been made by Mushtari and Galimov [24],
Simmonds and Danielson [25], etc.

A number of specialized shell theories were developed to include features of
special types of shells, in parallel with the evolution of the general theories of thin
shells discussed above. The factors influencing the assumptions and domains of
applications of these specialized shell theories have been a shell geometry, the defor-
mation ranges, the loading and stress conditions, the particular shell behavior
desired, etc. Most of these theories are based on Love’s first-order approximation.
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The membrane theory of thin shells may be presented as the first example of
such a type of the specialized shell theory. The general form of the governing equa-
tions of the membrane theory of thin shells was established by Beltrami [26] and
Lecornu [27] in the last century. The membrane theory of shells was intensively
evolving. H. Reissner [28] developed the membrane theory of thin shells of revolu-
tion under unsymmetric loads. Sokolovskii [29] reduced the equations of the mem-
brane theory to canonical form and revealed a number of their characteristic
properties. Pucher [30] discovered the usefulness of Airy’s stress function for the
solution of membrane problems in shells of an arbitrary form.

Another example of the specialized shell theory is the theory of shallow shells.
Donnel [31], Vlasov [14], and Mushtari [32] independently developed a simplified
engineering theory of thin shells of a general form. Due to their simplicity, the
governing equations of this theory were found to be extremely convenient for solving
many engineering shell problems. Apart from the Kirchhoff–Love hypotheses, some
additional assumptions that simplify the strain–displacement relations, equilibrium,
and compatibility equations were used in deriving these equations. It turned out that
the Donnel–Vlasov–Mushtari theory could be applied with sufficient accuracy to
shallow shells. Shallow shells have geometries that are close to that of a thin
plate. Such shells have a wide application in engineering, for example in roof struc-
tures, which have a relatively small rise compared with their span. Notice that the
above-mentioned theory may also be applied to non-shallow shells whose state of
stress is characterized by rapidly varying stress components along the coordinates of
the middle surface. Shallow shells are commonly referred to as curved plates.
Marguerre established the governing equations for plates having an initial curvature
[33].

Shells of revolution, a very important class of thin shells, have many technical
applications in engineering. The theory of thin shells of revolution may serve as one
more example of the specialized shell theories. H. Reissner presented a classical
formulation of the bending problems for a shell of revolution [28] and studied a
spherical shell under axisymmetric bending. He reduced the differential equations of
the spherical shell to a convenient form and then applied the asymptotic method for
their integration. Meissner [34] was able to generalize Reissner’s results to symme-
trical deformation of shells of revolution of an arbitrary shape and having a variable
thickness. Hoff [35] analyzed circular conical shells under an arbitrary loading.
Flügge gave general solutions for spherical and conical shells subjected to asymme-
trical loading [36]. His approach was based on the classical displacement method.

Wissler analyzed toroidal shells [37]. By convention, cylindrical shells are fre-
quently considered apart from the shells of revolution, although they technically fall
into this class of shells. The analysis of cylindrical shells for general surface loading
occupies a prominent place in the literature because of their wide practical signifi-
cance and the relative simplicity of the theory. We should mention that Flügge
derived the governing differential equations for circular cylindrical shells in terms
of displacements [36]. Parkus derived the equations for a cylinder of an arbitrary
cross section [38]. It should be noted that radical simplifications underlying the
relations and equations of the general theory of cylindrical shells were introduced
by Donnel [31], Dishinger [39], Hoff [40], and Vlasov [14]. Novozhilov [1] derived the
governing differential of the general theory of cylindrical shells of an arbitrary shape
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using complex variables and pointed out some possible simplifications of these equa-
tions.

The concept of the edge effect, introduced first by Love [2], applied to shells of
revolution, is of greatest importance in an engineering analysis of thin shells. Love
showed that a first approximation to a general solution might be obtained in the
form of the sum of the solutions of the membrane equations and the equations for
the edge effect. Integrals of the latter equations are expressed in terms of rapidly
varying functions. Gol’denveizer [13] defined the conditions for which the rapidly
decaying solutions of the equations of the general shell theory may be obtained, and
analyzed a number of possible special cases. Geckeler [41] applied this concept to
symmetrically loaded spherical shells. His approximate method was based on the
reduction of the system of the two-coupled differential equations to two independent
differential equations, assuming that for very thin shells the derivatives of the given
functions will be greater than the functions themselves.

Shell buckling problems have been a subject of investigations by many scien-
tists and engineers. For a circular cylindrical shell subjected to a uniform compres-
sive axial load, the differential equations have been formulated and solutions have
been found by Lorentz [42] and Timoshenko [43]. Mises [44] and Mushtari and
Sachenkov [45] treated a linear buckling problem for cylindrical shells subjected to
combined loading (external pressure and axially applied compressive forces). The
combined effect of axial and internal pressure was studied by Flügge [36] for cylind-
rical shells. It should be noted that, unlike the plate bending problems, a theoreti-
cally determined buckling load, calculated by the small-deflection theory, is rarely
attained or even approached in experiment. It was shown that initial imperfections
were the most influential contributor to the discrepancy between theoretical and
experimental results in determining the buckling loads. Donnel and Wan [46] derived
the general equations and analyzed the effect of imperfections on the buckling of thin
cylindrical shells under uniform, axial compressive forces.

The buckling problem for a spherical shell under an external pressure was
presented by Zoelly [47] in linear and by von Karman and Tsien [48] in nonlinear
formulations, respectively. Koiter [49] analyzed the postbuckling behavior of a
cylindrical shell under axial compression. Buckling of shallow shells under normal
surface load was studied by Budansky [50] (linear problem) and Kaplan and Fung
[51] (nonlinear problem).

Equations of motion for the vibration analysis of shells may be derived as a
simple extension of the static case by adding the inertia forces to body forces and
body moment terms that result from accelerations of the mass of the shell according
to the D’Alambert principle. The equations of free vibrations of thin elastic shells
were first derived by Love [2]. Then, the equations of motion for shells of various
shape according to the first- and higher-order approximations were presented by
Kraus [18], Flügge [52], Epstein [53], etc. Analysis of various equations of motion
of thin elastic shells, as well as a comprehensive presentation of available results for
free vibration frequencies and mode shapes which can be used for design was made
by Leissa [19].

This historical survey is aimed at only providing a brief background on the
formation of the shell theory. The interested reader who wants to be more
acquainted with the shell’s history in more details is referred to other works
[1,18,19,36].
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10.4 LOADING-CARRYING MECHANISM OF SHELLS

The general theories of beams, arches, plates, and shells are usually based upon the
unified set of assumptions. However, the load–resistance mechanisms of these mem-
bers do not resemble one another. The load–resistance mechanism of flat plates was
discussed in Secs 1.1 and 1.3. We can say that shells fall into a class of plates as
arches relate to straight beams under the action of transverse loading. It is known
that the efficiency of the arch form lies primarily in resisting the transverse load with
a thrust N, thus minimizing the shear force V and bending moment M. It is possible
to specify the arch shape and the manner of its loading in such a way that the arch
does not experience bending at all. In this case, the arch is in the so-called moment-
less state of stress. For example, for a parabolic arch, bending will not be induced by
a vertical load uniformly distributed over its chord. Thus, the ability of arches to
support certain transverse loads without bending is the reason for their structural
advantage over straight beams.

A shell mainly balances an applied transverse load, much like an arch, by
means of tensile and compressive stresses, referred to as the membrane or direct
stresses. These stresses are uniformly distributed over the shell thickness. Such a
state of stress is called the momentless or membrane state of stress. Although the
shear force and bending and twisting moments are still present in the general case of
loading, the efficiency of the shell form rests with the presence of the membrane
stresses, as the primary means of resistance with the bending stress resultants and
couples are minimized. Thus, shells, like arches over beams, possess an analogous
advantage over plates; however, with the following essential difference – while an
arch of a given form will support only one completely determined load without bending,
a shell of a given shape has, provided its edges are suitably supported, as a rule, the
same property for a wide range of loads which satisfy only very general requirements.

The membrane stress condition is an ideal state at which a designer should aim.
It should be noted that structural materials are generally far more efficient in an
extensional rather in a flexural mode because:

1. Strength properties of all materials can be used completely in tension (or
compression), since all fibers over the cross section are equally strained
and load-carrying capacity may simultaneously reach the limit for the
whole section of the component.

2. The membrane stresses are always less than the corresponding bending
stresses for thin shells under the same loading conditions.

Thus, the momentless or membrane stress conditions determine the basic advantages
of shells compared with beams, plates, etc.

The highest efficiency of a shell, as a structural member, is associated with its
curvature and thinness. Owing to the shell curvature, the projections of the direct
forces on the normal to the middle surface develop an analog of an ‘‘elastic founda-
tion’’ under the shell. So, it can be said that a shell resists an applied transverse
loading as a flat plate resting on an elastic foundation. This phenomenon can explain
an essential increase in strength and stiffness of a shell compared with a plate. Thus,
as a result of the curvature of the surface, a shell acquires a spatial stiffness that gives
to it a larger load-carrying capacity and develops the direct stresses. Owing to its
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thinness, a shell may balance an applied transverse loading at the expense of the
membrane stresses mainly, with bending actions minimized.

Note that the pure bending conditions have no advantages and should be
avoided because shells, in view of their small thickness, possess a low strength for
this deformation. However, sometimes bending conditions cannot be avoided. It
turns out that strong severe bending conditions are localized only in a small domain
near some discontinuities in loading and geometrical conditions, as well as near
supports, etc. As we move away from such a disturbance zone, the bending stresses
will diminish rapidly and a considerable part of the shell will be in the momentless
stress condition. Therewith, the thinner the shell the faster this decrease of bending
stresses.

As mentioned above, shell thinness demonstrates the high efficiency of shells. It
is associated with the shell’s low weight and simultaneously its high strength.
However, a shell’s thinness is, at the same time, a weak point because all the advan-
tages mentioned earlier hold for a tensile state of stress. In this case, a shell material
is stretched and its strength properties are used completely. On the other hand, a
thinness of shells manifests itself in compression. External forces, as before, are
effectively transformed in the constant membrane stresses over the shell thickness.
However, the trouble is that the level of the critical stresses at buckling be sufficiently
low. This level is just determined by the shell thickness. The thinner the shell, the
lower is the level of the critical stresses. The latter can be many factors smaller than
the proportional limit of the shell material. In this case, the efficiency of thin shells
can be reduced considerably. To avoid the possibility of buckling, a shell structure
should be designed in such a way that a dominant part of the structure is in tension.
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36. Flügge, W., Die Stabilität der Kreiszylinderschale, Ing-Arch, vol. 3, pp. 463–506 (1932).

37. Wissler, H., Festigkeitsberechnung von Ringflächenschalen, Diss, Zürich, 1916.
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11

Geometry of the Middle Surface

11.1 COORDINATE SYSTEM OF THE SURFACE

A surface � can be defined as a locus of points whose position vector, r, directed
from the origin 0 of the global coordinate system, OXYZ, is a function of two
independent parameters 	 and 
 (see Fig. 11.1).

The parametric representation of the surface can be given, as follows:

in vector form as r ¼ r 	; 
ð Þ; ð11:1Þ
or

in scalar form as X ¼ X 	; 
ð Þ; Y ¼ Y 	; 
ð Þ; Z ¼ Z 	; 
ð Þ; ð11:2Þ
where X 	; 
ð Þ; Y 	; 
ð Þ; and Z 	; 
ð Þ are some definite, continuous, and single-valued
functions of two variable coordinates 	 and 
. If we eliminate the parameters 	 and 

from Eqs (11.2), then the equation of the surface becomes

F X;Y;Zð Þ ¼ 0: ð11:3Þ
The parametric equation (11.1) may also be written in the form

r ¼ X 	; 
ð Þiþ Y 	; 
ð Þjþ Z 	; 
ð Þk; ð11:4Þ
in which i; j; and k are unit vectors along the X;Y; and Z axes, respectively.

We assume that there is a one-to-one correspondence between the pairs of
numbers (	; 
) belonging to � and points of the surface. Therefore these parameters,
	 and 
, can be called curvilinear coordinates of a given surface. If one of the coordi-
nates, e.g., 	, is incremented 	 ¼ 	1; 	 ¼ 	2; . . . ; 	 ¼ 	n, we define a series of para-
metric curves on the surface, along which only a parameter 
 varies. These curves are
termed the 	-coordinate lines. Similarly, if a parameter 
 takes on the values 
 ¼ 
1;

 ¼ 
2; . . . ; 
 ¼ 
n, we obtain the 
-coordinate lines.
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If the 	- and 
-coordinate lines are mutually perpendicular at all points on a
surface � (i.e., the angles between the tangents to these lines are equal to 90
), the
curvilinear coordinates are said to be orthogonal. Orthogonal curvilinear coordinates
are used extensively in this book.

The derivatives of the position vector r with respect to the curvilinear coordi-
nates 	 and 
 are given by the following:

@r

@	
¼ r;	 and

@r

@

¼ r;
 ; ð11:5Þ

where we have introduced the comma notation to denote partial derivatives with
respect to 	 and 
; r;	 and r;
 are the tangent vectors at any point of the surface to
the 	- and 
-coordinate lines, respectively (Fig. 11.1). Indeed, since 	 and 
 are scalar
quantities, the directions of vectors r;	 and r;
 coincide with directions of the vector
dr. This vector dr points to the chords joining pointsM and N for r;	, andM and N1

for r;
. In the limit, as �	! 0 and �
! 0, these chords approach the tangents at a
pointM along the coordinate lines 	 and 
, respectively. Since the latter are assumed
to be orthogonal, then

r;	 �r;
¼ 0: ð11:6Þ

11.2 PRINCIPAL DIRECTIONS AND LINES OF CURVATURE

Consider a small region of a smooth surface � near a typical point M. By ‘‘smooth’’
we mean that the surface is continuous, and contains no discontinuities of slope, i.e.,
creases or vertices. If we draw various curves along the surface � through point M,
then the tangents to these curves are placed on one plane called the tangent plane to
the surface at M (plane P in Fig. 11.2). A line that is perpendicular to the tangent
plane and passes through point M is called the normal to the surface � at point M,
and it is denoted by n. Since the surface is smooth (as defined above), the tangent
plane and, hence, the normal are uniquely determined.

A normal section of the surface � at point M can be defined as the section by
some plane containing a normal to the surface at that point. Such a section repre-

Fig. 11.1
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sents a plane curve. Obviously, an infinite number of different normal sections may
be drawn through point M of surface � (sections aa; bb; cc; etc., in Fig. 11.3)

Consider one of such normal sections as a plane curve, as shown in Fig. 11.4.
The position of a point M on the curve is determined by a single arc length coordi-
nate s, measured from a suitable datum point. Let M and M1 be two neighboring
points defining a short arc of length ds. At M and M1 the normals OM and OM1 are
drawn to the curve (there is only one normal at each point, since the curve is smooth)
and they are inclined with respect to a suitable datum direction at angles � and
�þd�, respectively. Assume that the two normals intersect at a point O (the center
of curvature of the arc). The center of curvature is defined strictly in terms of a
limiting process in which ds ! 0. The length OM (i.e., the distance from the center
of curvature to point M) is called the radius of curvature, �, of the given curve at
point M.

It follows by simple trigonometry from the above description that

� ¼ ds

d�
: ð11:7aÞ

Fig. 11.2

Fig. 11.3
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In practice it is more convenient to use the curvature � as a variable; this is defined as

� ¼ 1=�: ð11:7bÞ
It follows from the above that there are an infinite number of possible radii of

curvature and curvatures at a point M of the surface because an infinite number of
normal sections may be drawn through that point. However, there are two ortho-
gonal normal sections at any point of a surface oriented such that one radius of
curvature is the maximum of all possible, whereas the second radius of curvature is
the minimum of all possible. These normal sections are called principal normal sec-
tions or principal directions. The curvatures of these sections and the corresponding
radii are referred to as principal curvatures (denoted by �1 and �2) and principal radii
(denoted by R1¼ 1=�1 and R2 ¼ 1=�2) at a point.

We also introduce lines of the principal curvature or simply lines of curvature. A
line of curvature is a curve on the surface with the property that, at any point of the
curve, it has a common tangent with the principal directions. From the above, it
follows that the curvature takes on an extreme value at that point of the lines of
curvature. Hence, at any point of a smooth surface there is at least one set of
principal directions and two orthogonal lines of curvature.

The principal directions and lines of curvature may coincide or may not coin-
cide, depending upon the surface geometry. Figure 11.5a shows the surface of revo-
lution. It is described by rotating a plane curve (called a meridian) about the axis of
rotation (the Z axis in Fig. 11.5).

The meridional plane L contains the axis of rotation. Each point of the
meridian, when it rotates about the Z axis, describes a rotating parallel circle
whose plane T is perpendicular to the Z axis. Normals to the surface of revolution,
n and n1, drawn at neighboring points of the meridian, M and M1, lie in plane L
and they intersect in the same plane at point O1. Thus, meridians at any point of
the surface are one of the lines of curvature and, at the same time, one of the
principal normal sections. The radius of curvature of the meridian equals MO1 and it
is the first principal radius of curvature of the surface of revolution, R1. Normals to
the surface, n and n2, drawn at neighboring points of the parallel circle, M and M2,
do not lie in plane T . They are located on some conical surface K and intersect at
its vertex O2 (Fig. 11.5b). The latter always lies on the Z axis, independently of the
shape of a meridian curve. The second principal normal section of the surface of
revolution is a curve, �, which lies in the plane that is tangent to the conical
surface K at point M. It follows from the above that the second principal section

Fig. 11.4
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and parallel circle have a common tangent at point M. Thus, the parallel circles of
the surface of revolution represent the second lines of curvature but they are not the
second principal normal sections or principal directions. The generator MO2 of the
conical surface K is the second principal radius of curvature of the surface of
revolution, R2. This radius is numerically equal to the distance along a normal
to the meridian curve from a point of interest of this curve to the axis of rotation
(the Z axis).

In Sec. 11.1 we made no special assumptions about the curvilinear coordinates
of a shell middle surface. However, from now on we assume that the coordinate lines
	 and 
 are the lines of curvature. This system of the coordinate lines has particularly
simple properties, so that the equations of the theory of shells acquire a relatively
simple form in this system. To be able to use the corresponding formulas of the
general theory of shells, knowledge of the lines of curvature is required, and the
determination of these curves for a given surface is, in general, a fairly complicated
problem. However, for many of types of shells used in practice, the geometry of the
middle surface is of a simple nature (e.g., surfaces of revolution, cylindrical surfaces,
etc.), so that the lines of curvature are already known.

11.3 THE FIRST AND SECOND QUADRATIC FORMS OF SURFACES

Let us study a surface � of an arbitrary geometry near typical point M, as shown in
Fig. 11.6. Consider two points Mð	; 
Þ and M1ð	þ d	; 
þ d
Þ arbitrarily near to
each other and both lying on the surface. Let their position vectors be r and rþ dr,
respectively.

Determine the length of the arc ds joining the points M and M1 on the surface.
In the limit, ds approaches drj j, where drj j is the modulus of the increment in the
vector r going from point M to point M1, as defined by

dr ¼ r;	 d	þ r;
 d
: ð11:8Þ

Fig. 11.5
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The square of this differential of the arc length is

ds2 ¼ drj j2¼ dr � dr ¼ r;	 �r;	 d	ð Þ2þ2r;	 �r;
 d	d
þ r;
 �r;
 d
ð Þ2: ð11:9Þ
Denoting

a11 ¼ ðr;	 �r;	 Þ; a12 ¼ ðr;	 �r;
 Þ; a22 ¼ ðr;
 �r;
 Þ; ð11:10Þ
we can rewrite Eq. (11.9), as follows:

ds2 ¼ a11ðd	Þ2 þ 2a12d	d
þ a22ðd
Þ2: ð11:11Þ
The expression on the right-hand side of this equation is called the first quadratic
form of the surface defined by the vector rð	; 
Þ and aik ði; k ¼ 1; 2Þ are the coefficients
of that form.

If the coordinate lines 	 and 
 form an orthogonal net, then r;	 �r;
¼ 0 and,
hence, a12 ¼ 0. Denoting

A ¼ ða11Þ1=2; B ¼ ðb11Þ1=2; ð11:12Þ
we can rewrite the first quadratic form (Eq. (11.11)) for this particular case as

ds2 ¼ A2 d	ð Þ2þB2 d
ð Þ2: ð11:13Þ
The quantities A and B are termed the Lamé parameters. To interpret the meaning of
A and B geometrically, we rewrite Eq. (11.13), as follows:

ds2 ¼ ds21 þ ds22; ð11:14aÞ
where ds1 and ds2 are the lengths of linear arc elements corresponding to the incre-
ments in the curvilinear coordinates 	 and 
, respectively (Fig.11.6), and

ds1 ¼ Ad	 and ds2 ¼ Bd
: ð11:14bÞ
We can see that the Lamé parameters are quantities which relate a change in arc
length on the surface to the corresponding change in curvilinear coordinate or, in
other words, they may be treated as some distortion coefficients transforming the
change in curvilinear coordinates (dimensional or dimensionless) into the change in
arc length of linear segments, ds1 and ds2.

The coefficients of the first quadratic form can also be computed in terms of the
Cartesian coordinates by substituting Eq. (11.4) into the relations (11.10). We obtain

Fig. 11.6
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a11 ¼ X;	ð Þ2þ Y;	ð Þ2þ Z;	ð Þ2; a12 ¼ X;	 X;
þY;	 Y;
þZ;	 Z;
 ;

a22 ¼ X;

� �2þ Y;


� �2þ Z;

� �2

:
ð11:15Þ

The first quadratic form generally pertains to the measurement of distances
along an arc between two points on a surface, to areas on the surface, and to angles
between any two curves passing through a point (i.e., the angle between the tangents
to these curves), etc. Thus, the first quadratic form defines the intrinsic geometry of
the surface. However, it does not involve the specific shape of the surface. For
instance, this form cannot be a measure of curvature of curves lying on a surface
or if we change a curvature of the surface (say, by its bending) without its stretching
or contracting, the first quadratic form remains unchanged. So, the representation of
the surface by the Lamé parameters only is not sufficient and the first quadratic form
must be complemented with the second quadratic form to describe uniquely the
intrinsic and extrinsic geometries of a surface.

The second quadratic form describes a shape of the surface, given by Eq. (11.1).
This problem is associated with finding a curvature of the surface at a point. The
notion of curvature of the surface is an extension of the notion of curvature of a
plane curve, discussed in Sec. 11.2.

Consider a normal section which traces a plane curve with a unit inward
normal e3 directed toward the center of curvature of the curve. The curvature of
that normal section, called the normal curvature and denoted by �n, is of the follow-
ing form (a detailed derivation of this expression is given in Appendix C.2):

�n ¼ II

I
¼ b11 d	ð Þ2þ2b12d	d
þ b22 d
ð Þ2

a11 d	ð Þ2þ2a12d	d
þ a22 d
ð Þ2 ; ð11:16Þ

where

b11 ¼ e3 �
@2r

@	2
; b12 ¼ e3 �

@2r

@	@

; b22 ¼ e3 �

@2r

@
2
; ð11:17Þ

and the coefficients aik ði; k ¼ 1; 2Þ are given by Eqs (11.10). It can be seen that
expression I in the denominator of Eq. (11.16) represents the first quadratic form
of the surface for any coordinate curves that are not orthogonal (see Eq. (11.11)).

Expression II is called the second quadratic form of surfaces:

II ¼ b11 d	ð Þ2þ2b12d	d
þ b22 d
ð Þ2; ð11:18Þ
and the quantities b11; b12; and b22 are referred to as the coefficients of the second
quadratic form of surfaces. The coefficients b11 and b22 characterize the normal
curvature of lines 
 ¼ const: and 	 ¼ const, respectively, whereas the coefficient
b12 describes the twisting of the surface. Thus, the second quadratic form defines
completely a curved shape of a surface in the neighborhood of a point of interest.

The coefficients of the second quadratic form bik ði; k ¼ 1; 2Þ were given in
terms of the curvilinear coordinates 	 and 
. They can also be expressed in terms
of the Cartesian coordinates X;Y; and Z (see Eqs (C.11) in the Appendix C.2).

As mentioned previously, the simultaneous use of the first and second quad-
ratic forms define completely and uniquely a surface with the accuracy of its location
in the space. This means that two surfaces having the same first and second quadratic

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



forms coincide in their configuration and can be different only by their location in
the space.

11.4 PRINCIPAL CURVATURES

As mentioned in Sec. 11.2, through every point M of a smooth surface the normal
curvature, �n, in general varies with the direction through the point. However, there
are two orthogonal directions on which �n is extremal (�max ¼ �1 and �min ¼ �2) and
these are what have been named in Sec. 11.2 the principal directions. It is seen from
Eq. (11.16) that the normal curvature at point M of a surface depends on a direction
of the section, � ¼ d
=d	. Determine the values of � that correspond to the extremal
values of �n. For this purpose, transform Eq. (11.16), by inserting the parameter �, to
the form

�nð�Þ ¼
b11 þ 2b12�þ b22�

2

a11 þ 2a12�þ a22�
2
: ð11:19Þ

The desired values of � are evaluated from the condition d�n=d� ¼ 0. The latter
results in the following equation:

ðb12a22 � b22a12Þ�2 þ ðb11a22 � b22a11Þ�þ ðb11a12 � b12a11Þ ¼ 0:

This equation defines the two roots, �1 and �2, corresponding to the two principal
directions, i.e.,

�1;2 ¼
�ðb11a22�b22a11Þ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb11a22� a11b22Þ2�4ðb12a22�b22a12Þðb11a12�b12a11Þ

q
2ðb12a22 � b22a12Þ

:

ð11:20Þ
One of the roots, �1, being substituted into Eq. (11.19), corresponds to the maximum
value of the normal curvature, �1, while the second one, �2, corresponds to the
minimum value, �2.

We have postulated in Sec. 11.2 that the curvilinear coordinate lines 	 and 

are to be the principal directions. It can be shown (see Appendix C.2) that the
principal directions are mutually orthogonal. From the orthogonality condition
(C.13) or (C.14) (see Appendix C.2), and from Eqs (11.10), we obtain that

a12 ¼ b12 ¼ 0 ð11:21Þ
if the curvilinear coordinate lines 	 and 
 are chosen to coincide with the principal
directions. The values of the principal curvature can be immediately determined
from Eq. (11.16) by setting a12 ¼ b12 ¼ 0 and then letting d	 ¼ 0 and d
 ¼ 0, in
turn, to give

�1 ¼
1

R1

¼ b11
a11

; �2 ¼
1

R2

¼ b22
a22

: ð11:22Þ

The expression of the second quadratic form, Eq. (11.18), when the principal direc-
tions (or the lines of curvature) are used as the curvilinear coordinate curves, sim-
plifies to the form

II ¼ b11ðd	Þ2 þ b22ðd
Þ2: ð11:23Þ
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11.5 UNIT VECTORS

As mentioned previously, all vector quantities in the theory of shells, which are
functions of points on the middle surface, will be given in terms of their projections
on the directions of the tangents to some reference axes (the coordinate lines 	 and 
,
and normal to the surface at a point of interest). Since these reference axes change
their directions when passing from one point of the surface to another one, it is
necessary to investigate the differentiation of these vector quantities with respect to 	
and 
.

A triad of the unit orthogonal vectors composed at a point on the middle
surface of tangent vectors e1 and e2 to the coordinate lines 	 and 
, and an inward
normal vector e3 directed toward the center of curvature of the shell, represent a
local vectorial basis to which the displacements, stress resultants, and stress couples
are assigned. This basis defines a right-hand system, as shown in Fig. 11.7. Taking
into account the expressions (11.5), (11.10), and (11.12), we can introduce the unit
vectors as follows:

e1 ¼
r;	
r;	
		 		 ¼ r;	

A
; e2 ¼

r;


r;

		 		 ¼ r;


B
; e3 ¼ e1 	 e2 ¼

1

AB
r;		 r;

� � ð11:24Þ

Any vector T may be represented in terms of the introduced orthogonal unit vectors,
as follows:

T ¼ T1e1 þ T2e2 þ T3e3;

where T1;T2; and T3 are components of the vector in the coordinate basis (Eq.
(11.24)). A partial derivative of the above vector T with respect to any coordinate
may be represented as

@T

@	
¼ @T1

@	
e1 þ

@T2

@	
e2 þ

@T3

@	
e3 þ T1

@e1
@	

þ T2

@e2
@	

þ T3

@e3
@	
: ð11:25Þ

The laws of differentiating the vectors, represented by Eq. (11.25), are reduced to the
following form (a detailed derivation of these expressions is given in Appendix C.3):

@e1
@	

¼ � 1

B

@A

@

e2 þ

A

R1

e3;
@e1
@


¼ 1

A

@B

@	
e2;

@e2
@	

¼ 1

B

@A

@

e1;

@e2
@


¼ � 1

A

@B

@	
e1 þ

B

R2

e3;

@e3
@	

¼ � A

R1

e1;
@e3
@


¼ � B

R2

e2:

ð11:26Þ

Fig. 11.7
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11.6 EQUATIONS OF CODAZZI AND GAUSS. GAUSSIAN
CURVATURE.

We present some important relations between the Lamé parameters A and B and the
principal curvatures k1 ¼ 1=R1 and k2 ¼ 1=R2. These relations will be given below
without proof (a detailed derivation is given in Appendix C.4), as follows:

@

@


A

R1

� �
¼ 1

R2

@A

@

;

@

@	

B

R2

� �
¼ 1

R1

@B

@	
ð11:27aÞ

and

@

@	

1

A

@B

@	

� �
þ @

@


1

B

@A

@


� �
¼ � AB

R1R2

: ð11:27bÞ

Equations (11.27a) are referred to as the conditions of Codazzi, whereas Eq. (11.27b)
is known as the condition of Gauss.

Thus, the four functions A;B;R1, and R2 of the two parameters 	 and 
 are the
Lamé parameters and principal radii of curvature of any surface only in the case
when they are related to one another by the conditions of Codazzi and Gauss
(11.27). From the above, it follows that the latter equations constitute necessary
conditions for the existence of a surface.

Let us determine the product and semi-sum of the principal curvatures based
on Eq. (11.19), as follows:

� ¼ k1k2 ¼
b11b22 � b212
a11a22 � a212

; ð11:28Þ

K ¼ k1 þ k2
2

¼ � 2a12b12 � a11b22 � a22b11

2 a11a22 � a212
� � : ð11:29Þ

The first of these quantities is called the Gaussian curvature and the second is the
mean curvature of a surface. The concept of Gaussian curvature is fundamental in
the theory of surfaces. If the coordinate curves are lines of curvature, then the
expression for �, Eq. (11.28), is reduced to the following equation (because a12 ¼
b12 ¼ 0Þ :

� ¼ k1k2 ¼
b11b22
A2B2

; ð11:30Þ

where b11 and b22 are given by Eqs (11.17).
From the algebraic sign of the Gaussian curvature, the form of a surface in the

neighborhood of a given point can be inferred. If � > 0, then, as follows from Eq.
(11.28), the principal curvatures have the same sign. This means that both centers of
principal curvature (O1 and O2 in Fig.11.8a) lie on the same side of the surface. The
centers of curvature of all other normal sections will also lie on the segment O1 O2.
Point M of a surface whose centers of a curvature are located in such a way, called
the elliptic point. On the contrary, for the centers of curvature O1 and O2 lie on
opposite sides of the surface, as shown in Fig. 11.8b. The corresponding point of the
surface is called hyperbolic. At last, if � ¼ 0, then one of the two principal curvatures
is zero, and the corresponding center of curvature (Fig.11.8c) is on an infinity. Point
M of the surface in this case is called a parabolic.
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For example, a sphere and an ellipsoid are examples of surfaces with positive
Gaussian curvature. The so-called pseudo-sphere has a negative � that is a constant
for all points. Cylindrical and conical surfaces have zero Gaussian curvatures.

The above sections contain only a brief survey of the geometry of surfaces. The
interested reader is referred to Appendix C of the book and to Refs [1–3].

11.7 CLASSIFICATION OF SHELL SURFACES

We define here some of the surfaces that are commonly used for shell structures in
engineering practice. There are several possible classifications of these surfaces. One
such classification, associated with the Gaussian curvature, was discussed in Sec.
11.6. Following Ref. [4], we now discuss other categories of shell surfaces associated
with their shape and geometric developability.

11.7.1 Classification based on geometric form

(a) Surfaces of revolution (Fig. 11.9)

As mentioned previously, surfaces of revolution are generated by rotating a plane
curve, called the meridian, about an axis that is not necessarily intersecting the
meridian. Circular cylinders, cones, spherical or elliptical domes, hyperboloids of
revolution, and toroids (see Fig. 11.9) are some examples of surfaces of revolution. It
can be seen that for the circular cylinder and cone (Fig. 11.9a and b), the meridian is
a straight line, and hence, k1 ¼ 0, which gives �¼ 0. These are shells of zero
Gaussian curvature. For ellipsoids and paraboloids of revolution and spheres
(Fig. 11.9c, d, and e), both the principal curvatures are in the same direction and,
thus, these surfaces have a positive Gaussian curvature (� > 0). They are synclastic
surfaces. For the hyperboloid of revolution (Fig. 11.9f), the curvatures of the mer-
idian and the second line of curvature are in opposite directions (i.e., the principal
radii R1 and R2 lie on opposite sides of the surface for all points on the surface). For
the toroid (Fig. 11.9g), the Gaussian curvature changes from positive to negative as
we move along the surface.

(b) Surfaces of translation (Fig. 11.10)

A surface of translation is defined as the surface generated by keeping a plane curve
parallel to its initial plane as we move it along another plane curve. The two planes
containing the two curves are at right angles to each other. An elliptic paraboloid is

Fig. 11.8
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Fig. 11.9
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shown in Fig. 11.10 as an example of such a type of surfaces. It is obtained by
translation of a parabola on another parabola; both parabolas have their curvatures
in the same direction. Therefore, this shell has a positive Gaussian curvature. For
this surface sections x ¼ const and y ¼ const are parabolas, whereas a section z ¼
const represents an ellipse: hence its name, ‘‘elliptic paraboloid.’’

(c) Ruled surfaces (Fig. 11.11)

Ruled surfaces are obtained by the translation of straight lines over two end curves
(Fig. 11.11). The straight lines are not necessarily at right angles to the planes
containing the end curves. The frustum of a cone can thus be considered as a
ruled surface, since it can be generated by translation of a straight line (the genera-
tor) over two curves at its ends. It is also, of course, a shell of revolution. The
hyperboloid of revolution of one sheet, shown in Fig. 11.11a, represents another
example of ruled surfaces. It can be generated also by the translation of a straight
line over two circles at its ends. Figure 11.11b shows a surface generated by a
translation of a straight line on a circular curve at one end and on a straight line
at the other end. Such surfaces are referred to as conoids. Both surfaces shown in
Fig. 11.11 have negative Gaussian curvatures.

11.7.2 Classification based on shell curvature

(a) Singly curved shells

These shells have a zero Gaussian curvature. Some shells of revolution (circular
cylinders, cones), shells of translation, or ruled surfaces (circular or noncircular
cylinders and cones) are examples of singly curved shells.

Fig. 11.10

Fig. 11.11

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



(b) Doubly curved shells of positive Gaussian curvature

Some shells of revolution (circular domes, ellipsoids and paraboloids of revolution)
and shells of translation and ruled surfaces (elliptic paraboloids, paraboloids of
revolution) can be assigned to this category of surfaces.

(c) Doubly curved shells of negative Gaussian curvature

This category of surfaces consists of some shells of revolution (hyperboloids of
revolution of one sheet) and shells of translation or ruled surfaces (paraboloids,
conoids, hyperboloids of revolution of one sheet).

It is seen from this classification that the same type of shell may appear in more
than one category.

11.7.3 Classification based on geometrical developability

(a) Developable surfaces

Developable surfaces are defined as surfaces that can be ‘‘developed’’ into a plane
form without cutting and/or stretching their middle surface. All singly curved sur-
faces are examples of developable surfaces.

(b) Non-developable surfaces

A non-developable surface is a surface that has to be cut and/or stretched in order to
be developed into a planar form. Surfaces with double curvature are usually non-
developable.

The classification of shell surfaces into developable and non-developable has a
certain mechanical meaning. From a physical point of view, shells with non-devel-
opable surfaces require more external energy to be deformed than do developable
shells, i.e., to collapse into a plane form. Hence, one may conclude that non-devel-
opable shells are, in general, stronger and more stable than the corresponding devel-
opable shells having the same overall dimensions. On the other hand, developable
shells have some advantages associated with their technological effectiveness.

11.8 SPECIALIZATION OF SHELL GEOMETRY

It is shown in the next chapter that the governing equations and relations of the
general theory of thin shells are formulated in terms of the Lamé parameters A and B
as well as of the principal curvatures �1 ¼ 1=R1 and �2 ¼ 1=R2. In the general case of
shells having an arbitrary geometry of the middle surface, the coefficients of the first
and second quadratic forms and the principal curvatures are some functions of the
curvilinear coordinates. We determine the Lamé parameters for some shell geome-
tries that are commonly encountered in engineering practice.

11.8.1 Shells of revolution

The shells of revolution were discussed in Secs 11.2 and 11.7. As for the curvilinear
coordinate lines 	 and 
, the meridians and parallels may be chosen: they are the
lines of principal curvatures and form an orthogonal mesh on the shell middle sur-
face. Figure 11.12a shows a surface of revolution where R1 is the principal radius of
the meridian, R2 is the principal radius of the parallel circle (as shown in Sec.11.2, R2
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is the distance along a normal to the meridional curve drawn from a point of interest
to the axis of revolution of the surface), and r is the radius of the parallel circle.

There are several possibilities for a choice of the curvilinear coordinates 	
and 
.

(a) First, consider the cylindrical coordinate system, taking

	 ¼ Z; 
 ¼ �; ð11:31Þ
where Z indicates the vertical position of a point M and � denotes an angular
position of the point along the parallel circle from some arbitrary origin. The latter
angle may be referred to as the circumferential angle.

Consider a differential element isolated by two neighboring meridional sections
and two parallel circles (the cross-hatched element in Fig. 11.12a). Let the arc lengths
of sidesMM1 and MM2 be ds1 and ds2, respectively. From the triangle AMM1 of
Fig. 11.12b, we have

cos
�

2
� ’

� �
¼ dZ

ds1
; ð11:32Þ

from which

ds1 ¼
dZ

sin ’
¼ dZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cot2 ’

q
; ð11:33Þ

where ’ is the angle formed by the extended normal to the surface at pointM and the
axis of rotation. This angle is referred to as the meridional angle.

For shells of revolution the radius of a parallel circle, r, is a function of Z, i.e.,
r ¼ r Zð Þ. By inspection of Fig. 11.12b, we have the following:

ds1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dZ2 þ AM2

1

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dZ2 þ drð Þ2

q
¼ dZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r;2z

q
: ð11:34Þ

On the other hand, as follows from Fig. 11.12a, we have

MM2 ¼ ds2 ¼ rd�: ð11:35Þ

Fig. 11.12
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Using the general expressions (11.14b), and taking into account that for the cylind-
rical coordinates given by the expression (11.31), d	 ¼ dZ and d
 ¼ d�, we can
finally determine the Lamé parameters in the following form:

A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dr

dZ

� �2
s

; B ¼ r: ð11:36Þ

(b) Next, consider the spherical coordinate system, taking

	 ¼ ’; 
 ¼ �: ð11:37Þ
It can be easily shown that the spherical coordinates (Eqs (11.37)) also define
uniquely a point M on the surface of revolution. By inspection of Fig. 11.12, the
following obvious relations hold:

ds1 ¼ R1d’ ¼ R1d	 and ds2 ¼ rd� ¼ rd
: ð11:38Þ
Comparing the above with the expressions (11.14), we obtain the Lamé parameters
in the form

A ¼ R1; B ¼ r; ð11:39Þ
or noting that r ¼ R2 sin ’ (see Fig. 11.12b), we can rewrite the expressions (11.39) as
follows:

A ¼ R1; B ¼ R2 sin ’: ð11:40Þ
The first two of the relations of the Codazzi–Gauss equations (Eqs (11.27a)) are
identically satisfied in this case, whereas the third equation (Eq. (11.27b)) gives the
following:

d R2 sin ’ð Þ
d’

¼ R1 cos ’: ð11:41Þ

Determine the principal curvatures and principal radii of curvatures for shells of
revolution. Let a shell of revolution be assigned in the global coordinate system by
the following equations:

X ¼ rðZÞ cos �; Y ¼ rðZÞ sin �; Z ¼ Z; ð11:42Þ
where r is the radius of the parallel circle at a section Z ¼ const and � is the angle of
rotation of the meridional plane. Substituting Eqs (11.42) into Eqs (11.15) and
(C.12), we obtain, after some mathematics, the following:

a11 ¼ 1þ r;2Z ; a12 ¼ 0; a22 ¼ r2; ! ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r;2Z

q
;

b11 ¼ � r;ZZffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r;2:Z

p ; b12 ¼ 0; b22 ¼
rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ r;2Z
p : ð11:43Þ

Substituting the above into Eqs (11.22), yields the following expressions for the
principal curvatures:

�1 ¼
1

R1

¼ � r;ZZ

1þ r;2Z
� �3=2 ; �2 ¼

1

r 1þ r;2Z
� �1=2 : ð11:44Þ
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It can be seen from Eqs (11.44) that �2 is always positive, whereas �1 may be either
positive or negative depending upon the sign of the value of r;ZZ. If a convexity of
the meridian curve is directed to the Z axis, as in Fig. 11.9f, then, r;ZZ > 0, and �1 for
such a shell is negative.

Hence, if the equation of the meridional curve, i.e., r ¼ r Zð Þ, is known, one can
determine the principal curvatures and principal radii of shells of revolution using
Eqs (11.44).

We consider below some specific forms of shells of revolution that are com-
monly used in applications and present the principal curvatures and principal radii
for them.

(a) Ellipsoid of revolution (Fig. 11.9c)

The equation of the meridian of an ellipsoid has the form

b2r2 þ a2Z2 ¼ a2b2; ðaÞ
where a and b are lengths of the major and minor semi-axes, respectively. So, Eq. (a)
can be written as

r2

a2
þ Z2

b2
¼ 1;

which gives us r as a function of Z, as follows:

r ¼ a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � Z2

p
: ðbÞ

Upon determining r;Z and r;ZZ, and substituting into Eqs (11.44), we can readily
obtain the expressions for the principal radii of curvature, as follows:

R1 ¼
1

�1
¼ a2b2

r2

a4
þ Z2

b4

 !3=2

; R2 ¼
1

�2
¼ 1

b2
b4r2 þ Z2a4
� �1=2

: ð11:45Þ

We would prefer to have R1 and R2 as functions of ’ (see Fig. 11.12a), and hence, we
must eliminate Z and r from the above. To do this, we consider a triangle formed by
the sides ds1 (along the meridian), dr; and dZ (see Fig. 11.12b). We can write the
following:

tan ’ ¼ dZ

dr
:

Using this equation and Eq. (b), we can express r and Z as functions of ’ and the
lengths of ellipse axes, a and b. We have the following:

r ¼ a2 sin ’

a2 sin2 ’þ b2 cos2 ’
� �1=2 and Z ¼ � b2 cos ’

a2 sin2 ’þ b2 cos2 ’
� �1=2 : ðcÞ

Substituting for r and Z from Eqs (c) into the expressions for R1 and R2, Eqs (11.45),
gives

R1 ¼
a2b2

a2 sin2 ’þ b2 cos2 ’
� �3=2 ; R2 ¼

a2

a2 sin2 ’þ b2 cos2 ’
� �1=2 : ð11:46Þ
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(b) Paraboloid of revolution (Fig. 11.9d)

The equation of the meridional curve is given by

r2 � 2pZ ¼ 0 or r2 ¼ a2

b
Z; ðdÞ

where p is a parameter of the parabola. Using the technique considered above for the
ellipsoid of revolution, we present below the final expressions for the principal radii
of curvature for the paraboloid, dropping the intermediate mathematics,

R1 ¼
a2

2b

1

cos2 ’
� �3=2 ; R2 ¼

a2

2b

1

cos ’
; ð11:47Þ

where b is the height of the paraboloid and a is one-half the length of the paraboloid
base.

(c) Sphere (Fig. 11.9e)

Consider a spherical shell of radius a. It can be easily shown that the principal radius
of the meridian is equal to the radius of the generating circle a. Indeed, the equation
of the meridian is

Z2 þ r2 ¼ a2:

With r;Z ¼ �Z=r and r;ZZ ¼ � 1=rð Þ 1þ Z2=r2
� �

, we find from Eq. (11.45) that the
principal radii of the sphere are

R1 ¼
1þ Z=rð Þ2� �3=2
1=rð Þ 1þ Z2=r2

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2 þ r2

q
¼ a and R2 ¼ r 1þ z2

r2

 !1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ Z2

p
¼ a:

Thus, for a spherical shell, both the principal radii of curvature are equal to the
radius of the generating circle a.

(d) Hyperboloid of revolution (Fig. 11.9f)

The equation of the generating curve (hyperbola) is

r2

a2
� Z2

b2
¼ 1; ðeÞ

where a is one-half the length of the reference section of the hyperboloid and b is
some characteristic dimension of the hyperboloid. The latter may be evaluated by
substituting the base coordinates s;Sð Þ and the top coordinates ðt;TÞ into the equa-
tion of the hyperbola, i.e.,

b ¼ aTffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 � a2

p ¼ aSffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2 � a2

p :

For the radii of curvature we have to use the same formulas as for the ellipsoid (i.e.,
Eqs (11.46)), replacing b2 by �b2. Thus, we obtain

R1 ¼ � a2b2

a2 sin2 ’� b2 cos2 ’
� �3=2 ; R2 ¼

a2

a2 sin2 ’� b2 cos2 ’
� �1=2 : ð11:48Þ
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The principal radii of curvature for convex shells of revolution formed by
rotating curves of the second order about their axes of symmetry can also be com-
puted from the following equations [5]:

R1 ¼
R0

1þ � sin2 ’� �3=2 ; R2 ¼
R0

1þ � sin2 ’� �1=2 ; ð11:49Þ

where the parameter R0 equals the value of the radii of curvature at ’ ¼ 0, i.e., at the
vertex of the corresponding shell, and the parameter � takes on the following values:

� ¼ 0 for a spherical shell;

� ¼ �1 for paraboloids;

� > �1 for ellipsoids; and

� < �1 for hyperboloids:

11.8.2 Cylindrical shells

A cylinder is generated by moving a straight line along a curve while maintaining it
parallel to its original position. It follows from this definition that through every
point of the cylinder one may pass a straight line that lies entirely on this surface.
These lines are called the generators. All planes that are normal to the generators
intersect the cylinder in identical curves, which are called profiles. The cylinder is
named after the shape of the profile, i.e., a circular, elliptical, or parabolic cylinder.
Of these shells, only the circular cylinder is a shell of revolution, whereas the others
represent shells of translation (see Sec. 11.7.1(b)) since they can be generated by the
translation of a straight line.

Let us consider a cylindrical shell of a general shape, as shown in Fig. 11.13.
We use the cylindrical coordinate system to describe the position of a reference

point on a cylindrical shell middle surface. Thus, the curvilinear coordinates of the
reference point may be taken as

	 ¼ x; 
 ¼ �; ð11:50Þ

Fig. 11.13
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where x is the distance measured from some reference profile to the point of interest
and � is the angle between the normal to the shell at a point and a reference normal
at a chosen origin.

Consider an element of the shell, bounded by sections x; xþ dx and �; � þ d�
(Fig. 11.13). The first quadratic form of the surface will be here, as follows:

ds2 ¼ dx2 þ R2
2d�

2; ð11:51Þ
where R2 is the second principal radius of curvature, while the first principal radius is
infinite, i.e., R1 ¼ 1: Comparing the above with the relation (11.12), one can obtain
the Lamé parameters for the cylindrical shell of a general shape, as follows:

A ¼ 1; B ¼ R2: ð11:52Þ
For a circular cylindrical shell, R2 ¼ const ¼ R, where R is the radius of the circular
cylinder. So, the Lamé parameters for the circular cylindrical shell are

A ¼ 1; B ¼ R ¼ const: ð11:53Þ

11.8.3 Conical shells

In a conical shell, the meridional angle ’ is a constant and can no longer serve as a
coordinate of the meridian. The location of a point on the middle surface will be
defined by the radius vector r taken from the top of the cone (point O in Fig. 11.14)
along its generator, and angle � formed by a meridional plane passing through that
point with some reference meridional plane. Let the length of the vector r be s and
the slope of the generator to the cone base be 	. The projections of r on the global
coordinate axes, X;Y; and Z (see Fig. 11.14) are

X ¼ s cos	 cos �; Y ¼ s cos	 sin �; Z ¼ s sin 	: ð11:54Þ
The vector r can be resolved along the unit vectors i; j; and k, as follows:

r ¼ s i cos	 cos � þ j cos	 sin � þ k sin 	ð Þ: ð11:55Þ

Fig. 11.14
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The values s and � will be considered as the curvilinear coordinates on the middle
surface, as follows:

	 ¼ s and 
¼�: ð11:56Þ
The coefficients of the first quadratic form are determined from Eqs (11.12) and
(11.10), i.e.,

A2 ¼ @r

@	

� �2

and B2 ¼ @r

@


� �2

:

Substituting for r from Eq. (11.55), then differentiating with respect to 	 and 
 and
taking into account relations (11.56), we obtain the Lamé parameters for a conical
shell in the form

A ¼ 1 and B ¼ s cos	: ð11:57Þ

11.8.4 Shallow shells

A shallow shell is defined as a shell having a relatively small raise as compared to its
spans (Fig. 11.15).

A shell is said to be a shallow if at any point of its middle surface the following
inequalities hold:

@z

@x

� �2

� 1;
@z

@y

� �2

� 1 ð11:58Þ

where z ¼ z x; yð Þ represents the equation of the shell middle surface. Referring to
Fig. 11.15b, one sees the effect of this simplification. Consider a differential element
of the middle surface bounded by the intersections with two planes parallel to the
Oyz coordinate plane and separated by a distance dx, and two planes parallel to the
Oxz coordinate plane separated by a distance dy. From Fig. 11.15b, it follows that

ds1 ffi dx 1þ z; xð Þ2� �1=2 ð11:59aÞ

Fig. 11.15
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Similarly, we can write

ds2 ffi dy 1þ z; yð Þ2� �1=2
: ð11:59bÞ

These expressions, due to the geometric simplification (Eq. (11.58)), may be written
simply as

ds2 � dy and ds1 � dx: ð11:60Þ
Practically, the above imply that the curvilinear coordinates 	 and 
 may be selected
as the Cartesian coordinates x and y with the following Lamé parameters:

A ¼ B ¼ 1: ð11:61Þ

PROBLEMS

11.1 Verify Eqs (11.28) and (11.29).

11.2 Draw sketches of the following meridians and calculate the principal curvatures �1 and
�2 in each case: (a) Z ¼ Ar2; and (b) ðr=aÞ2 � ðz=bÞ2 ¼ 1.

11.3 Explain the difference between the first and second quadratic forms from the geometric

point of view.

11.4 Roof shell structures often have a shape of surfaces of translation (see Sec. 11.7.1(b)).

The equation of such a surface can be assigned as Z ¼ ’ðXÞ þ  ðYÞ. Assuming that a

location of a point on this surface is given by the Cartesian coordinates 	 ¼ x and


 ¼ y, determine the coefficients of the first quadratic form for the nonshallow shell of

translation.

11.5 Verify Eqs. (11.45) and (11.47).

11.6 Verify that the Gauss–Codazzi relations are satisfied for a shell of revolution with the

parameter A given by equation A ¼ ½1þ ðr;ZÞ2�1=2.
11.7 Verify Eqs (11.48).

11.8 Calculate the Lamé parameters for a conical shell in terms of the coordinates Z and �
(see Fig. 11.15), i.e., for 	 ¼ Z and 
 ¼ �:

11.9 Prove that surfaces possessing the same Lamé parameters will have the same Gaussian

curvature.
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12

The General Linear Theory of Shells

12.1 BASIC ASSUMPTIONS

The linear theory of thin elastic shells with arbitrary shape of the middle surface is
derived on the basis of Kirchhoff’s assumptions that were used in the development of
the plate bending theory introduced in Part I. These assumptions are formulated for
the linear theory of thin shells of an arbitrary shape, as follows:

1. Normals to the undeformed middle surface remain straight and normal to
the deformed middle surface and undergo no extension. This assumption
implies that all the strain components (normal and shear) in the direction
of the normal to the middle surface vanish.

2. The transverse normal stress is small compared with other normal stress
components and may be neglected.

Novozhilov showed [1] that the error introduced by the Kirchhoff hypotheses in the
theory of thin shells is of the order h=R in comparison with unity, in which h andR are
the shell thickness and radius of curvature of the middle surface, respectively. It is
assumed that the thickness of the shell is small compared with other dimensions, for
example, the smallest radius of the middle surface of the shell (see the inequality
(10.1)).

We also assume that the displacements of an arbitrary point of a shell are small
in comparison to its thickness. As a consequence of this assumption, the products of
the displacements and their partial derivatives will be neglected as second-order
quantities of smallness. Furthermore, we can refer all calculations to the original
configuration of the shell and ensure the differential equations will be linear.

From here on we assume that the material of the shells is homogeneous, iso-
tropic and that it obeys Hooke’s law.
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As was mentioned in Sec. 10.3, the above Kirchhoff’s hypotheses together with
small displacement and thinness of shell assumptions are called the Kirchhoff–Love
assumptions. According to the Kirchhoff assumptions, deformations throughout the
whole volume of the shell material are completely defined by deformations and
changes in curvature of the middle surface. Thus, the adoption of these hypotheses
reduces the three-dimensional (3D) shell problem to the two-dimensional (2D) pro-
blem of equilibrium and straining of the middle surface of a shell. So, the shell will be
regarded as a 2D body, i.e., a collection of material points situated on the middle
surface.

The general linear theory of thin shells includes the three sets of equations:
kinematic (strain–displacement relations), constitutive, and equilibrium. These equa-
tions must be complemented with prescribed boundary conditions on the shell edges.

12.2 KINEMATICS OF SHELLS

12.2.1 Variation of the displacements across the shell thickness

Let the middle surface of the undeformed shell be associated with the curvilinear
coordinates 	 and 
, and the coordinate lines 	 and 
 coincide with the lines of
curvature, as shown in Fig. 12.1. Apart from the global (fixed) Cartesian coordinate
system adopted in Chapter 11, let us introduce the local (movable) Cartesian coor-
dinate system Oxyz. The x and y axes coincide with the directions of tangents to the
curvilinear coordinate lines 	 and 
 at a point O of the middle surface, and the z axis
points along the normal to this surface at the same point. Notice that the previously
introduced triad of unit vectors, e1; e2; and e3 (see Sec. 11.5) form the basis of this
local coordinate system. The positive directions of the x; y; and z axes coincide with
the positive directions of the unit vectors, respectively. In particular, the positive
direction of the z axis is to the center of curvature of the shell (for elliptic and
parabolic points of the middle surface), as shown in Fig. 12.1. Such a direction of
the z axis is consistent with the previously adopted positive direction of that axis in
the plate bending theory (see Sec. 2.2).

Consider a material point M on the middle surface, as shown in Fig. 12.2. As a
result of a deformation, this point moves from M on the undeformed middle surface
to a pointM1 on the deformed middle surface. We identify this displacement of point
M by the vector D. This vector will be a function of the coordinates 	 and 
, i.e.,

Fig. 12.1
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points of the middle surface and, hence, it will completely define the deformed
position of the middle surface.

Denote the projections of the displacement vector D on the directions of the x; y;
and z axes of the local coordinate system by u; v; and w, respectively. Here u and v are
tangential displacements and w is the normal displacement or deflection. The positive
directions of the displacement components u; v; and w coincide with the positive
directions of the local coordinate axes x; y; and z at a point of the middle surface. Let
pointMz be within the shell, at a distance z from point M on the middle surface, and
its displacement vector be D

z. The components of this vector along the coordinate
axes x; y; and z uz; vz; and wz, can be expressed in terms the displacement compo-
nents of the point M, as follows (the detailed derivation of these equations is given in
Appendix D.):

uz ¼ u� z#1; vz ¼ v� z#2; wz ¼ w; ð12:1Þ
where #1 and #2 are the angles of rotation of the normal to the middle surface about
tangents to the coordinate lines 
 and 	, respectively. They are given by the following
(for derivation of these equations see Appendix D):

#1 ¼
u

R1

þ 1

A

@w

@	
; #2 ¼

v

R2

þ 1

B

@w

@

: ð12:2Þ

12.2.2 Strain–displacement relations

First, let us introduce the strain components at a point of the middle surface. We
denote by "1 and "2 the linear strain components in the 	 and 
 directions, respectively,
and by �12 the shear strain component in the middle surface. These strain components
can be expressed in terms of the displacement components, u; v; and w, introduced
earlier, as follows (the detailed derivation of these expressions is given inAppendixD):

"1 ¼
1

A

@u

@	
þ 1

AB

@A

@

v� w

R1

; ð12:3Þ

"2 ¼
1

B

@v

@

þ 1

AB

@B

@	
u� w

R2

; ð12:4Þ

�12 ¼
B

A

@

@	

v

B

� �
þ A

B

@

@


u

A

� �
: ð12:5Þ

Fig. 12.2
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Let us examine a variation of the strain components across the shell thickness. For
this purpose, we pass within the shell an equidistant surface located at a distance z
from the middle surface, where �h=2 � z � h=2. Locate a point on this surface by
the same coordinates 	 and 
 that were used for the middle surface. According to
Kirchhoff’s assumptions, points lying on one normal to the middle surface remain
on the same normal after deformation. Therefore, the above coordinates remain
valid for the equidistant surface too. It can be proven (see Appendix D) that if the
	- and 
-coordinate lines coincide with the lines of curvature on the middle surface,
then they are orthogonal, and may also serve as lines of curvature for the equidistant
surface.

Figure 12.3 shows a section of the shell by a plane normal to the middle sur-
face. Consider two pairs of neighboring points, M and N, lying along line 	 ¼ const:
on the middle surface, and their counterparts Mz and Nz on the equidistant surface,
located at a distance z from the middle surface. In virtue of Kirchhoff’s assumptions,
adopted in the general shell theory, all these points will be located on the same
normals after deformation and the distance between them in the normal direction
(in the z direction) remains unchanged.

If the radius of curvature of arc MN on the middle surface is R1, then the
corresponding radius of curvature of arcMzNz on the equidistant surface (by inspec-
tion of Fig. 12.3) is

Rz
1 ¼ R1 � z: ð12:6Þ

It follows from the above that Rz
1 is the first principal radius of curvature of the

equidistant surface. Moreover, if the length of arc MN is ds1 ¼ Ad	, then the length
of the corresponding arc MzNz of the equidistant surface and its Lamé parameter
are determined as follows:

dsz1 ¼ Azd	 ¼ A 1� z

R1

� �
d	; ð12:7Þ

Az ¼ A 1� z

R1

� �
: ð12:8Þ

Fig. 12.3
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Similarly, the formulas for determining the second principal radius of curvature, Rz
2,

and the second Lamé parameter of the equidistant surface, Bz, can be obtained as
follows:

Bz ¼ B 1� z

R2

� �
; Rz

2 ¼ R2 � z: ð12:9Þ

When points of the middle surface undergo displacements u; v; and w, then, accord-
ing to the adapted assumptions, the corresponding points of the equidistant surface
undergo displacements uz; vz; and wz given by Eqs (12.1). Therefore, we can obtain
the relationships for determining the strain components in the equidistant surface,
"z1; "

z
2; and �

z
12 by replacing in Eqs (12.3)–(12.5) the quantities R1;R2;A;B; and u; v;

w with Rz
1;R

z
2;A

z;Bz; and uz; vz;wz according to Eqs (12.1), (12.6), (12.8), and (12.9).
After some algebra, we obtain

"z1 ¼
1

1� z
R1

"1 þ z�1ð Þ; "z2 ¼
1

1� z
R2

"2 þ z�2ð Þ; ð12:10Þ

�z12 ¼
1

1� z
R1

!1 þ z�1ð Þ þ 1

1� z
R2

!2 þ z�2ð Þ; ð12:11Þ

where

�1 ¼ � 1

A

@#1
@	

þ 1

AB

@A

@B
#2

� �
¼ � 1

A

@

@	

u

R1

þ 1

A

@w

@	

� �
þ 1

AB

@A

@


v

R2

þ 1

B

@w

@


� �� �
;

ð12:12Þ

�2 ¼ � 1

B

@#2
@


þ 1

AB

@B

@	
#1

� �
¼ � 1

B

@

@


v

R2

þ 1

B

@w

@


� �
þ 1

AB

@B

@	

u

R1

þ 1

A

@w

@	

� �� �
;

ð12:13Þ

!1 ¼
1

A

@v

@	
� 1

AB

@A

@

u; !2 ¼

1

B

@u

@

� 1

AB

@B

@	
v; ð12:14Þ

�1 ¼ � 1

A

@#2
@	

� 1

AB

@A

@

#1

� �
; �2 ¼ � 1

B

@#1
@


� 1

AB

@B

@	
#2

� �
: ð12:15Þ

In Eqs (12.15), the angles of rotation, #1 and #2, are given by Eqs (12.2); !1 and !2

can be identified with the angles of rotation of the unit vectors e1 and e2, respectively,
about the normal direction to the middle surface given by the unit vector e3 (see
Appendix D.1). The terms �1 and �2 correspond to the familiar bending curvatures
introduced in the plate bending theory (see Sec. 2.2). However, for shells they are
more properly called the changes in curvatures of the middle surface in the directions of
the 	- and 
-coordinate lines, since shells, by definition, are initially curved.

Equation (12.11) contains four different functions (!1; !2; �1; and �2).
However, one can bring it to a form consisting of only two different functions of
the curvilinear coordinates of the middle surface. With this purpose, first of all, note
that the following identity holds:

�1 �
!2

R1

¼ �2 �
!1

R2

: ð12:16Þ
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The validity of this identity can be easily verified if we substitute for �1; �2; !1; and !2

from Eqs (12.15) and (12.14) in terms of u; v; and w, and perform a differentiation
with regard to the Codazzi relations (11.27a). Then, comparing Eqs (12.5) and
(12.14), it is easily verified that

�12 ¼ !1 þ !2: ð12:17Þ
Let us introduce the following geometric quantity:

�12 ¼ �1 �
!2

R1

¼ �2 �
!1

R2

: ð12:18Þ

The term �12 represents the twist of a differential element of the middle surface due to
the shell bending. It can be defined as the limit of the ratio of the relative angle of
rotation of two opposite sides of the above element, caused by shell straining, and a
distance between these sides, as the element shrinks to zero. The twist has the
dimensions of reciprocal of length and is thereby analogous to curvature.

Substituting for �1 and !2 or for �2 and !1 from Eqs (12.14) and (12.15) into
the above, yields

�12 ¼ � 1

R1

u

AB

@A

@

� 1

B

@u

@


� �
þ 1

R2

v

AB

@B

@	
� 1

A

@v

@	

� �

� 1

AB

@2w

@	@

� 1

B

@B

@	

@w

@

� 1

A

@A

@


@w

@	

 !
:

ð12:19Þ

Finally, reducing terms of Eq. (12.11) to the common denominator and using Eqs
(12.17) and (12.18), we can rewrite the above equation in the form

�z12 ¼
1

1� z
R1

� �
1� z

R2

� � �12 þ 2z�12 �
z2

R1R2

�1R1 þ �2R2ð Þ
" #

: ð12:20Þ

It follows from Eq. (12.18) and (12.17) that

�1R1 þ �2R2 ¼ �12 R1 þ R2ð Þ þ �12:
Substituting the above into Eq. (12.20), after some algebra, we obtain

�z12 ¼
1

1� z
R1

� �
1� z

R2

� � �12 1� z2

R1R2

 !
þ 2z�12 1� z

2

1

R1

þ 1

R2

� �� �( )
:

ð12:21Þ
Equations (12.10) and (12.21) determine the strain components variation

across the shell thickness according to the second-order approximation of the gen-
eral, linear shell theory. However, for thin shells used in engineering practice, the
ratio h=Rmin (where Rmin is the smallest radius of curvature of the middle surface) is
less than 1/50. Therefore, the ratio z=Rmin does not exceed 1%. It should be kept in
mind that as mentioned previously, the Kirchhoff assumptions stipulate the error of
the linear theory of the order of h=Rmin. So, retaining in the expressions (12.10) and
(12.21) the terms of the order h=Ri ði ¼ 1; 2Þ in comparison with unity is not justified.
Hence, the above expressions for the strain components at an arbitrary point of the
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shell may be simplified to the form (neglecting here the value of z=Ri in comparison
with unity)

"z1 ¼ "1 þ z�1; ð12:22aÞ
"z2 ¼ "2 þ z�2; ð12:22bÞ
�z12 ¼ �12 þ 2z�12: ð12:22cÞ

In so doing, it cannot be stated that the linear in z Eqs (12.22) are less accurate than
Eqs (12.10) and (12.21).

The relations (12.22) are of primary importance in the theory of shells. They
express the normal and shear strain components at any point across the shell thick-
nesses as a linear combination of the following two terms:

(a) the in-plane strain components on the middle surface that are expressed
in terms of the middle surface displacements by Eqs (12.3)–(12.5);

(b) the changes in curvature and twist that are also given in terms of the
middle surface displacements by Eqs (12.12), (12.13), and (12.19).

Therefore, as mentioned previously, the relations (12.22) enable one to reduce the 3D
problem of the shell straining to the 2D problem of the deformation of the shell
middle surface. The relationships between the in-plane strains, changes in curvature,
and twist on the one hand, and the displacements of the middle surface on the other,
are called the generalized strain–displacement or kinematic equations. They establish
the conditions of compatibility of the strains and displacements, suitably specialized
for the shell theory under consideration. Let us summarize these equations, as
follows:

"1 ¼
1

A

@u

@	
þ 1

AB

@A

@

v� w

R1

;

"2 ¼
1

B

@v

@

þ 1
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@B

@	
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;

�12 ¼
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@
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v

B

� �
þ A
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@
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u

A

� �
; ð12:23Þ
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B
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;

�2 ¼ � 1
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;

�12 ¼ � 1

AB
� 1

A

@A
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@w

@	
� 1

B

@B
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@w

@

þ @2w

@	@
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þ 1
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A

B
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A
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þ 1
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B

A

@

@	

v

B

� �" #
;

ð12:24Þ
"3 ¼ �13 ¼ �23 ¼ 0: ð12:25Þ

It follows from the above equations that a deformation of the shell middle surface is
completely defined by the six strain parameters, "1; "2; �12;�1; �2; and �12 that are
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called the strain components. The first three strain components characterize the
changes in linear and angular dimensions of a differential element of the middle
surface, while the last three strain components are associated with the change in
space shape of the above element, i.e., with its bending and twisting. It is pertinent to
draw the analogy between shells and curved beams. It is known from the strength of
materials [2] that any change in linear dimensions of a curved bar is accompanied by
a change in its curvature and vice versa.

Taking in Eqs (12.22)–(12.24) A ¼ B ¼ 1; R1 ¼ R2 ¼ 1; and 	 ¼ x; 
 ¼ y, we
obtain the strain–displacement relationships for the bending theory of flat plates:

"1 ¼ �z
@2w

@x2
; "2 ¼ �z

@2w

@y2
; �12 ¼ �2z

@2w

@x@y
: ð12:26Þ

These are identified with the x- and y-coordinate axes, respectively.
It can be seen from Eqs (12.22)–(12.24) that the six quantities determining

deformations of the middle surface of the shell and changes in its curvature
("1; "2; �12; �1:�2; and �12) are expressed in terms of the three displacement compo-
nents (u; v; and w). Therefore, there are some identical relationships between the six
parameters. The meaning of these relationships, called the compatibility equations,
lies in the fact that elements of the middle surface obtaining the linear deformations,
"1; "2; and �12, as well as changes in curvature and twist, �1; �2; and �12, must form a
unique and continuous surface. The simplest way to obtain these equations is to
demand that the coefficients that characterize the first and second quadratic forms of
the deformed surface would satisfy the Codazzi and Gauss equations (11.27). The
compatibility equations were derived by Gol’denveizer [3], accordingly; they are
presented below without derivation:
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� �
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� �1
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� �
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ð12:27Þ
As in problems of the theory of elasticity, the compatibility equations (12.27) are
used in the theory of shells for solving problems formulated in terms of the stress
resultants and stress couples. When we solve problems in displacements, these equa-
tions are identically satisfied. This can be proven by substituting the expressions for
deformations and parameters of a change in curvature from Eqs (12.23) and (12.24)
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into Eqs (12.27) and performing the transformations of these equations with the use
of the Codazzi and Gauss relationships.

12.3 STATICS OF SHELLS

In the previous section we dealt with geometrical description of the shell (deforma-
tions and displacements). In the present section we consider the equilibrium condi-
tions of the shell.

12.3.1 Hooke’s law for thin shells

The constitutive equations for a 3D homogeneous isotropic body are given by Eqs
(1.8). Applying the same system of notations as that adapted above for the strain
components in Sec. 12.2.2, we can rewrite the above equations, as follows:

"z1 ¼
1

E
�z1 � � �z2 þ �z3ð Þ½ �; "z2 ¼

1

E
�z2 � � �z1 þ �z3ð Þ½ �; "z3 ¼

1

E
�z3 � � �z2 þ �z1ð Þ½ �;

ð12:28Þ

�z12 ¼
�z12
G
; �z13 ¼

�z13
G
; �z23 ¼

�z23
G
; ð12:29Þ

where �z1; �
z
2; and �

z
3 are the normal stresses acting on planes whose normals are

parallel to the directions 	; 
, and z axes, respectively; "z1; "
z
2; and "

z
3 are the linear

strains along the same directions; �z12; �
z
13; and �

z
23 are shear stresses; and �

z
12; �

z
13; and

�z23 are the corresponding shear strains.
Returning to Kirchhoff’s postulates, note that the assumption of the preserva-

tion of the normal implies that all of the strain components in the direction of the
normal to the middle surface (hypothesis 1) vanish. This means that

"z3 ¼ �z13 ¼ �z23 ¼ 0; ð12:30Þ
and, in view of Eqs (12.29), the shear stress components �z13 and �

z
23 also vanish. The

next Kirchhoff’s assumption for thin shells states that the transverse normal stress is
negligible compared with the in-plane normal stresses (hypothesis 2), so we can set

�z3 ¼ 0: ð12:31Þ
This assumption proves itself because the normal stress �z3 on the external and
internal shell surfaces is equal to the intensity of the applied transverse external
load. It can be shown that the in-plane normal stresses, �z1 and �z2, are, at least,
R=h times greater than �z3 [1]. Due to the shell thinness, we can conclude that �z3 will
also be small at interior points of the shell.

Solving Eqs (12.28) and (12.29) for the stress components and taking into
account the relation (12.31), we can obtain the following expressions for determining
the stress components in terms of the strain components:

�z1 ¼
E

1� �2 ð"
z
1 þ �"z2Þ; �z2 ¼

E

1� �2 ð"
z
2 þ �"z1Þ; �z12 ¼ G�z12 ¼

E

2ð1þ �Þ �
z
12:

ð12:32Þ
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Substituting for the strain components from Eqs (12.22) into the above, we express
the stress components at any point across the thickness of the shell in terms of the
middle surface strain components, changes in curvature, and twist, as follows:

�z1 ¼
E

1� �2 "1 þ �"2 þ z �1 þ ��2ð Þ½ �; �z2 ¼
E

1� �2 "2 þ �"1 þ z �2 þ ��1ð Þ½ �;

�z12 ¼
E

1þ �
1

2
�12 þ z�12

� �
: ð12:33Þ

Figure 12.4 shows a space differential element isolated from a shell by means of four
sections normal to its middle surface and tangential to the lines 	 and 	þ d	; 
 and

þ d
. The height of this element is finite and equals the shell thickness h. In this
figure, the stresses acting on the volume element are indicated. The sign convention
and subscript notation of the stress components are that of the theory of elasticity
(see Sec. 1.4) and adapted in the treatment of thin shells, where the subscripts 1, 2,
and 3 correspond to the axes 	; 
; and z, respectively. So, all stresses are shown
positive in Fig. 12.4. For any orthogonal coordinates, the condition of equilibrium of
moments on a differential element requires that

�z12 ¼ �z21; �z13 ¼ �z31; and �z23 ¼ �z32: :

12.3.2 The stress resultants and stress couples in shells

It follows from Eq. (12.33) that the stress components are linearly distributed across
the thickness of the elastic shell; therefore, it is convenient to integrate the stress
distribution through the shell thickness, and then to replace the usual consideration
of stresses by a consideration of statically equivalent stress resultants and stress
couples applied to the middle surface, just as was done in the plate bending theory
(see Sec. 2.3). These stress resultants and stress couples are also referred to as the
internal forces and moments, respectively. By performing such integrations, the var-
iations with respect to z are completely eliminated to give a 2D theory of thin shells.
The elements of area of the cross sections (shaded in Fig.12.4) are

dsz1 ¼ Azd	dz ¼ A 1� z

R1

� �
d	dz; dsz2 ¼ Bzd
dz ¼ B 1� z

R2

� �
d
dz:

ð12:34Þ

Fig. 12.4
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Let us define the in-plane normal force N1 as the resultant of the normal stresses �1
acting on plane face yz per unit length of the element. Thus, we have the following:

N1Bd
 ¼
ðh=2
�h=2

�z1ds
z
2 ¼

ðh=2
�h=2

�z1B 1� z

R2

� �
d
dz;

from which

N1 ¼
1

Bd


ðh=2
�h=2

�z1Bd
 1� z

R2

� �
dz or N1 ¼

ðh=2
�h=2

�z1 1� z

R2

� �
dz: ð12:35aÞ

Similarly, we can define the in-plane shear force N12 and the transverse shear force
Q1, which are the resultants of the shear stress components �12 and �13, respectively,
and act on the same yz plane face:

N12 ¼
ðh=2
�h=2

�z12 1� z

R2

� �
dz ð12:35bÞ

Q1 ¼
ðh=2
�h=2

�z13 1� z

R2

� �
dz: ð12:35cÞ

Expression for the remaining stress resultants per unit length are derived in a similar
manner. They are given by the following:

N2 ¼
ðh=2
�h=2

�z2 1� z

R1

� �
dz; ð13:35dÞ

N21 ¼
ðh=2
�h=2

�z21 1� z

R1

� �
dz; ð12:35eÞ

Q2 ¼
ðh=2
�h=2

�z23 1� z

R1

� �
dz: ð12:35fÞ

Taking, next, the moments of the stress components �z1 and �z12 about the y and x
axes, we will arrive to the following two new quantities:

M1 ¼
ðh=2
�h=2

�z1z 1� z

R2

� �
dz ð12:36aÞ

and

M12 ¼
ðh=2
�h=2

�z12z 1� z

R2

� �
dz; ð12:36bÞ

which are referred to, as mentioned previously, as the stress couples or the bending
and twisting moments, respectively, acting on plane face yz. These moments are given
to per unit length of the element of Fig. 12.4. Similarly, we can define the stress
couples or the bending and twisting moments assigned on plane face xz, as follows:

M2 ¼
ðh=2
�h=2

�z2z 1� z

R1

� �
dz; ð12:36cÞ

M21 ¼
ðh=2
�h=2

�z21z 1� z

R1

� �
dz: ð12:36dÞ

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



The positive senses of the stress resultants and stress couples are shown in Fig. 12.5;
the sign convention adopted in this figure is the same as for thin plates (see Sec. 2.3).

Notice in the above definitions of the stress resultants and stress couples that
the symmetry of the stress tensor (�12 ¼ �21) does not necessarily imply that N12 and
N21 are either equal or that M12 and M21 are equal for a thin shell of an arbitrary
shape, except for a spherical shell.

In the general linear theory of thin shells presented above, six internal forces,
N1, N12, N21, N2;Q1, and Q2, and four moments,M1,M2,M12 andM21, characterize
completely the state of stress of the shell, because the knowledge of these quantities
enables one to determine the stress components at any point of the shell, as follows:

�z1 ¼
N1

h
þ 12M1

h3
z

� �
1

1� z
R2

� N1

h
þ 12M1

h3
z;

�z2 ¼
N2

h
þ 12M2

h3
z

� �
1

1� z
R1

� N2

h
þ 12M2

h3
z;

�z12 ¼
1

2h
N12 þN21ð Þ þ 6

h3
M12 þM21ð Þz:

ð12:37Þ

The determination of the transverse shear stresses �13 and �23 from their resultants Q1

and Q2 is not as precise, even within the framework of the present theory, as is the
determination of �1, �2, and �12. In this case, it is reasoned, as in the theory of beams
and thin plates, that the transverse shear stresses are parabolically distributed across
the thickness of the shell. Assuming that the shear stresses are lacking on the outer
and inner surfaces of the shell, we obtain the following expression for the transverse
shear stresses:

�zi3 ¼
6

5

Qi

h
1� 2z

h

� �2
" #

; i ¼ 1; 2; ð12:38Þ

where, for the sake of convenience, a ‘‘form factor’’ of 6/5 is introduced. It represents
the ratio of peak shear stress to average shear stress across the thickness of the shell.

As mentioned previously, general theory of thin shells presented was based on
the Kirchhoff–Love assumptions. Now is the time to discuss these assumptions
applied to the preceding derivations of the stress resultants and stress couples.

Fig. 12.5
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1. We have found that, as a result of the first Kirchhoff assumption, �13 ¼
�23 ¼ 0 and therefore �13 ¼ �23 ¼ 0 from Hooke’s law (Eqs 12.29). Nevertheless, we
have defined the nonvanishing shear stress resultants Q1 and Q2 as integrals of �13
and �23 over the shell thickness. A similar situation has been observed in the plate
bending theory (see Sec. 2.3), as well as in the elementary theory of beams. Here,
as in the plate bending theory, the Q1 and Q2 resultants must be retained for
purposes of equilibrium. However, they cannot be determined directly by integrat-
ing the shear stresses �13 and �23 over the shell thickness as was done for other
stress resultants. As in the plate bending theory, the transverse shear forces Q1 and
Q2 may be found from equilibrium conditions set up for a differential element; this
is shown later.

2. We have also found that, as a result of the first and second Kirchhoff’s
assumptions, "3 ¼ �3 ¼ 0. If only �3 were assumed to vanish, then the following
expression for the normal strain "3 could be obtained from Eqs (12.28) by setting
�3 ¼ 0. We have

"3 ¼ � �

1� � ð"1 þ "2Þ: ð12:39Þ

From this expression it would appear that the simultaneous vanishing of both the
transverse normal stress and normal strain is inconsistent. These inconsistencies and
deficiencies specify an approximate character of the general linear thin shell theory.
However, as mentioned previously, the error introduced by Kirchhoff’s assumptions
into the shell theory is of the order of h=Ri in comparison with unity.

12.3.3 Equilibrium of the shell element

Consider a differential element isolated from a shell and bounded by two pairs of the
normal sections passing through the 	- and 
-coordinate lines (Fig. 12.4) and specify
its equilibrium under all external and internal forces. The external forces will com-
prise some surface loads applied to the upper and lower surfaces of the element. As
mentioned previously, the stress components, continuously distributed across the
shell thickness, are replaced by statically equivalent internal forces and moments
and applied to the middle surface (Fig. 12.5). An analogous operation can be exe-
cuted for the external loads by replacing them by statically equivalent forces dis-
tributed over the middle surface. Let us resolve the surface load p into components in
the directions of e1; e2; and e3 are denoted by p1; p2; and p3. Thus,

p ¼ p1e1 þ p2e2 þ p3e3: ð12:40Þ

Hence, instead of considering the equilibrium of the 3D element of the shell shown in
Fig. 12.4, one can study the equilibrium of the 2D element of the middle surface
shown in Fig. 12.5.

Let us consider the equilibrium conditions of this element of the middle surface
loaded by the external and internal forces and moments. The force and moment
equilibrium for the shell element (the resultant force and resultant moment of all the
external and internal forces applied to the middle surface are zero) results in the
following scalar equations:
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@

@	
N1Bð Þ þ @

@

N21Að Þ þN12

@A

@

�N2

@B

@	
�Q1

AB

R1

þ p1AB ¼ 0;

@

@

N2Að Þ þ @

@	
N12Bð Þ þN21

@B

@	
�N1

@A

@

�Q2

AB

R2

þ p2AB ¼ 0;

@

@	
Q1Bð Þ þ @

@

Q2Að Þ þN1

AB

R1

þN2

AB

R2

þ p3AB ¼ 0; ð12:41Þ

@

@	
BM12ð Þ þ @

@

AM2ð Þ �M1

@A

@

þM21

@B

@	
�Q2AB ¼ 0;

@

@

AM21ð Þ þ @

@	
BM1ð Þ �M2

@B

@	
þM12

@A

@

�Q1AB ¼ 0;

N12 �N21 �
M12

R1

þM21

R2

¼ 0: ð12:42Þ

The detailed derivations of Eqs (12.41) and (12.42) are given in Appendix E. The
above equations represent a set of the differential equations of static equilibrium of a
shell element of the general theory of thin elastic shells.

It can be easily shown that the third Eq. (12.42) is identically satisfied. To
prove that, one needs to substitute for N12;N21; and M12;M21 from Eqs (12.35) and
(12.36) into the third Eq. (12.42). We obtain the following:

ðh=2
�h=2

�z12 1� z

R2

� �
dz�

ðh=2
�h=2

�z21 1� z

R1

� �
dz�

ðh=2
�h=2

�z12
z

R1

1� z

R2

� �
dz

¼
ðh=2
�h=2

�z21
z

R2

1� z

R1

� �
dz ¼

ðh=2
�h=2

1� z

R2

� �
1� z

R1

� �
�z12 � �z21ð Þdz � 0

because �z12 ¼ �z21:

Hence, the system of three equations (Eqs (12.42)) can be reduced to two
equations and the third equation may be disregarded, although we may mention it
from time to time.

Novozhilov [1] suggested that we reduce the number of unknowns in the above
equations by setting

M12 ¼ M21 ¼ H; S ¼ N12 þ
H

R2

¼ N21 þ
H

R1

: ð12:43Þ

It can be shown that the substitution of these expressions for N12;N21;M12; and M21

from Eqs (12.43) into the third Eq. (12.42) results in the identity, 0 � 0. Thus, taking
into account relations (12.43), the equilibrium equations (12.41) and (12.42) are
finally reduced to the system of five partial differential equations for eight unknown
stress resultants and couples: i.e., N1;N2;S;M1;M2;H;Q1; and Q2.

Determining the transverse shear forces Q1 and Q2 from the first and second
Eqs (12.42) and substituting them into Eqs (12.41) with the replacement N12 ¼ S �
H=R2 and N21 ¼ S �H=R1, we arrive at three equations of equilibrium in the fol-
lowing form:
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@

@	
N1Bð Þ þ 1

A

@

@

SA2
� �� 2

R2

@A

@

H � 1

R1

@

@	
M1Bð Þ �M2

@B

@	
þ 2

@

@

HAð Þ

� �

�N2

@B

@	
þ ABp1 ¼ 0;

@

@

N2Að Þ þ 1

B

@

@	
SB2
� �� 2

R1

@B

@	
H � 1

R2

@

@

M2Að Þ �M1

@A

@

þ 2

@

@	
HBð Þ

� �

�N1

@A

@

þ ABp2 ¼ 0;

N1

AB

R1

þN2

AB

R2

þ @

@	

1

A

1

A

@

@

HA2
� �þ @

@	
M1Bð Þ �M2

@B

@	

� � �

þ @

@


1

B

1

B

@

@	
HB2
� �þ @

@

AM2ð Þ �M1

@A

@


� � �
þ ABp3 ¼ 0:

ð12:44Þ

12.3.4 Constitutive equations (stress resultants–strain and stress
couple–curvature relations)

In shell problems, the constitutive equations are required to relate the stress resul-
tants and stress couples, instead of merely stresses, to the corresponding strains and
curvatures.

Since we have already neglected the terms of order z=Ri (i ¼ 1; 2) in determin-
ing deformations (hence, also stresses), then the factor (1� z=Ri) can be dropped.
Thus, substituting for �z1; �

z
2; and �

z
12 from Eqs (12.33) into Eqs (12.35) and (12.36),

as well as taking into account expressions (12.43) and integrating over the thickness
of the shell, we obtain the following stress resultant–strain and stress couple–curva-
ture relations:

N1 ¼
Eh

1� �2 "1 þ �"2ð Þ; N2 ¼
Eh

1� �2 "2 þ �"1ð Þ;

N12 ¼ S � H

R2

; N21 ¼ S � H

R1

; S ¼ Eh

2 1þ �ð Þ �12; ð12:45Þ

M1 ¼ D �1 þ ��2ð Þ; M2 ¼ D �2 þ ��1ð Þ;

M12 ¼ M21 ¼ H; H ¼ D 1� �ð Þ�12; ð12:46Þ
where

D ¼ Eh3

12ð1� �2Þ ð12:47Þ

is the flexural rigidity (or stiffness) of the shell. Equations (12.45) and (12.46) are
referred to as the constitutive equations or stress resultants–strain and stress couple–
curvature relations of the general linear theory of thin shells. As for the transverse
shear forces, Q1 and Q2 – as mentioned previously, they can be determined from the
equations of static equilibrium only, Eqs (12.42).
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In the first-order approximation shell theory, the constitutive relations for N12

and N21 are usually simplified to the form

N12 ¼ N21 ¼ S ¼ Eh

2 1þ �ð Þ �12: ð12:48Þ

In this form, the constitutive equations (12.45), (12.46), and (12.48) remind us of the
corresponding stress resultants–strains and stress couple–curvatures relations dis-
cussed previously in the plate bending theory (Sec. 2.3). The difference between
the two constitutive equations is that the strain–displacement relations in the general
shell theory have a more complex form than in the plate theory. However, as men-
tioned in Ref. [1], although the error introduced by the simplified relation (12.48)
does not exceed the corresponding errors of the general assumptions adopted in the
shell theory, the application of the above equation brings some contradictions. But
these contradictions do not practically influence the accuracy of the calculations of
the stress and displacement components.

12.4 STRAIN ENERGY OF SHELLS

The strain energy of the shell can be determined by means of Kirchhoff’s assump-
tions discussed previously, i.e., the transverse normal, �3, and shear, �13 and �23,
stress components are neglected. Therefore, the strain energy density (strain energy
per unit volume) ûu is given by [1]:

ûu ¼ 1

2E
ð�z1Þ2 þ ð�z2Þ2 � 2��z1�

z
2

� �þ 1

2G
ð�z12Þ2

or

ûu ¼ E

2 1� �2� � "z1ð Þ2þ "z2ð Þ2þ2�"z1"
z
2

h i
þ G

2
�z12ð Þ2: ð12:49aÞ

Since G ¼ E=2 1þ �ð Þ, the last equation may be rewritten as

ûu ¼ E

2 1� �2� � "z1 þ "z2ð Þ2þ2 1� �ð Þ 1

4
�z12ð Þ2� "z1"

z
2

� �� �
: ð12:49bÞ

Substituting for "z1; "
z
2; and �

z
12 from Eqs (12.22) into the above:

ûu ¼ E

2 ð1� �2 Þ

"1 þ "2 þ zð�1 þ �2½ Þ�2

þ 2ð1� �Þ 1

4
ð�12 þ 2�12zÞ2 � ð"1 þ �1zÞð"2 þ �2zÞ

� ��
:

ð12:50Þ

To calculate the total strain energy of the shell, it is necessary to multiply the strain
density ûu by an elementary volume of the layer of the shell, as follows:

dV ¼ AzBzd	d
dz ¼ 1� z

R1

� �
1� z

R2

� �
ABd	d
dz;

and to integrate over the shell thickness (�h=2 � z � h=2) and over the area of its
middle surface.
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Accepting the same accuracy that has been used to derive the values of the
strain components, neglecting the small terms of the order z=Ri in the expressions for
the volume of shell, element and integrating over the shell thickness, we obtain the
following expression for the strain energy of the shell:

U ¼
ð
	

ð



Eh

2 1� �2� � "1 þ "2ð Þ2þ2 1� �ð Þ �212
4

� "1"2
 !" #

ABd	d


þ
ð
	

ð



D

2
�1 þ �2ð Þ2þ2ð1� �Þ �212 � �1�2

� �� �
ABd	d
:

ð12:51Þ

The first integral in the expression (12.51) represents the membrane strain energy of
the shell, whereas the second term expresses its bending strain energy. Using Eqs
(12.45) and (12.46), one can express the strain energy of the shell in terms of the
internal forces and moments, as follows:

U ¼
ð
	

ð



1

2Eh
N1 þN2ð Þ2þ2ð1þ �Þ S2 �N1N2

� �� �
ABd	d


þ
ð
	

ð



12

2Eh3
M1 þM2ð Þ2þ2ð1þ �Þ H2 �M1M2

� �� �
ABd	d
:

ð12:52Þ

At last, the strain energy can be calculated using the following equation:

U ¼ 1

2

ð
	

ð



N1"1 þN2"2 þ S�12 þM1�1 þM2�2 þ 2H�12½ �ABd	d
: ð12:53Þ

The expressions (12.51)–(12.53) are valid for shells with both constant and
variable thicknesses.

12.5 BOUNDARY CONDITIONS

In the previous sections we have derived a set of differential equations (kinematic,
equilibrium, and constitutive), which must be satisfied everywhere on the middle
surface. However, the solutions of the above equations, naturally, do not yet deter-
mine completely the state of stress and strain in a shell, as long as they are not subject
to boundary conditions. We now clarify how many boundary conditions must be
imposed on the shell edges and set up their formulation for the general linear theory
of thin shells. We consider three cases.

1. A shell has no boundaries, i.e., it is completely closed. The coordinate lines 	
and 
 on the middle surface of the closed shell will be, in turn, also closed. It is
evident that in this case the concept of the boundary conditions loses its meaning.
However, it does not follow from this that any solution satisfying the previously
mentioned governing differential equations of the general linear shell theory is in this
case a solution of the shell problem under consideration. A true solution must be a
periodic function of the coordinates 	 and 
 for a passage through the shell along
these closed coordinate lines, and hence, in moving along any closed curve belonging
to the middle surface. Thus, in the case of complete or closed shells, the boundary
conditions are replaced by the conditions of periodicity.

2. A shell is closed with respect to one coordinate and open with respect to
another, as is, for example, the case for cylindrical shells. It is evident that in the
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direction of the closed coordinate the conditions of periodicity must be formulated
as the boundary conditions. Along the other, the open coordinate, it is necessary to
set up the boundary conditions, which are to be satisfied in solving the governing
differential equations of the general shell theory.

3. A shell is open with regard to both coordinate lines 	 and 
. In this case, it is
required to set up certain boundary conditions in the directions of both principal
directions. Proceeding now to this general case, we confine ourselves to the simplest
case where the boundaries coincide with the lines of principal curvature of the middle
surface (the 	- and 
- coordinate lines), since this case is encountered most frequently
in practice.

Let, for example, the line 
 ¼ 
 be a boundary of the shell. The stresses acting
on the boundary can be reduced to the three internal forces N2;N21; and Q2 and two
momentsM2 andM21. The deformations on the same boundary are characterized by
the three displacement components u; v; and w and two slopes #1 and #2. Thus, at
first glance, five boundary conditions must be prescribed on the edge line 
 ¼ 
.
However, this is not true: due to the Kirchhoff kinematic hypothesis (the first
Kirchhoff assumption), not all the above-mentioned quantities are independent.
The slope of the normal to the shell boundary, #2, is connected with the displace-
ments w and v on this boundary by the condition of the preservation of the normal.
Therefore, the number of independent displacements (and hence, the corresponding
generalized forces) equals four, and only the four boundary conditions can be
assigned on each edge of the shell. By the way, as follows from the above, such a
number of independent boundary conditions corresponds to the eighth order of the
governing differential equations of the general linear theory of thin shells.

Thus, the five forces and moments assigned for the static boundary conditions
on the shell boundary (i.e., the boundary conditions expressed in terms of the inter-
nal forces and moments) can be reduced to four quantities in accordance with
Kirchhoff’s postulates. This can be carried out in a similar manner to that done in
the plate theory (Sec. 2.5): namely, the three boundary quantities, N2;N21; and M21,
may be replaced with the two boundary quantities with an acceptable accuracy.

Figure 12.6 shows two adjacent differential segments of the boundary 
 ¼ 


of the middle surface, each of length ds1, near some point m1. The boundary curve
mm1m2 may be approximated by a polygon formed by two small segments of equal
length. The length of each such segment with a high order of accuracy may be set
equal to the length of the arc spanning, i.e., mm1 ¼ m1m2 � ds1. Let points n1 and n2
be halfway between the points m and m1;m1 and m2, respectively. It is evident that
n1n2 � ds1. Let M21ds1 and

M21 þ
@M21

@s1
ds1

� �
ds1

be the resultants of the twisting moments distributed over segments mm1 and m1m2,
respectively. These act at the midpoints n1 and n2. Further, we replace each of the
above resultant couples by a pair of equal and opposite forces with the moment arms
ds1 and applied at end points of the corresponding segments. So, at end points m
and m1 the forces M21ds1ð Þ=ds1 ¼ M21, acting normal to the chord mm1, are applied.
Similarly, the forces M21 þ @M21=@s1ð Þds1, acting normal to the chord m1m2, will be
applied at end points m1 and m2. Thus at each point of the corners of the polygon,
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two concentrated forces from twisting moments distributed over the adjacent seg-
ments are applied, as shown in Fig. 12.6b for corner point m1.

Projecting both these forces, acting at a point m1, on the direction of the
normal to the middle surface (the direction of the transverse shear force Q2) and
on the direction of the tangent to the middle surface (the direction of the in-plane
shear force N21), we obtain:

(a) in the first case

þM21

@M21

@s1
ds1 �M21 ¼

@M21

@s1
ds1; ðaÞ

(b) in the second case

� 2M21 þ
@M21

@s1
ds1

� �
’; ðbÞ

where 2’ is the angle between the normals to the middle surface at points n1 and n2,
i.e., 2’ ¼ ds1=R1. Substituting this value for ’ into the expression (b) and retaining
only the first-order quantities, one finds �ðM21=R1Þds1. Thus, along the shell edge

 ¼ 
, the twisting moment can be replaced by the distributed normal (transverse)
shear forces @M21=@s1 and distributed tangential (in-plane) shear forces �M21=R1.

As mentioned previously (see Sec. 2.5), the replacement of the twisting moment
by statically equivalent forces results in a certain redistribution of the stresses over
the thickness of the shell along its boundaries. By the St.Venant principle, the effect
of this approximation cannot be significant; it can only be noticeable within the
immediate neighborhood of the boundaries (at distances of the order of the shell
thickness).

It follows from the above that the boundary conditions on the edge 
 ¼ 
 can
be formulated in terms of the following four quantities:

Fig. 12.6
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N2; T2 ¼ N21 �
M21

R1

; V2 ¼ Q2 þ
1

A

@M21

@	
; M2; ð12:54Þ

where T2 and V2 are referred to as the in-plane and transverse effective shear forces,
respectively. These boundary quantities define completely the state of stress on the
above-mentioned shell edge; therefore, the number of boundary conditions on the
edge must be equal to four, and not five.

Note that the static boundary conditions (12.54) can also be expressed in terms
of functions S and H by using the relations (12.43). In this case, the boundary
quantities on the edge 
 ¼ 
 are of the form

N2; T2 ¼ S � 2H

R1

; V2 ¼ Q2 þ
1

A

@H

@	
; M2: ð12:55Þ

Using the above results, it is not difficult to deduce, similarly, the boundary quan-
tities assigned for the edge 	 ¼ 	.

We have considered the so-called static boundary conditions expressed in terms
of the four generalized force and moment quantities prescribed on the shell edges. Of
course, the boundary conditions of the shell can be expressed in terms of the pre-
scribed displacements or slopes on its edges (the so-called kinematic boundary con-
ditions). Sometimes, the mixed boundary conditions expressed in terms of the
displacements and forces prescribed on the shell boundaries are also encountered
in practice.

Let us list some typical boundary conditions that are frequently encountered in
engineering applications. These conditions are formulated below for a boundary of
the shell, which is a part of the 
 curve, i.e., for the boundary 
 ¼ 
:

(1) Free edge

N2 ¼ 0; T2 ¼ N21 �
M21

R1

¼ 0; V2 ¼ Q2 þ
1

A

@M21

@	
¼ 0; M2 ¼ 0 ð12:56Þ

(2) Clamped edge

u ¼ 0; v ¼ 0; w ¼ 0; #2 ¼ 0; ð12:57Þ
where #2 is given by Eq. (12.2).

(3) Hinged edge with the support free to move in the normal direction

M2 ¼ 0; V2 ¼ Q2 þ
1

A

@M21

@	
¼ 0; u ¼ 0; v ¼ 0: ð12:58Þ

(4) Hinged edge with fixed support

M2 ¼ 0; u ¼ 0; v ¼ 0; w ¼ 0: ð12:59Þ
Similarly, the boundary conditions for the shell edge 	 ¼ 	 can be assigned.

12.6 DISCUSSION OF THE GOVERNING EQUATIONS OF THE
GENERAL LINEAR SHELL THEORY

At this point, the governing equations of the general linear theory of thin shells are
now complete. They can be classified in the following manner:

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



(1) The strain–displacement relations

Six strain–displacement equations are summarized for the general linear shell theory
by Eqs (12.23) and (12.24). They involve six components of strain, "1; "2; �12; �1; �2;
and �12, which are given explicitly in terms of the three displacement components
u; v; and w. Note that the six strain components must satisfy the equations of
compatibility (Eqs (12.27)). The latter equations are used only for solving the shell
problems in forces–strain components. If the problem under consideration is solved
in terms of the displacement components, then these conditions are satisfied
automatically.

(2) The constitutive equations

The eight equations are summarized in the general case by Eqs (12.45) and (12.46).
They express the eight stress resultants and stress couples, N1; N2; N12; N21;M1;M2;
M21; and M12, as explicit functions of the six strain components, "1; "2; �12; �1; �2;
and �12. The number of these constitutive equations can be reduced for a practical
stress analysis of shells to six by accepting the assumption (12.43).

(3) Equations of equilibrium

Five equations of equilibrium must be satisfied. They are given by Eqs (12.41) and
(12.42). These five equations involve the 10 stress resultants and couple resultants,
N1; N2;N12; N21;M1; M2; M12; M21; Q1; and Q2. The number of the these forces
and moments can be reduced to eight by using Eqs (12.43).

(4) Boundary conditions

Boundary conditions relate the stress resultants and stress couples or displacement
components specified on the shell boundaries to prescribed boundary quantities (in a
particular case, the latter may be equal to zero). These boundary conditions are
summarized by Eqs (12.56)–(12.59).

Thus, in general, there are 19 equations relating 19 unknowns, u; v; w; "1; "2;
�12; �1; �12; N1; N2; N12; N21; M1 ;M2; M12; M21;Q1, and Q2. For a simplified
general linear theory of shells, one can take N12 ¼ N21 and M12 ¼ M21, thereby
reducing the number of equations and unknowns to 17.

As for the theory of elasticity, shell problems may be solved either in terms of
displacements or in terms of the internal forces and moments. According to the first
technique, the internal forces and moments are replaced in the equilibrium equations
(12.41) and (12.42) by the displacement components u; v; and w, using the constitu-
tive and strain–displacement relations (12.45), (12.46) and (12.23), (12.24), respec-
tively. As a result, the eight-order system of the three governing partial differential
equations for displacements is obtained. The second technique consists of simulta-
neous treatment of equations of equilibrium (12.41) and (12.42) or (12.44) and
compatibility relations (12.27). In so doing, the eight-order system of six governing
differential equations for N1; N2; S; M1; M2; and H will be obtained.
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12.7 TYPES OF STATE OF STRESS FOR THIN SHELLS

All equations mentioned in Sec. 12.6 are linear for both techniques, which, of course,
greatly simplifies their study and solution. However, shell problems associated with
calculations of the stress and strain components remain very difficult. As a rule, the
governing, eight-order partial differential equations of the general shell theory have
variable coefficients. Mathematical difficulties associated with integration of such a
type of differential equations are evident. Even for the simplest circular cylindrical
shells for which the governing equations have constant coefficients, cumbersome
computations remain involved and,by far, not all problems of practical interest
for such shells have been solved. Consequently, attempts of scientists and engineers
engaged in the practical stress analysis of shell structures were directed towards the
search for possibilities of simplifying the above governing differential equations of
the general shell theory and shell problems themselves. Several approximate methods
and the corresponding shell models based upon some additional assumptions and
upon simplified governing equations are considered in Chapter 17.

Previously, in presenting the general linear shell theory, it was assumed that the
flexural stresses are values of the same order as the stresses caused by in-plane
(membrane) stresses. If one of the above-mentioned types of stresses is negligible
in comparison with another one, then it is possible to introduce considerable sim-
plifications in the general linear shell theory. Consider some possible types of state of
stress for thin shells.

1. If the flexural stresses are negligible compared with the membrane stresses
then such a type of state of stress is called a membrane or momentless state of stress.
The governing equations of the membrane theory can be obtained directly from the
equations of the general shell theory by neglecting the effect of the bending and
twisting moments, as well as the transverse shear forces, on the state of stress and
strain of thin shells. In some cases, the membrane theory describes the state of stress
and strain with reasonable accuracy, since the bending and twisting moments are of
negligible magnitudes: for example, hollow spherical shells subjected to inside and
outside uniform pressure are in the pure membrane state of stress.

2. If, to the contrary, the membrane stresses are negligible in comparison with
the flexural stresses, then such a type of state of stress is referred to as a pure flexural
or moment state of stress. Note that the definitions of the ‘‘membrane’’ and ‘‘pure
flexural’’ states of stress are not quite correct because the membrane state of stress
admits an existence of small flexural stresses and, in turn, small membrane stresses
may occur in a pure flexural state of stress. It was mentioned previously that shells,
due to their small thickness, possess a relatively small flexural stiffness and, there-
fore, they are poorly adapted to resisting in bending. Even relatively small bending
moments may cause considerable flexural stresses and displacements in shells.
Therefore, a pure flexural type of the state of stress is dangerous and technically
disadvantageous for thin shells. It should be avoided by introducing some intermedi-
ate reinforcements, by selecting the corresponding shape of the shell, by choosing the
type of supports, etc. Conversely, the membrane state of stress, at which the shell is
uniformly stressed across its thickness, is technically the most advantageous. So,
engineers designing a shell should aim at such a state of stress.

3. If the flexural and membrane stresses are of the same order, then such a
state of stress is called a mixed state of stress, or edge effect. The term ‘‘edge effect’’ is
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associated with the fact that the above-mentioned mixed state of stress often occurs
near edges of the shell. Note that all attempts to generate the membrane state of
stress throughout the shell surface were not successful, except for a few particular
cases. At the main portion of a shell the state of stress, which is close to the mem-
brane, can be generated. However, near the shell edges or some reinforcing stiffeners,
the mixed state of stress takes place. This edge effect is, as a rule, localized in a
comparatively small area. The latter circumstance is commonly used for the decom-
position of a given state of stress into the membrane and edge effect. As shown in
Sec. 17.5, such decomposition results in considerable simplifications in solving the
shell problems.

PROBLEMS

12.1 Verify Eqs (12.10)–(12.15).

12.2 Verify Eq. (12.16).

12.3 Explain and show the physical meaning of the twist of a differential element of the

middle surface, �12.
12.4 Equations (12.22) are not unique linear relations in the general linear theory of thin

shells. Using the expansions of the type

1

1� z=Ri

¼ 1þ z

Ri

þ z

Ri

� �2

þ . . . ði ¼ 1; 2Þ

and Eqs (12.10) and (12.11), derive the corresponding strain relations in the equidistant

surface. Compare the accuracy of the above equations with the relations (12.22).

12.5 Would the accuracy of Eqs (12.24) be changed if the terms of the order "i=Ri ði ¼ 1; 2Þ
were added to the right-hand sides?

12.6 Give the physical explanation of the assumption �z ¼ 0 adopted in the general linear

theory of thin shells. Compare the orders of the direct stresses �1 and �2 with the above

stress �3.
12.7 Generalize the equilibrium equations (12.41) to include surface loading that consists of

distributed moments m1ðx; yÞ and m2ðx; yÞ.
12.8 Verify Eqs (12.44).

12.9 What are the formal contradictions, brought by the approximate relations (12.48), in

the general linear shell theory?

12.10 Verify Eqs. (12.52) and (12.53).

12.11 Derive the boundary conditions of the type (12.56)–(12.59) for the shell boundary

	 ¼ 	.
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13

The Membrane Theory of Shells

13.1 PRELIMINARY REMARKS

It was shown in Chapter 12 that a thin elastic shell supports an arbitrary external
loading by means of stress resultants (internal forces) and stress couples (bending
and twisting moments). Under appropriate loading and boundary conditions, how-
ever, the resulting bending and twisting moments are either zero, or so small that
they may be neglected. Such a state of stress is referred to as the membrane state of
stress because of the analogy to membranes that cannot support bending and twist-
ing moments. The corresponding theory of thin shells that deals with this state of
stress is called the membrane theory of shells. It follows from the above that the
membrane theory neglects all moments, i.e.,

M1 ¼ M2 ¼ H ¼ 0: ð13:1Þ
In turn, it follows from the corresponding moment relations

M1 ¼ D �1 þ ��2ð Þ; M2 ¼ D �2 þ ��1ð Þ; H ¼ Dð1� �Þ�12; ð13:2Þ
that neglecting the moments will be justified either when the shell has a very small
flexural stiffness, D, or when the changes in curvature and in twist of the middle
surface, �1; �2; and �12, are very small. In the first case, we deal with an absolutely
flexible shell, the membrane; in the second case, with the momentless or the mem-
brane state of stress of a shell that has a finite flexural stiffness. Although, both these
problems are described by one and the same theory, a distinction must be made
between them because they resist the applied loading differently. An absolutely
flexible shell (for instance, made from cloth) is not able to sustain compressive forces
since any small compression forces will cause the loss of stability of its shape.
Therefore, these shells may resist the applied loads only in tension.

Shells with finite flexural stiffness, in contrast to absolutely flexible shells, may
resist in both the membrane states of compressive as well as tensile forces. They lose
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stability only when the compressive forces exceed a certain critical value. For abso-
lutely flexible shells, since they do not possess a resistance to bending, only the
membrane state of stress is possible, while for shells with finite stiffness such a
state of stress is only one of the possible stress conditions. In this chapter we consider
only shells with a finite flexural stiffness.

13.2 THE FUNDAMENTAL EQUATIONS OF THE MEMBRANE
THEORY OF THIN SHELLS

The governing equations of the membrane theory can be obtained directly from the
equations of the general theory of thin shells derived in Chapter 12. For this purpose,
it is assumed that, in view of the smallness of the changes of curvature and twist, the
moment terms in the equations of equilibrium for a shell element are unimportant,
although in principle the shell may resist the external loads in bending. Note that
neglecting the moments leads to neglecting the normal shear forces. Thus, for the
membrane theory of thin shells, we can assume that

M1 ¼ M2 ¼ H ¼ Q1 ¼ Q2 ¼ 0: ð13:3Þ
Introducing Eq. (13.3) into Eqs (12.44) and taking into account Eq. (12.43), one
arrives at the following system of differential equations:

@

@	
N1Bð Þ þ 1

A

@

@

A2S
� ��N2

@B

@	
þ ABp1 ¼ 0;

@

@

N2Að Þ þ 1

B

@

@	
B2S
� ��N1

@A

@

þ ABp2 ¼ 0;

N1

1

R1

þN2

1

R2

þ p3 ¼ 0;

ð13:4Þ

where N12 ¼ N21 ¼ S (since H ¼ 0Þ.
In this system, the number of unknowns is equal to the number of equations, so

the problem of the membrane theory of shells is statically determinate (that is true
for the equilibrium of an infinitely small shell element but is not always true for the
equilibrium of the entire shell). This means that if the external load components,
p1; p2; and p3, are known, then the membrane forces and stresses for such a shell are
uniquely determined from Eqs (13.4).

Having determined the membrane forces, the shell displacements may be
found. Solving the constitutive equations (12.45) for strains, and substituting them
into Eqs (12.23), yields the following system of the three partial differential equations
for the displacements:

"1 ¼
1

A

@u

@	
þ v

AB

@A

@

� w

R1

¼ 1

Eh
N1 � �N2ð Þ;

"2 ¼
1

B

@v

@

þ u

AB

@B

@	
� w

R2

¼ 1

Eh
N2 � �N1ð Þ;

�12 ¼
B

A

@

@	

v

B

� �
þ A

B

@

@


u

A

� �
¼ 2ð1þ �Þ

Eh
S:

ð13:5Þ
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The system of the differential equations (13.4) in the membrane theory for determin-
ing the membrane internal forces (and stresses) is of the second order. Accordingly,
the system (13.5) for the displacements is also of the second order. However, the
stress resultants (N1;N2; and S) on the right-hand sides of Eqs (13.5) are themselves
solutions of the second-order equations. Hence, the displacements in the membrane
theory must satisfy a fourth-order system of differential equations. The latter can be
obtained by substituting into Eqs (13.4) for the stress resultants from the corre-
sponding expressions in terms of the strains.

The mathematical formulation of the theory of membrane shells is completed
by adding appropriate boundary conditions. In the membrane theory, it follows
from the above that only two boundary conditions may be specified on each edge
of the shell. If the boundary conditions are given in terms of the stress resultants,
then only the membrane (or in-plane) forces (N1;N2; and S) are specified on edges of
the shell. If the boundary conditions are formulated in terms of displacements, then
only displacement components that are tangent to the middle surface, i.e., u and v,
must be prescribed on the shell boundary. In the membrane theory it is impossible to
specify the edge displacements w and slopes #, since their assignment may result in
the appearance of the corresponding boundary transverse shear forces and bending
moments. This is in a conflict with the general postulates of the membrane theory of
thin shells introduced above.

Since the differential equations of the membrane theory for the stress resultants
(13.4) and for the displacements (13.5) have different orders (the second and fourth,
respectively), the boundary conditions cannot be prescribed in terms of forces only
for membrane shells: half of the boundary conditions should be assigned in terms of
displacements.

13.3 APPLICABILITY OF THE MEMBRANE THEORY

As mentioned previously (see Sec. 10.1), the advantages of a shell as a structural
member can be only completely realized when its wall resists the applied loads in
tension (or compression) under membrane state of stress conditions. We now express
some considerations which provide a good insight into the range of applicability of
the membrane theory.

Membrane strains are associated with deformations of line elements that lie in
the middle surface of the shell. If a shell is bent without straining of the middle
surface, it is said to be bent inextensionally. For example, if we roll a sheet of paper
into a cone or a cylinder, we bend it inextensionally. It is known that shells offer high
resistance to membrane strains. In fact, we can bend a piece of thin sheet metal easily
with our fingers, but we cannot stretch it noticeably.

However, there are many cases in which inextensional bending is impossible.
There is Lagrange’s theorem (see, for instance [1]), which asserts that a convex closed
surface cannot be deformed inextensionally. For example, a Ping-Pong ball cannot
be bent inextensionally. Cones, cylinders, and convex domes cannot be bent inex-
tensionally if their edges are reinforced by rigid rings. Since shells offer high resis-
tance to membrane stresses, those that cannot be bent inextensionally are usually
very stiff. Generally, the membrane theory is permissible only for shells that cannot
be bent inextensionally, or for shells that experience only very small bending
moments.
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Now we present, without proof, the general conditions under which the mem-
brane theory is valid. It can be shown that these conditions are necessary and
sufficient for an existence of the momentless state of stress in thin shells and that
they correspond to the minimum of strain energy stored by a shell during its strain-
ing. These conditions are [2]:

(a) The boundaries of a shell are free from transverse shear forces and
moments. Loads applied to the shell boundaries must lie in planes that
are tangent to the middle surface of the shell.

(b) The normal displacements and rotations at the shell edges are uncon-
strained: that is, these edges can displace freely in the direction of the
normal to the middle surface.

(c) A shell must have a smoothly varying and continuous surface.
(d) The components of the surface and edge loads must be also smooth and

continuous functions of the coordinates.

If these conditions are violated, fully or partially, flexural stresses occur. If designers
do not succeed in eliminating these stresses completely, they must aim at localizing
them and limiting their magnitude. Thus, the solutions given by the membrane
theory must, in many cases, be supplemented by a solution of the equations of the
bending theory in those parts of the shell where bending proves to be important.
Such a combination of the bending and membrane theories is one of the important
ideas on the basis of which the majority of problems of the shell theory are being
solved at present. It should be also noted that even if the membrane stresses are
sometimes combined with flexural stresses, the membrane theory does not lose its
significance because already at a small distance from a bending zone, the state of
stress may be usually considered as momentless.

13.4 THE MEMBRANE THEORY OF SHELLS OF REVOLUTION

Consider a particular case of a shell described by a surface of revolution (Fig. 11.12).
The midsurface of such a shell of revolution, as mentioned in Sec. 11.8, is generated
by rotating a meridian curve about an axis lying in the plane of this curve (the Z
axis).

The geometry of shells of revolution is addressed in Sec. 11.8. There it is
mentioned that meridians and parallel circles can be chosen as the curvilinear coor-
dinate lines for such a shell because they are lines of curvature, and form an ortho-
gonal mesh on its midsurface. Let us locate a point on the middle surface by the
spherical coordinates � and ’ (see Sec. 11.8), where � is the circumferential angle
characterizing a position of a point along the parallel circle, whereas the angle ’ is
the meridional angle, defining a position of that point along the meridian. The latter
represents the angle between the normal to the middle surface and the shell axis (Fig.
11.12a). As before, R1;R2 are the principal radii of curvature of the meridian and
parallel circle, respectively, and r is the radius of the parallel circle. The Lamé
parameters for shells of revolution in the above-mentioned spherical coordinate
system are given by Eqs (11.39). Notice that, due to the symmetry of shells of
revolution about the Z axis, these parameters are functions of ’ only and do not
depend upon �. Referring to Fig. 11.12a and b, we can obtain by inspection the
following relations:
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r ¼ R2 sin ’;

AM1 ¼ dr ¼ dr

d’
d’ � MM1 cos ’ ¼ R1d’ cos ’

ð13:6aÞ

or

dr

d’
¼ d

d’
R2 sin ’ð Þ ¼ R1 cos ’: ð13:6bÞ

Finally from Eqs (13.6a) and (13.6b) we obtain

1

r

dr

d’
¼ R1

R2

cot ’: ð13:6cÞ

Substituting for A and B from Eqs (11.39) into the system of differential equations
(13.4) and taking into account the relations (13.6), yields

R1

@S

@�
þ @

@’
rN1ð Þ �N2R1 cos ’þ rR1p1 ¼ 0;

R1

@N2

@�
þ 1

r

@

@’
r2S
� �þ rR1p2 ¼ 0;

�1N1 þ �2N2 þ p3 ¼ 0;

ð13:7Þ

where

�1 ¼
1

R1

and �2 ¼
1

R2

:

The last equation in the above system is known as the Laplace equation. Note that
the membrane forces N1;N2; and S are, in a general case of loading, some functions
of � and ’.

Equations (13.7) can be reduced to one single, second-order differential equa-
tion for some function U: For this purpose, rewrite the above equations using the
relations (13.6), as follows

1

R1

@N1

@’
þN1 �N2

R2

cot ’þ 1

R2 sin ’

@S

@�
þ p1 ¼ 0; ð13:8aÞ

1

R2 sin ’

@N2

@�
þ 1

R1

@S

@’
þ 2 cot ’

R2

S þ p2 ¼ 0; ð13:8bÞ

N1

R1

þN2

R2

þ p3 ¼ 0: ð13:8cÞ

Solving Eq. (13.8c) for N2 and substituting this into Eqs (13.8a) and (13.8b), one
finds the following:

1

R1

@N1

@’
þN1

1

R1

þ 1

R2

� �
cot ’þ 1

R2 sin ’

@S

@�
¼ �p1 � p3 cot ’

� 1

R1 sin ’

@N1

@�
þ 1

R1

@S

@’
þ 2

cot ’

R2

S ¼ 1

sin ’

@p3
@�

� p2:

ð13:9Þ
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We introduce new variables, U and V instead of N1 and S, as follows:

N1 ¼
U

R2 sin
2 ’
; S ¼ V

R2
2 sin

2 ’
: ð13:10Þ

Substituting the above into Eqs (13.9), we obtain, after some simple transformations,
the following system of equations:

R2
2 sin ’

R1

@U

@’
þ @V
@�

¼ �ðp3 cos ’þ p1 sin ’ÞR3
2 sin

2 ’;

� R2

sin ’

@U

@�
þ @V
@’

¼ @p3
@�

� p2 sin ’

� �
R1R

2
2 sin ’:

ð13:11Þ

Differentiating then the first equation (13.11) with respect to ’ and the second one
with respect to �, and subtracting the second equation from the first, we obtain the
following second-order differential equation for U:

1

R1R2 sin ’

@

@’

R2
2 sin ’

R1

@U

@’

 !
þ 1

R1 sin
2 ’

@2U

@�2
¼ Fð�; ’Þ; ð13:12Þ

where

Fð�; ’Þ ¼ � 1

R1R2 sin ’

@

@’
R3

2 sin
2 ’ðp3 cos ’þ p1 sin ’Þ

� �þ R2

@p2
@�

sin ’� @
2p3
@�2

 !
:

ð13:13Þ
Equation (13.12) may be written in the operator form

LU ¼ Fð�; ’Þ; ð13:14Þ
where the differential operator L is of the form

Lð. . .Þ � 1

R1R2 sin ’

@

@’

R2
2 sin ’

R1

@ð. . .Þ
@’

 !
þ 1

R1 sin
2 ’

@2

@�2
ð. . .Þ: ð13:15Þ

The kinematic equations for displacements of shells of revolution in spherical
coordinates are

1

R1

@u

@’
� w

R1

¼ 1

Eh
N1 � �N2ð Þ ¼ "1;

1

r

@v

@�
þ u

r
cos ’� w

R2

¼ 1

Eh
N2 � �N1ð Þ ¼ "2;

r

R1

@

@’

v

r

� �
þ 1

r

@u

@�
¼ S

Gh
¼ �12:

ð13:16Þ

Now transform the above kinematic equations. Introducing the functions

� ¼ u

sin ’
;  ¼ v

R2 sin ’
; ð13:17Þ
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and making subsequent transformations associated with an elimination of deflection
w and then �, the system of equations (Eqs (13.16)) may be reduced to one second-
order differential equation for the unknown function . In the operator form, this
equation has the form

L ¼ f ð�; ’Þ; ð13:18Þ
where

f ð�; ’Þ ¼ 1

R1R2 sin ’

1

Gh


@ðR2SÞ
@’

� 1

EhR1

R2
1 þ R2

2 þ 2�R1R2

� � @N1

@�

� R2

Eh
R2 þ �R1ð Þ @p3

@�

�
;

ð13:19Þ

and the operator L is given by Eq. (13.15). Thus, the governing differential equations
for determining the membrane forces, Eq. (13.14), and displacements, Eq. (13.18),
have an identical form. These equations can be solved by using the well-known
method of separation of variables.

Let us represent the load components p1; p2; and p3 in the form of the Fourier
series

p1 ¼
X1
n¼0

p1ncos n� þ
X1
n¼1

p1

n sin n�; p2 ¼

X1
n¼1

p2n sin n� þ
X1
n¼0

p2

n cos n�;

p3 ¼
X1
n¼0

p3n cos n� þ
X1
n¼1

p3

n sin n�

;

ð13:20Þ
where p1n; . . . ; p3


n are functions of ’ only. The first of the two sums in each line

represents that part of the load that is symmetric in � and the second sum represents
the antisymmetric part. The coefficients pin and pi


n ði ¼ 1; 2; 3Þ are evaluated from

well-known formulas (see, for example, Appendix B). For the shell analysis, it is
sufficient to consider only one harmonic of the load, say, p

ðnÞ
i , i.e.,

p
ðnÞ
1 ¼ p1n cos n�; p

ðnÞ
2 ¼ p2n sin n�; p

ðnÞ
3 ¼ p3n cos n� ð13:21Þ

and then a solution may be obtained by summing the membrane forces, displace-
ments, etc., due to individual load components. Inserting Eq. (13.21) into Eq. (13.12)
and introducing the expression

U ¼ Un cos n�; ð13:22Þ
we obtain, in the general case, the following ordinary differential equations with
variable coefficients:

1

R1R2 sin ’

d

d’

R2
2 sin ’

R1

dUn

d’

 !
� n2

R1 sin
2 ’

Un ¼ Fnð’Þ; ð13:23Þ

where

Fnð’Þ ¼ � 1

R1R2 sin ’

d

d’
ðp3n cos ’þ p1n sin ’ÞR3

2 sin
2 ’

� �þ R2nðp2n sin ’þ np3nÞ:
ð13:24Þ

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



In turn, the expression for V can be introduced in the form

V ¼ Vn sin n�: ð13:25Þ
Once the expression Un has been determined by solving Eq. (13.23), we can introduce
Eqs (13.21), (13.22), and (13.25) into the first equation (Eq. (13.11)). Solving this
equation, we obtain Vn as follows:

Vn ¼ �R2
2 sin ’

nR1

dUn

d’
� ðp3n cos ’þ p1n sin ’ÞR3

2 sin
2 ’: ð13:26Þ

Finally, using the expressions (13.10) and Eq. (13.8c), the membrane forces for the
considered harmonic of load can be determined in the following form

N
ðnÞ
1 ¼ N1n cos n�; N

ðnÞ
2 ¼ N2n cos n�; SðnÞ ¼ Sn sin n�: ð13:27Þ

Then, we can come to determining the displacements. For this purpose, we represent
the previously introduced function  in the form

ðnÞ ¼ n sin n�: ð13:28Þ
Substituting the expressions (13.28), (13.21), and (13.27) into Eq. (13.18), we obtain
an ordinary differential equation for n. The latter will be identical to Eq. (13.23), if
we replace in it Un with n and Fnð’Þ with fnð’Þ, as follows:

fnð’Þ ¼
1

R1R2 sin ’

1

Gh

dR2Sn

d’
þ n

N1n

EhR1

R2
1 þ R2

2 þ 2#R1R2

� ��

þR2

Eh
R2 þ �R1ð Þnp3n

�
:

ð13:29Þ

A solution of the differential equation for n involves four constants of integration:
two constants from Eq. (13.23) for the forces and the remaining two constants from
the equation for displacements. These constants are evaluated from the boundary
conditions discussed in Sec. 13.2.

Using the solution obtained for n, as well as Eqs (13.17) and (13.16), and
introducing the displacements in the form

uðnÞ ¼ un cos n�; vðnÞ ¼ vn sin n�; wðnÞ ¼ wn cos n�; ð13:30Þ
we can determine the expressions for un; vn; and wn, and then the displacements
themselves.

13.5 SYMMETRICALLY LOADED SHELLS OF REVOLUTION

Let us assume that the shell of revolution is subjected to loading that is symmetrical
about the shell axis, i.e., the Z axis. A self-weight of a shell and a uniformly dis-
tributed snow load are examples of such a type of loading. In this case, the governing
differential equations of the membrane theory of shells of revolution will be simpli-
fied considerably. All the derivatives with respect to � will vanish because a given
load, and hence all the membrane forces and displacements, does not change in the
circumferential direction. The externally applied loads per unit area of the middle
surface are represented at any point by the components p1 and p3 acting in the
directions of the y and z axes of the local coordinate system at the above point
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(see Sec. 12.2), respectively, where the y axis points in the tangent direction along the
meridian and the z axis is a normal to the middle surface at that point (Fig. 13.1).
The load component p2 (acting along the x axis) is assumed to be absent. The
presence of this component implies that the shell is twisted about its axis. If p2 ¼
0 and edge forces in the circumferential direction are also zero, then, as follows from
the second Eq. (13.7), in the case of axisymmmetrical loading,

S ¼ N12 ¼ N21 ¼ 0: ð13:31Þ
The nonzero membrane forces are shown in Fig. 13.1.
The first and third equations of the system (13.7) after some algebra transfor-

mations, eliminating N2, and taking into account Eqs (13.6), may be reduced to the
following equation:

d

d’
N1r sin ’ð Þ þ rR1 p1 sin ’þ p3 cos ’ð Þ ¼ 0: ð13:32Þ

Integrating this equation from ’0 to ’, one finds

N1r sin ’½ �’’0 ¼ �
ð’
’0

rR1ðp1 sin �’’þ p3 cos �’’Þd �’’ or

N1r sin ’ ¼ �
ð’
’0

rR1 p1 sin �’’þ p3 cos �’’ð Þd �’’þN
ð0Þ
1 b sin ’0;

ð13:33aÞ

where ’0 is the angle corresponding to the shell edge (for instance, at the top) where
the boundary conditions are specified; N

ð0Þ
1 and r0 ¼ b are the meridional force, and

the radius of the parallel circle, respectively, at the shell edge ’ ¼ ’0 (Fig. 13.2); and
�’’ is a dummy variable.

Solving Eq. (13.33a) for N1 and taking into account Eq. (13.6a), yields

N1 ¼ � 1

R2 sin
2 ’

ð’
’0

R1R2 p1 sin �’’þ p3 cos �’’ð Þ sin �’’d �’’þN
ð0Þ
1 R

ð0Þ
2 sin2 ’0

R2 sin
2 ’

ð13:33bÞ
where b ¼ R

ð0Þ
2 sin ’0. R

ð0Þ
2 is the principal radius of curvature at the shell edge ’ ¼ ’0.

Fig. 13.1
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Let a shell, in addition to the surface load components p1 and p3, be subjected
to some line load q per unit length of the top parallel circle, ’ ¼ ’0. This may be, for
example, the weight of a skylight of a dome. From Fig. 13.2, N

ð0Þ
1 ¼ �q= sin ’0;

substituting into Eq. (13.33a) gives

N1r sin ’ ¼ �
ð’
’e

rR1 p1 sin �’’þ p3 cos �’’ð Þd �’’þ qb

� �
: ð13:34Þ

This equation may be easily interpreted if we multiply both sides of Eq. (13.34) by
2�. We have

N1 2�rð Þ sin ’ ¼ �2�

ð’
’0

rR1 p1 sin �’’þ p3 cos �’’ð Þd �’’� 2�bq: ð13:35Þ

Referring to Fig. 13.2, one can conclude that the left-hand side of this equation is the
vertical component of the resultant of meridional forces N1over a parallel circle
determined by angle ’. As seen from Fig.13.2, 2�rR1d’ is the area of an elementary
ring corresponding to an infinitesimal angle d’; and p1 sin ’ and p3 cos ’ are the
vertical components of the surface load. Hence, the integrand function of Eq.
(13.35) represents a vertical component of the surface load corresponding to the
elementary ring. Integrating over ’, we obtain the vertical component of the resul-
tant of all surface loads acting on the shell above the parallel circle ’ where N1is to
be determined. So, we can rewrite Eq. (13.35), as follows:

N1 2�rð Þ sin ’ ¼ �F;

from which

N1 ¼ � F

2�r sin ’
; ð13:36Þ

where

F ¼ 2�½
ð’
’0

rR1 p1 sin �’’þ p3 cos �’’ð Þd �’’þ qb� ð13:37Þ

Fig. 13.2
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is the vertical component of all external loading applied above the parallel circle ’ of
the shell where N1 is desired. Thus, Eq. (13.35) represents the static equilibrium
condition: i.e., the force summation in the direction of the shell axis (the Z axis) is
zero. Note that in the case of a shell closed at its apex, ’0 ¼ 0 and N1 becomes

N1 ¼ � 1

r sin ’

ð’
0

rR1 p1 sin �’’þ p3 cos �’’ð Þd �’’: ð13:38Þ

Having determined N1 from Eq. (13.34) or Eq. (13.36), or Eq. (13.38), we can
calculate N2 from the third Eq. (13.7), as follows:

N2 ¼ �R2 p3 þ
N1

R1

� �
: ð13:39Þ

Now we can discuss the displacements in symmetrically loaded shells of revolu-
tion. For this particular case, v ¼ 0 and �12 ¼ 0 and the system of Eqs (13.16) may be
simplified to the following:

1

R1

du

d’
� w

R1

¼ 1

Eh
N1 � �N2ð Þ ¼ "1;

u

R2

cot ’� w

R2

¼ 1

Eh
N2 � �N1ð Þ ¼ "2;

ð13:40Þ

where u and w are displacements along the tangent and normal to the meridian curve
(or along the y and z axes, as shown in Fig. 13.1), respectively. Knowing N1 and N2

for a given shell problem, we can evaluate the strain components, "1 and "2, and
then, u and w from Eqs. (13.40). For this purpose, eliminating w from Eqs (13.40),
one finds that

1

R2

du

d’
� u cot ’

� �
¼ R1

R2

� �
"1 � "2: ð13:41Þ

Multiplying both sides of the above equation by R2 csc ’, we have, after some mathe-
matics,

d

d’
u csc ’ð Þ ¼ f1ð’Þ; ð13:42aÞ

where

f1ð’Þ ¼
R2

sin ’

R1

R2

"1 � "2
� �

: ð13:42bÞ

The function f1ð’Þ can be found when N1 and N2 have been determined. Integrating
Eq. (13.42a), we obtain the following expression for u:

u ¼ sin ’

ð
f1ð’Þd’þ C1 sin ’; ð13:43Þ

where C1 is a constant of integration. Substituting for u from Eq. (13.43) into the
second Eq. (13.40), one finds the following expression for w:

w ¼ cos ’

ð
f1ð’Þd’þ C1 cos ’� "2R2: ð13:44Þ
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The constant of integration is evaluated from the boundary condition at either the
top or the bottom of the shell, i.e., for ’ ¼ ’0 or ’¼’1.

Note that the normal displacements w for various points of a shell, including its
edges, are related to tangential displacements u. Thus, for a membrane shell, the
boundary conditions must not be simultaneously imposed on u and w. If a displace-
ment component is given along one of parallels, then the constant C1 can be eval-
uated from Eqs (13.43) or (13.44). Thus, we have the freedom of prescribing u or w at
only one of the shell boundaries, and we must permit only other displacements
yielded by our analysis; otherwise, incompatibility problems will arise.

In analysis of shell structures consisting of thin shells of revolution and other
structural members (ring beams, flat or curved plates, supports, etc.), the horizontal
displacements and rotation of the tangent to the meridian at the shell boundaries are
of considerable interest. These quantities are required for satisfying the compatibility
conditions at the junction of a thin shell and the structural members.

First, determine the horizontal expansion or contraction of the membrane shell
at its edge, �. We have the following conditions for the rings:

� ¼ r"2 ¼
r

Eh
N2 � �N1ð Þ; ð13:45aÞ

or

� ¼ R2 sin ’

Eh
N2 � �N1ð Þ: ð13:45bÞ

For a spherical shell, letting R1 ¼ R2 ¼ R, Eq. (13.45b) becomes

� ¼ R sin ’

Eh
N2 � �N1ð Þ: ð13:45cÞ

For example, determine the horizontal expansion of the sphere edge ’ ¼ ’1 under
the internal pressure p. Taking into account that due to the symmetry of the shell and
loading, N1 ¼ N2 ¼ N, and making p3 ¼ �p (for internal pressure), one can bring
the third Eq. (13.7) to the form 2N=R ¼ p, from which one derives N ¼ pR=2.
Substituting the above into Eq. (13.45c) gives

� ¼ p
R2 sin ’1
2Eh

ð1� �Þ: ð13:46aÞ

For a hemisphere, ’1 ¼ �=2 and � becomes

� ¼ p
R2

2Eh
1� �ð Þ: ð13:46bÞ

Now, we can proceed to determine the rotation of the tangent to the meridian.
It can be easily shown that it is equal to the rotation of the normal to the middle
surface during deformation about the axis which is tangent to the parallel circle. The
latter expression was introduced in Sec. 12.2.1 as #1, given by the first Eq. (12.2).
Setting A ¼ R1 and 	¼’, we obtain

#1 ¼
1

R1

uþ @w
@’

� �
: ð13:47aÞ

By differentiating Eq. (13.44), we have
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dw

d’
¼ cos ’ � f1ð’Þ � sin ’

ð
f1ð’Þd’� C1 sin ’� "2

dR2

d’
� R2

d"2
d’

: ð13:47bÞ

The displacement u is given by Eq. (13.43). Adding the right-hand sides of Eqs
(13.47b) and (13.43), we obtain #1, as follows:

#1 ¼
1

R1

cos ’ � f1ð’Þ � "2
dR2

d’
� R2

d"2
d’

� �
;

or substituting for f1ð’Þ from Eq. (13.42b) results in the following:

#1 ¼ cot ’ "1 �
R2

R1

"2

� �
� "2
R1

dR2

d’
� R2

R1

d"2
d’

: ð13:48aÞ

Let us present this expression in the explicit form for a special case of spherical shells
only. Substituting R1 ¼ R2 ¼ R into the above equation, we obtain

#1 ¼ cot ’ "1 � "2ð Þ � d"2
d’

: ð13:48bÞ

Inserting the strains in terms of N1 and N2 into this equation, we obtain the follow-
ing expression of #1 for a sphere:

Eh#1 ¼ cot ’ð1þ �ÞðN1 �N2Þ �
dN2

d’
þ �dN1

d’
: ð13:48cÞ

13.6 MEMBRANE ANALYSIS OF CYLINDRICAL AND CONICAL
SHELLS

Cylindrical and conical shells have straight generators and, therefore, the radius of
the curvature in the meridional direction is infinite. It will be shown that the
vanishing one out of the two principal curvatures leads to a great simplification in
the analysis of such a type of shells. For this reason, we treat these shells as a
separate category of membrane shells.

13.6.1 General cylindrical shells

We consider cylindrical shells with an arbitrary shape of the cross section (or profile):
e.g., circular, elliptical, parabolic, and cylinders of open or closed types. The pecu-
liarities of the geometry of these shells were analyzed in Sec. 11.8. Since the gen-
erators of cylindrical shells are straight, such shells have zero Gaussian curvatures
and, hence, have developable surfaces (see Sec. 11.7).

Using the cylindrical coordinates x and � to describe the position of a reference
point on the cylindrical shell middle surface (Fig. 11.13), the Lamé parameters are
given by the relations (11.52), i.e.,

A ¼ 1; B ¼ R2; ð13:49Þ
where R2 ¼ R2ð�Þ is the second principal radius of curvature, while the first radius of
curvature R1 ¼ 1. Notice that for a circular cylindrical shell R2 ¼ const ¼ R, where
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R is the radius of the circular cross section of the shell. With the cylindrical coordi-
nates defined above and the Lamé parameters given by Eqs (13.49), the equilibrium
Eqs (13.4) are significantly simplified and become (making 	 ¼ x and 
¼� in the
above equations):

@N1

@x
þ 1

R2

@S

@�
þ p1 ¼ 0;

@S

@x
þ 1

R2

@N2

@�
þ p2 ¼ 0;

N2 þ R2p3 ¼ 0;

ð13:50Þ

where p1; p2; and p3 are the load components in the directions of the shell generator,
tangent to its profile, and the normal to the middle surface, respectively.

The strain–displacement relations for cylindrical shells can be obtained from
Eqs (13.5) by substituting for the Lamé parameters from Eqs (13.49) and making R1

¼ 1 and 	 ¼ x and 
 ¼ �. As a result, we obtain these relations in the following
form:

"1 ¼
@u

@x
¼ 1

Eh
N1 � �N2ð Þ;

"2 ¼
1

R2

@v

@�
� w

R2

¼ 1

Eh
N2 � �N1ð Þ;

�12 ¼
1

R2

@u

@�
þ @v

@x
¼ 1

Gh
S:

ð13:51Þ

A general solution of Eqs (13.50) may be obtained in the following manner. From
the third Eq. (13.50), we obtain the circumferential force N2, i.e.,

N2 ¼ �R2p3: ð13:52aÞ

The other two Eqs (13.50) may be solved by simple integration in the x direction, i.e.,

S ¼ �
ð

p2 þ
1

R2

@N2

@�

� �
dxþ f1ð�Þ; ð13:52bÞ

N1 ¼ �
ð

p1 þ
1

R2

@S

@�

� �
dxþ f2ð�Þ; ð13:52cÞ

where f1ð�Þ and f2ð�Þ are unknown functions of �, to be determined from two bound-
ary conditions. Each must be of the kind that on a profile x ¼ const (one end of the
shell or a plane of symmetry) one of the forces S or N1 will be given as an arbitrary
function of �.
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Similarly, the general solution of Eqs (13.51) may be found once the membrane
forces have been determined. For h ¼ const; this solution is given by

Ehu ¼
ð
N1 � �N2ð Þdxþ f3ð�Þ; ð13:53aÞ

Ehv ¼ 2ð1þ �Þ
ð
Sdx� Eh

R2

ð
@u

@�
dxþ f4ð�Þ; ð13:53bÞ

Ehw ¼ Eh
@v

@�
� R2 N2 � �N1ð Þ; ð13:53cÞ

where f3ð�Þ and f4ð�Þ are two additional arbitrary functions which may be used to
fulfill two boundary conditions on the edges x ¼ const of the shell. Equations (13.52)
and (13.53) represent a complete general solution of the cylindrical membrane shell
problem.

It should be noted that since the arbitrary functions fið�Þ ði ¼ 1; 2; 3; 4Þ depend
upon �, boundary conditions can only be assigned for edges x ¼ const: As a rule, we
cannot satisfy boundary conditions on the longitudinal edges (� ¼ const) of an open
cylindrical shell, when, for example, a segment of a cylindrical membrane shell is
under consideration. These must, therefore, be abandoned, which represents a severe
limitation of the theory of the membrane shells as applied to open cylindrical shells.
This limitation can only be remedied by including the bending resistance of the shell.
However, such difficulties do not arise if a shell is closed with respect to the coordi-
nate �,

For most practical problems, we will have p1 ¼ 0 and p2 and p3 will be inde-
pendent of x. Thus, from Eqs (13.52), one finds that

N2 ¼ �p3R2; ð13:54aÞ

S ¼ � p2 þ
1

R2

@N2

@�

� �
xþ f1ð�Þ or S ¼ �xFð�Þ þ f1ð�Þ; ð13:54bÞ

where

Fð�Þ ¼ p2 þ
1

R2

@N2

@�
¼ p2 �

1

R2

d

d�
p3R2ð Þ: ð13:54cÞ

Hence, taking the partial derivative of S with respect to � and integrating, we obtain

@S

@�
¼ �x

dF

d�
þ df1ð�Þ

d�
:

Substituting this expression and p1 ¼ 0 into Eq. (13.52c), we find that

N1 ¼
x2

2R2

 !
dF

d�
� x

R2

df1
d�

þ f2ð�Þ: ð13:54dÞ
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Substituting next for the membrane forces from Eqs (13.54) into Eqs (13.53) and
evaluating the integrals, we can represent the displacement components in terms of
the introduced function Fð�Þ, as follows

Ehu ¼ x3

6R2

dF

d�
� �ðxÞN2 �

x2

2R2

df1
d�

þ x � f2 þ f3;

Ehv ¼ � x4

24R2

d

d�

1

R2

dF

d�

� �
� ð1þ �Þx2F þ � � x

2

2R2

dN2

d�

þ x3

6R2

d

d�

1

R2

df1
d�

� �
� x2

2R2

df2
d�

þ x 2ð1þ �Þf1 �
1

R2

df3
d�

� �
þ f4;

Ehw ¼ x4

24

d

d�

1

R2

d

d�

1

R2

dF

d�

� �� �
þ x2

2
ð2þ �Þ dF

d�
� � d

d�

1

R2

dN2

d�

� �� �

þ R2N2 �
x3

6

d

d�

1

R2

d

d�

1

R2

df1
d�

� �� �
þ x2

2

d

d�

1

R2

df2
d�

� �

� x ð2þ �Þ df1
d�

� d

d�

1

R2

df3
d�

� �� �
� �ðR2Þf2 �

df4
d�
:

ð13:55Þ

For a circular cylindrical shell R2 ¼ R ¼ const and Eqs (13.54) and (13.55) may be
simplified.

Consider the boundary conditions for a closed cylindrical shell. For statically
determinate shells, the two conditions should be assigned for determining arbitrary
functions f1ð�Þ and f2ð�Þ: These conditions should be imposed on the membrane
forces N1 and S on the shell edges. In so doing, since the expression for S contains
only one function f1ð�Þ, the shear force can be prescribed on one edge of the shell
only. The functions f3ð�Þ and f4ð�Þ are evaluated from the two kinematic boundary
conditions assigned for the displacement components u and v on the shell edges –
e.g., x ¼ 0 and x ¼ L, where L is the length of the cylindrical shell.

For statically indeterminate cylindrical shells the number of kinematic bound-
ary conditions increases at the expense of static boundary conditions. For example, if
both ends of the shell, x ¼ 0 and x ¼ L, are built-in, all the boundary functions
mentioned previously are evaluated from the following conditions:

ujx¼0 ¼ ujx¼L ¼ vjx¼0 ¼ vjx¼L;¼ 0:

Comparing the flexural deformations at surface layers in the shell, "ðfÞ1 ¼ �1h=2 and
"ðfÞ2 ¼ �2h=2; with the membrane deformations, "1 and "2, one can establish that the
former deformations are small compared with the latter only in the case when
arbitrary functions fið�Þ ði ¼ 1; 2; 3; 4Þ satisfy the limitations

h

R

d2fi
d�2

 !
� fi:

These inequalities express the general requirement of slowly varying deformations in
the direction of �. The above requirements impose additional limitations on admis-
sible character of distribution of boundary loads N

ð0Þ
1 and Sð0Þ.

It follows from Eqs (13.55) that the continuous expressions for the displace-
ment components in the membrane theory can only be obtained in the case when
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arbitrary functions f1ð�Þ and f2ð�Þ, which arise in integrating the equilibrium equa-
tions, are continuous together with their derivatives up to the second and third
derivatives. This also imposes certain limitations on admissible types of loading
and boundary conditions in order that membrane theory can be applied.

One important comment should be mentioned. It follows from Eqs (13.54) and
(13.55) that the membrane forces and displacements increase without limit with an
increase of the shell length. This is a natural result of the membrane analysis of a
cylindrical shell in which th flexural rigidity of the circumferential cross sections of
the shell is neglected and all loading is directly transmitted to the shell ends.
Therefore, the area of application of the membrane theory of cylindrical shells is
restricted by fairly short shells (l=R �

ffiffiffiffiffiffiffiffiffi
R=h

p
) [2]. So, there is a variety of require-

ments that govern the applicability of the membrane theory of cylindrical shells.
These requirements are concerned with the type of shell supports, type of loading,
and length of the shell.

An impression may be formed that the membrane theory of cylindrical shells
is practically of no use because of the limitations mentioned above. However, this
is not true. In some cases, the membrane theory of cylindrical shells allows one to
obtain simple and, at the same time, sufficiently accurate solutions. In particular, it
is applicable to the analysis of cylindrical shells reinforced by stiffeners. In this
case, the external loading applied to the closely spaced at equal distances stiffeners
is distributed by the stiffener elements in such a way that the condition of slowly
varying deformation in the circumferential direction is satisfied.

13.6.2 Conical shells

Figure 13.3a shows a conical shell in the form of a frustum of a cone. The meridian
of the shell has zero curvature, while the radius of the second principal curve is R2.
The radius of the parallel circle is denoted by r. In this typical case, the angle ’ is a
constant and can no longer serve as a coordinate on the meridian. Instead, we
introduce the coordinate s, the distance of a point of the middle surface, usually
measured from the vertex, along the generator, i.e., 	 ¼ s. Another coordinate is the

Fig. 13.3
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circumferential angle � in the horizontal plane measured on the parallel circle, i.e.,

 ¼ �:

For such a shell, a length of the element along the meridian is ds1 and along the
parallel circle is ds2 ¼ rd�. It follows from Fig. 13.3a and b that

R2 ¼ s cot ’; r ¼ s cos ’: ð13:56Þ

Thus, the Lamé parameters for the given coordinate system are

A ¼ 1 and B ¼ r ¼ s cos ’: ð13:57Þ

Substituting the above into Eqs (13.4) and (13.5), we obtain the equilibrium and
kinematic equations, respectively. The equilibrium equations for the conical shell are
given by

@

@s
N1sð Þ þ 1

cos ’

@S

@�
�N2 þ sp1 ¼ 0;

1

cos ’

@N2

@�
þ 1

s

@

@s
Ss2
� �þ sp2 ¼ 0;

1

s
tan ’N2 þ p3 ¼ 0:

ð13:58Þ

The kinematic equations for displacement components have the form

@u

@s
¼ "1

1

cos ’

@v

@�
þ u� w tan ’ ¼ "2s

s
@

@s

v

s

� �
þ 1

s cos ’

@u

@�
¼ �12

ð13:59Þ

We come now to determining the membrane forces and displacements for conical
shells. From the last Eq. (13.58), we have

N2 ¼ �p3s � cot ’: ð13:60Þ

Substituting the above into the second Eq. (13.58), one finds that

@

@s
Ss2
� � ¼ �s2 p2 �

1

sin ’

@p3
@�

� �
:

Integrating this expression over s, we obtain

S ¼ 1

s2
f1ð�Þ �

Z
s

s2 p2 �
1

sin ’

@p3
@�

� �
ds

� �
: ð13:61Þ
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Substituting for N2 and S from Eqs (13.60) and (13.61) into the first Eq. (13.58), and
integrating over s, gives the following expression:

N1 ¼
1

s2 cos ’
f

0
1 ð�Þ þ

1

s
f2ð�Þ �

1

s sin ’

ð
s

sðp3 cos ’þ p1 sin ’Þds

þ 1

s cos ’

ð
s

1

s2

ð
s

@p2
@�

� 1

sin ’

@2p3
@�2

 !
s2ds

" #
ds:

ð13:62Þ

Let us determine the displacements. From the first Eq. (13.59), we have

u ¼
ð
s

"1dsþ f3ð�Þ: ð13:63Þ

Substituting for u from Eq. (13.63) into the third Eq. (13.59) and integrating over s,
one finds that

v ¼ 1

cos ’
f

0
3ð�Þ þ sf4ð�Þ þ s

ð
s

�12
s
ds� s

cos ’

@

@�

ð
s

ð
s

"1ds

� �
ds

s2
: ð13:64Þ

The displacement w is determined from the second Eq. (13.59), i.e.,

w ¼ u cot ’þ 1

sin ’

@v

@�
� "2s cot ’: ð13:65Þ

As for the case of the cylindrical shell, four arbitrary functions depend only upon the
angular coordinate �; therefore, the boundary conditions on edges � ¼ const of open
shells cannot be satisfied.

A continuity and slowly varying of loads with respect to the angular coordinate
are necessary conditions of applicability of the membrane theory to a conical shell.

Let us pay attention to one peculiarity of conical shells: a closed at a vertex
conical shell is not capable of carrying a self-balanced load applied to its free edge
according to the membrane theory. The reason for that is an unlimited increase of
forces, and hence, deformations in the vicinity of the vertex, i.e., for s ¼ 0 (see
formulas (13.60)–(13.62)). In so doing, the displacements determined from Eqs
(13.64) and (13.65) become also unlimited: a moment state of stresses will occur
near the vertex of a closed conical shell.

For an axisymmetrically (with respect to the shell axis) loaded conical shell, the
system of equations (13.58) may be simplified. Putting the derivatives of all functions
with respect to � equal zero and S ¼ 0 together with p2 ¼ 0, we obtain the above-
mentioned system in the following form:

d

ds
ðN1sÞ �N2 ¼ �p1s;

N2 ¼ �p3s cot ’:

ð13:66Þ

Adding these equations member by member, we obtain the following first-order
differential equation for N1:

d

ds
ðN1sÞ ¼ �sðp1 þ p3 cot ’Þ: ð13:67Þ
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Integrating the above, yields

N1 ¼ � 1

s

Z
ðp1 þ p3 cot ’Þsdsþ

C

s

� �
; ð13:68Þ

where C is a constant of integration.

13.7 THE MEMBRANE THEORY OF SHELLS OF AN ARBITRARY
SHAPE IN CARTESIAN COORDINATES

The boundary contour of shells of an arbitrary shape does not usually coincide with
the lines of curvature. As an example, one can mention shells of double curvature
which are commonly used for roofs of buildings. A membrane analysis of such shells
is more conveniently performed using Cartesian coordinates whose x and y axes lie
in a horizontal plane with the z axis pointing in the vertical direction to the plane
above. The middle surface of the shell can be assigned by the following equation in
the Cartesian coordinate system:

z ¼ f ðx; yÞ: ð13:69Þ
In this coordinate system, we consider an element ABCD of the shell obtained by
making sections at the locations x; xþ dx; and y; yþ dy (Fig. 13.4).

These sections are not necessarily the lines of curvature in a general case (the
exceptions are cylindrical surfaces for which the x axis is directed along generators).
They are not mutually perpendicular. Hence, angle ! between sides AB and AD is
not necessarily a right angle and element ABCD is a skew quadrilateral with sides ds1
and ds2 in space. Its projection in the xy plane is a rectangle �AA �BB �CC �DD with sides dx and
dy. Let ’ and � be the angles which sides AD and AB make with the xy plane.
Correspondingly, the lengths AD and AB of the shell element are ðdx= cos ’Þ and
ðdy= cos �Þ, respectively. The midsurface area of the element ABCD becomes
ðdx= cos ’Þðdy= cos�Þ sin!.

Fig. 13.4
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The curves x ¼ const and y ¼ const on the shell midsurface can be used as
coordinate curves, and we denote by N1;N2; and S the membrane stress resultants at
any point on the shell. It should be noted that the directions of these forces make up
non-right angles with the corresponding sides of the element. These membrane forces
are shown in Fig. 13.4. Two out of all unknown forces (N1 and S) are parallel to the
plane Oxz, and, therefore, have no components in the direction of the y axis. Two
others (N2 and S on sides AD and BC) have no components in the x direction. These
considerations simplify setting up the equation of equilibrium.

Figure 13.4 also shows the surface load components, where p1 and p2 are
parallel to the x and y axes, respectively, and p3 acts in the z direction. These load
components are defined per unit are of the shell midsurface.

We set up the equation of equilibrium in the direction of the x axis. Consider a
side AB. The membrane force per unit length acting on this side is N1ðdy= cos�Þ and
its component in the x direction is N1ðdy= cos�Þ cos ’. The in-plane shear force S of
the same direction has a component in the x direction of the form Sðdx= cos ’Þ cos ’.
By analogy, the components of the membrane forces acting on the opposite side CD
can be represented, as follows:

N1 þ
@N1

@x
dx

� �
dy

cos �þ @�@x dx
� � cos ’þ @’

@x
dx

� �
;

S þ @S
@y

dy

� �
cos ’þ @’

@y
dy

� �
dx

cos ’þ @’@y dy
� � :

Summing these forces with the corresponding signs, taking into account that the
resultant force due to the loading p1 is obtained by multiplying p1 by the area of the
element ABCD; and canceling out the common factor dxdy, we obtain the following
after some simplifications and assuming that the angles ’ and � are small:

@

@x
N1

cos ’

cos�

� �
þ @S
@y

þ p1
sin!

cos� cos ’
¼ 0: ð13:70aÞ

Similarly, we can obtain the following equilibrium equation for the components of
the membrane forces in the y direction:

@

@y
N2

cos�

cos ’

� �
þ @S
@x

þ p2
sin!

cos� cos ’
¼ 0: ð13:70bÞ

Let us set up an equation of equilibrium for all the membrane forces in the z
direction. The component of the force N1 in the z direction is N1ðdy= cos�Þ sin ’ and
the component of the in-plane shear force S in the same direction referred to the
same side of the element ABCD is Sðdy= cos�Þ sin ’. The corresponding expressions
can be obtained for the two other components of the membrane forces. So, the
equation of equilibrium for the membrane forces in the z direction is derived after
some simplifications, as follows:

@

@x
N1

sin ’

cos�

� �
þ @

@y
N2

sin�

cos ’

� �
þ @

@y
S tan ’ð Þ þ @

@x
S tan�ð Þ þ p3

sin!

cos� cos ’
¼ 0:

ð13:70cÞ
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The values of the trigonometric functions entering into Eqs (13.70) can be expressed
in terms of the partial derivatives of the equation of a surface given by Eq. (13.69),
i.e.,

tan ’ ¼ dz

dx
; tan� ¼ dz

dy
; ð13:71aÞ

hence,

cos ’ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

� �2r ; sin ’ ¼ @z=@xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

� �2r ; etc. ð13:71bÞ

It can be easily noted that the expressions

N1

dy

cos�

� �
cos ’; N2

dx

cos ’

� �
cos�; S

dy

cos�

� �
cos�; S

dx

cos ’

� �
cos ’

represent projections of the membrane forces acting on sides of the shell skew
quadrilateral element ABCD on the coordinate plane xy or the membrane forces
acting on sides of the rectangle �AA �BB �CC �DD, as shown in Fig. 13.4. Let us denote these
projections by �NN1dy; �NN2dx; and �SSdx, i.e.,

�NN1 ¼ N1

cos ’

cos�
; �NN2 ¼ N2

cos�

cos ’
; �SS ¼ S: ð13:72Þ

Using these notations, we can rewrite equations of equilibrium, Eqs (13.70), as
follows

@ �NN1

@x
þ @

�SS

@y
þ �pp1 ¼ 0; ð13:73aÞ

@ �SS

@x
þ @

�NN2

@y
þ �pp2 ¼ 0; ð13:73bÞ

@

@x
�NN1 tan ’

� �þ @

@y
�NN2 tan�

� �þ @

@y
�SS tan ’
� �þ @

@x
�SS tan�
� �þ �pp3 ¼ 0: ð13:73cÞ

where

�pp1 ¼ p1
sin!

cos� cos ’
; �pp2 ¼ p2

sin!

cos� cos ’
; �pp3 ¼ p3

sin!

cos� cos ’
ð13:74Þ

are the surface load components per unit area of the projection of the shell element
on the xy plane in the x; y; and z directions, respectively.

Equation (13.73c) can be rewritten by substituting for the tangents from Eqs
(13.71a), as follows:

�NN1

@2z

@x2
þ 2 �SS

@2z

@x@y
þ �NN2

@2z

@y2
¼ � �pp3 �

@ �NN1

@x
þ @

�SS

@y

� �
@z

@x
� @ �SS

@x
þ @

�NN2

@y

� �
@z

@y
:

ð13:75Þ
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Taking into account Eqs (13.73a) and (13.73b), this equation may be represented in
the form

�NN1

@2z

@x2
þ 2 �SS

@2z

@x@y
þ �NN2

@2z

@y2
¼ � �pp3 þ �pp1

@z

@x
þ �pp2

@z

@y
: ð13:76Þ

For a given shell surface z ¼ f ðx; yÞ and given loading, Eqs (13.73a), (13.73b), and
(13.76) govern the membrane forces in the shell under consideration. This system of
equations can be reduced to one differential equation. In fact, Eqs (13.73a) and
(13.73b) coincide with the corresponding equations of the plane elasticity [3]. We
now introduce the Pucher stress function � [4], which is defined by the following

�NN1 ¼
@2�

@y2
�
ð
�pp1dx; �NN2 ¼

@2�

@x2
�
ð
�pp2dy; �SS ¼ � @2�

@x@y
: ð13:77Þ

It is easily verified by substitution that if � is a continuous function with continuous
partial derivatives, Eqs (13.73a) and (13.73b) are identically satisfied. Introducing the
relations (13.77) into Eq. (13.76), yields the following:

@2�

@x2
@2z

@y2
� 2

@2�

@x@y

@2z

@x@y
þ @

2�

@y2
@2z

@x2
¼� �pp3 þ �pp1

@z

@x

þ �pp2
@z

@y
þ @2z

@x2

ð
�pp1dxþ @2z

@y2

ð
�pp2dy:

ð13:78Þ
Equation (13.78) represents the governing differential equation for a membrane shell
of an arbitrary shape in Cartesian coordinates.

Solving this equation and satisfying the boundary conditions, we obtain the
function � and, then, the membrane forces from Eqs (13.77) and (13.72), i.e.,

N1 ¼ �NN1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@z=@xÞ2
1þ ð@z=@yÞ2

s
; N2 ¼ �NN2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@z=@yÞ2
1þ ð@z=@xÞ2

s
; S ¼ �SS: ð13:79Þ

For most practical problems, loadings �pp1 and �pp2 are zero. Substituting �pp1 ¼ �pp2 ¼ 0
into Eq. (13.76), we obtain the following expression:

�NN1

@2z

@x2
þ 2 �SS

@2z

@x@y
þ �NN2

@2z

@y2
¼ � �pp3: ð13:80Þ

PROBLEMS

13.1 Derive Eq. (13.18).

13.2 Derive Eqs (13.33) and (13.39) in cylindrical coordinates z and r (see Eqs (11.31)).

13.3 Using the nondimensional analysis procedure, it can be shown that the membrane

forces, strain components, and displacements obtained by the membrane theory are

of the order

N1;N2;S
� � � ~LLp;� "1; "2; �12

� � ~Lp

Eh

Lp

Eh
; u; v;wf g � L2p

Eh
; ðaÞ

on other hand, the changes in curvature and in twist and the moments in the frame-

work of the membrane theory have the order
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�1; �2; �12
� � � p

Eh
; M1;M2;H

� � � h2p; ðbÞ

where L is some typical linear dimension of a shell (for example, radius of curvature of

the shell midsurface), p is a loading parameter, h is the shell thickness, and the symbol

� means that the quantities on the left- and right-hand sides have the same order.

Estimate the order of the membrane and bending stresses in the framework of applic-

ability of the membrane theory.

13.4 Consider a circular plate and hemispherical shell having the same radii R and thick-

nesses h. Assume that the plate and shell carry the same uniform normal pressure p (the

resultant of this pressure, F ¼ �R2p, is the same for both plate and shell). However, the

plate carries p by bending and the shell carries p by membrane action. Compare the

maximum normal stresses in the plate and shell.

13.5 Using the expressions (a) and (b) of Problem 13.3, verify that the membrane theory

satisfies the equilibrium equations of the general linear theory of thin shells (Eqs

(12.44)) with the error of the order of h2=C2 compared with unity.

13.6 Formulate a complete set of boundary conditions for a shell of revolution according to

the membrane shell theory.

13.7 Compare the flexural and membrane stresses in a circular, closed cylindrical shell under

a uniform internal pressure of intensity p0. Take R=h ¼ 30; � ¼ 0.

13.8 Formulate the restrictions imposed by the membrane theory on the stress analysis of

closed and open cylindrical shells.

13.9 Verify Eq. (13.65).

13.10 Derive Eq. (13.70c).

13.11 Based on Eq. (13.80), derive the governing equations of:

(a) a cable structure lying in the xz plane and subjected to a ‘‘live load’’ p and self-

weight q;

(b) a thin membrane.

13.12 Specify Eq. (13.76) for shells with surfaces defined by the following equations:

(a) dome: z2 þ x2 þ y2 ¼ a2;

(b) cone: z2 ¼ ðx2 þ y2Þ tan2 	;
(c) elliptic paraboloid: z ¼ x2=2h1 þ y2=2h2;
(d) hyperbolic paraboloid: z ¼ x2=2h1 � y2=2h2; and
(e) hypar with the coordinate axes along straight-line generators: z ¼ Cxy:

Assume that all shells are subjected to a normal uniform pressure p0.

13.13 Derive the governing differential equations of the membrane theory in displacements.
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14

Application of the Membrane Theory
to the Analysis of Shell Structures

We consider below an application of the membrane theory of thin shells, developed
in Chapter 13, to the analysis of various shell structures. The membrane theory can
be applied with various levels of accuracy to the stress analysis of two kinds of shell
structures: facilities for storage of water, gas, oil, etc. (elevated water towers, silos,
pressure vessels, tanks, closures, etc.) and long-span roofs of buildings or domes.

14.1 MEMBRANE ANALYSIS OF ROOF SHELL STRUCTURES

14.1.1 Axisymmetrically loaded dome roofs

(a) Spherical domes: self-weight

First, we consider a dome closed at its apex and subjected to a dead load of p per unit
area of the middle surface (e.g., own weight, weight of cladding, etc.), as shown in
Fig. 14.1a.

Resolving the dead load p into components along the normal, p3, and meri-
dional, p1, directions, with respect to the middle surface of the dome, we obtain the
following relationships:

p3 ¼ p cos ’; p1 ¼ p sin ’: ð14:1Þ
Substituting the above into Eq. (13.38), taking into account Eq. (13.6a) and noting
that for a sphere R1 ¼ R2 ¼ R, we obtain the following expression for the meridional
force:

N1 ¼ � 1

R sin2 ’

ð’
0

R2 sin �’’ðp sin2 �’’þ p cos2 �’’Þd �’’;

or
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N1 ¼ �pR
1� cos ’

1� cos2 ’
¼ � pR

1þ cos ’
: ð14:2Þ

Then, substituting Eq. (14.2) into Eq. (13.39) gives the expression for the circum-
ferential force, as follows:

N2 ¼ �pR cos ’þ pR

1þ cos ’
¼ �pR cos ’� 1

1þ cos ’

� �
: ð14:3Þ

At the crown of the dome where ’ ¼ 0, we have the following:

N1 ¼ N2 ¼ � pR

2
:

The meridional force, N1, is compressive along the meridian of the dome, increasing
from the apex to the bottom of the dome. The circumferential compressive force N2,
near the crown, decreases gradually with the increase of ’ and changes sign.
Diagrams of the distribution of the membrane forces N1 and N2 are shown in Fig.
14.1b.

Denote by ’ the coordinate of the parallel circle on which N2 ¼ 0. This
parallel circle is called the line of transition. Below this line, the circumferential
force,N2, is tensile only under the loading shown in Fig. 14.1a. The coordinate ’

of the line of transition may be found from Eq. (14.3), equating the term in the
parenthesis to zero and putting ’ ¼ ’. We have

cos ’ � 1

1þ cos ’
¼ 0;

from which ’ ¼ 51
49
0
.

Spherical domes whose opening angle is less then 2’ are free from tensile
stresses. At the base of a semi-sphere (’ ¼ ’1 ¼ 90
), N2 ¼ pR; N1 ¼ �pR.

The presence of the line of transition enables one to avoid considerable bending
near the base of a dome. Let us consider this statement in detail. Resolve the
membrane force N

ð1Þ
1 , acting at the base of the dome (’ ¼ ’1), into two components:

the vertical V and horizontal H, as shown in Fig. 14.2a. The vertical component V

Fig. 14.1
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will be transmitted to the wall on which the dome rests, while the assimilation of the
horizontal component H requires a special structural element called a thrust (or
supporting) ring. A half-plan of the ring is shown in Fig. 14.2b. The shell is assumed
to extend to the centroid of the ring to eliminate the introduction of eccentricity.

The vertical and horizontal components of the membrane force N1 are found
to be

V ¼ N
ð1Þ
1 sin ’1; H ¼ �N

ð1Þ
1 cos ’1: ð14:4Þ

The horizontal component, H, being applied to the thrust ring produces its tension
in the circumferential direction. Let T be the circumferential tension in the ring. We
can evaluate T by summing forces in the x direction on Fig. 14.2b and assuming that
the radius of the ring is approximately equal to a, i.e., to the radius of the parallel
circle at the shell base (’ ¼ ’1), as follows:

2T ¼
ð�=2
��=2

�N
ð1Þ
1 cos ’1 cos �ðad�Þ or T ¼ �N

ð1Þ
1 a cos ’1: ð14:5Þ

For the spherical shell we have a ¼ R sin ’1. So that

T ¼ �N
ð1Þ
1 R cos ’1 sin ’1: ð14:6Þ

For the self-weight case, we find by substituting Eq. (14.2) into Eq. (14.6) that

T ¼ pR2 cos ’1 sin ’1
1þ cos ’1

: ð14:7Þ

Comparing Eq. (14.7) and the graph for N2 in Fig. 14.1b, we can conclude that there
could be a strain incompatibility at the junction between the shell edge and the thrust
ring. For ’1 < 51
49

0
, the circumferential force N2 is compressive while the ring

force T is tensile for all ’1 < 90
. Thus, the dome, which has been shown to be in
a state of compression through the membrane stress analysis, must accommodate
somewhat the circumferential expansion of the base ring accompanying the tensile

Fig. 14.2
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force T . Clearly, this cannot be accomplished with membrane action alone, and
bending must be considered to satisfy deformational continuity. It should be
noted that the bending effects introduced are usually confined to a relatively small
portion of the shell adjacent to the base, and membrane action will still predominate
throughout most of the shell.

However, if ’ > 51
49
0
the circumferential force N2 will be tensile and, hence,

will coincide with the sign of the circumferential tension in the ring. So, the possi-
bility arises of selecting the cross-sectional area of the thrust ring in such a way that
the elongation of the shell edge would be equal to stretching the ring. The circum-
ferential strains of the shell edge, "ðsÞ2 , and the thrust ring, "ðrÞ2 , are found to be

"ðsÞ2 ¼ 1

Esh
N

ð1Þ
2 � �sNð1Þ

1

� �
; "ðrÞ2 ¼ �ðrÞ2

Er

¼ T

ErAr

¼ �N
ð1Þ
1 a

ErAr

cos ’1: ð14:8Þ

In Eqs (14.8), N
ð1Þ
1 and N

ð1Þ
2 are the meridional and circumferential forces at the shell

base, respectively, i.e., at ’ ¼ ’1; Es and �s are the modulus of elasticity and
Poisson’s ratio, respectively, of the shell material; Er and Ar are the modulus of
elasticity and cross-sectional area of the thrust ring, respectively. The required
cross-sectional area of the thrust ring can be determined from the following compat-
ibility condition:

"ðsÞ2 ¼ "ðrÞ2 : ð14:9Þ
Substituting Eqs (14.8) into Eq. (14.9) yields the required area of the cross section of
the thrust ring, as follows:

Ar ¼
cos ’1

N
ð1Þ
2

N
ð1Þ
1

� �s

									

									
Es

Er

ah; ð14:10Þ

where N
ð1Þ
1 and N

ð1Þ
2 are given by Eqs (14.2) and (14.3) by substituting ’1 for ’.

Having determined the internal forces, we can calculate the meridional, �1, and
circumferential, �2, membrane stress components, as follows:

�1 ¼
N1

h
¼ � p

h

R

1þ cos ’
; �2 ¼

N2

h
¼ � p

h
R cos ’� 1

1þ cos ’

� �
: ð14:11Þ

Let us now determine the displacements of the spherical dome supporting its
own weight (Fig. 14.1a). Substituting for the membrane forces N1 and N2 from Eqs
(14.2) and (14.3) into the right-hand sides of Eqs (13.5) gives the strains "1 and "2.
Introducing the latter into Eqs (13.42b) results in the following expressions for f1ð’Þ:

f ð’Þ ¼ R2pð1þ �Þ
Eh

cos ’� 2

1þ cos ’

� �
: ð14:12Þ

Inserting the above expression into Eq. (13.43), and evaluating the integrals, yields
the following expression for u:

u ¼ pR2ð1þ �Þ
Eh

sin ’ lnð1þ cos ’Þ � sin ’

1þ cos ’

� �
þ C1 sin ’; ð14:13Þ
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where C1 is a constant of integration that can be evaluated from boundary condi-
tions on the dome base, i.e., Fig.14.2a, u ¼ 0j’¼’1 . It follows from the above that

C1 ¼
pR2ð1þ �Þ

Eh

1

1þ cos ’1
� lnð1þ cos ’1Þ

� �
:

Upon substitution of this value into Eq. (14.13), the deflection u is obtained in the
form

u ¼ pR2ð1þ �Þ
Eh

sin ’ ln
1þ cos ’

1þ cos ’1
þ cos ’� cos ’1
ð1þ cos ’Þð1þ cos ’1Þ

� �
: ð14:14Þ

Then Eq. (13.44) yields w.
Up to this point, we have assumed that domes were closed at their apex. Now

let us analyze the membrane forces distribution in a spherical dome under self-
weight, which has a skylight at its top (Fig. 14.3).

In this case, the dome has the form of a truncated sphere with a reinforcing ring
used to support the upper structure (skylight). We assume that p is the weight of the
shell surface per unit area and there is a line load q per unit length at the top of the
dome, due to the weight of the skylight, hood, etc. To find N1; we substitute R1 ¼
R2 ¼ R; and p3 ¼ p cos ’; p1 ¼ p sin ’, and r ¼ R sin ’ into Eq. (13.34). We have the
following:

N1 ¼ � 1

R sin2 ’

ð’
’0

R2 sin2 �’’ p sin2 �’’þ p cos2 �’’
� �

sin �’’d �’’þ qb

� �

¼ pR
cos ’� cos ’0

sin2 ’
� q

b

R sin2 ’
;

where b is the radius of the parallel circle at the dome top. Since b ¼ R sin ’0, we
obtain

N1 ¼
1

sin2 ’
pR cos ’� cos ’0ð Þ � q sin ’0½ �: ð14:15Þ

Substituting the above into Eq. (13.39), we obtain

N2 ¼
1

sin2 ’
�pR cos ’ sin2 ’� cos ’0 þ cos ’

� �þ q sin ’0
� �

: ð14:16Þ

Fig. 14.3
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(b) Spherical domes: live or snow loads

Live or snow loads are applied in such a way that they are uniformly distributed over
the plan area of the shell surface as opposed to self-weight loading, which is uni-
formly distributed over the surface area. If q is the loading defined on the plan area,
then referring to Fig. 14.4a, we can obtain an equivalent load p defined on the
surface area from the following relationship (ds ¼ Rd’):

pRd’ ¼ ðqRd’Þ cos ’ or p ¼ q cos ’: ð14:17Þ
Thus, from Eqs (14.1), we obtain

p3 ¼ q cos2 ’; p1 ¼ q sin ’ cos ’: ð14:18Þ
Substituting these values into Eq. (13.38) and again setting R1 ¼ R2 ¼ R and
r ¼ R sin ’, we have

N1 ¼ � 1

R sin2 ’

ð’
0

qR2 sin2 �’’ cos �’’þ cos3 �’’
� �

sin �’’d �’’:

Evaluating this integral yields the following expression for the meridional force:

N1 ¼ � qR

2
: ð14:19Þ

Substituting this into Eq. (13.39) we obtain the circumferential force:

N2 ¼ � qR

2
cos 2’: ð14:20Þ

The meridional and circumferential forces distributions are shown in Fig. 14.4b.
Referring to these diagrams, we can see that N1 is compressive throughout the
dome, from ’ ¼ 0
 to ’¼ 90
; while N2 is a tensile force beyond ’ ¼ 45
.

Fig. 14.4
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14.1.2 Conic roofs: axisymmetric loading

Consider a planetarium dome that may be approximated as an edge-supported
truncated cone. We derive expressions for the circumferential and meridional forces
for two conditions of loading: (a) self-weight of the shell per unit area of its middle
surface (Fig. 14.5a) and (b) snow load uniformly distributed over the shell plan (Fig.
14.5b). Both types of loading are axisymmetric.

For the analysis of this dome under its self-weight, we use the equations
derived in Sec. 13.6.2 for conical shells. For the axisymmetric loading, these equa-
tions are simplified – namely, S ¼ 0 – and the remaining membrane forces are
functions of the s coordinate only. The circumferential force N2 is given by Eq.
(13.60). We have the following:

N2 ¼ �p3s cot ’; ð14:21Þ
where the coordinate s defines the distance of a point of the middle surface measured
from the vertex along the generator of the shell, as shown in Fig. 14.5a.

Substituting for N2 from Eq. (14.21) into the first Eq. (13.58) and setting S ¼ 0,
we obtain the following expression for the meridional force N1:

N1 ¼ � 1

s

ð
p1 þ p3 cot ’ð Þsdsþ C

� �
; ð14:22Þ

where C is a constant of integration. Substituting for p1 and p3 from Eq. (14.1) into
Eq. (14.22), yields the following:

N1 ¼ � p

s

ðs
s0

sin ’þ cos ’ cot’ð Þ�ssd �ssþ C

s
: ð14:23Þ

As no force acts at the top edge of the shell, C ¼ 0 and we obtain

N1 ¼ � p

s

ðs
s0

�ss

sin ’
d �ss:

and, finally,

Fig. 14.5
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N1 ¼ � p

2s

s2 � s20
sin ’

: ð14:24Þ

The circumferential force N2 may be determined from Eq. (14.21) by substituting
p3 ¼ p cos ’. We have

N2 ¼ �ps
cos2 ’

sin ’
: ð14:25Þ

To analyze the force components due to the snow load q, defined on the plan
area, we use the relations (14.18) to determine the equivalent load components
defined on the surface area. Substituting the above relations into Eq. (14.22) yields

N1 ¼ � 1

s

ð
ðq sin ’ cos ’þ q cos2 ’ cot ’Þsdsþ C

s
: ð14:26Þ

Evaluating this integral gives the following expression for the meridional force:

N1 ¼ � qs

2
cot ’þ C

s
:

The condition that N1 ¼ 0 at s ¼ s0 leads to the following expression for C:

C ¼ 0:5qs0 cot ’:

Hence,

N1 ¼ � q

2s
s2 � s20
� �

cot ’: ð14:27Þ
The circumferential force N2 may be found from Eq. (13.60) by substituting for p3
from the first relation (14.18), as follows:

N2 ¼ �qs
cos3 ’

sin ’
: ð14:28Þ

The membrane stresses are obtained by dividing the membrane forces given by Eqs
(14.27) and (14.28) by the shell thickness h.

14.1.3 Cylindrical shell roofs

Circular cylindrical shells, or ‘‘barrel’’ shells, are frequently used for roof structures.
Such a roof structure represents an open cylindrical shell having two curvilinear and
two straight edges, as shown in Fig. 14.6a. Cylindrical shell roofs may be supported
along curvilinear edges by rigid arches, frames, or solid wall supports that are stiff
against deformations in their own planes but that are nearly perfectly flexible for
deformations perpendicular to their planes; such supports are called diaphragms.
Along the rectilinear edges, these cylindrical shells are supported by the edge beams.
The shell roof may be either dome-type convex or suspended membrane-type con-
cave: the former is made of reinforced concrete and is used for relatively small spans,
while membrane shell roofs are made of metal (e.g., steel, aluminum alloys) and can
cover large span structures.

Consider a circular cylindrical barrel shell of length L under its self-weight
(Fig. 14.6a). If p is the dead load per unit area of the shell surface, we can resolve
it into components along the normal and circumferential directions.

We have
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p3 ¼ p cos �; p2 ¼ p sin �: ð14:29Þ
Substituting this loading and R2 ¼ R into Eqs (13.54), we obtain

N2 ¼ �pR cos �; S ¼ �xFð�Þ þ f1ð�Þ;

N1 ¼
x2

2R

dF

d�
� x

R

df1
d�

þ f2ð�Þ;
ð14:30Þ

where

Fð�Þ ¼ p2 �
1

R

d

d�
ðp3RÞ: ð14:31Þ

The unknown functions f1ð�Þ and f2ð�Þ may be evaluated from the prescribed bound-
ary conditions on the shell edges x ¼ 0 and x ¼ L. The above conditions for the
barrel shells supported by the diaphragms at the edges x ¼ 0, L can be formulated,
as follows:

N1 ¼ 0
		x¼o
x¼L

: ð14:32aÞ

Substituting these into the third Eq. (14.30), we have at x ¼ 0 and x ¼ L:

N1ð0Þ ¼ f2ð�Þ ¼ 0; N1ðLÞ ¼
L2

2R

dF

d�
� L

R

df1
d�

¼ 0:

Fig. 14.6
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Thus,

f1ð�Þ ¼
L

2
Fð�Þ þ C: ð14:33Þ

For a given constant loading along x, we expect that the membrane forces N1 and N2

will be symmetrical, while S will be inversely symmetrical about the shell midspan,
i.e., at x ¼ L=2. Thus,

S ¼ 0jx¼L=2 ð14:32bÞ
Substituting for p3 and p2 from Eq. (14.29) into Eq. (14.31), we obtain

Fð�Þ ¼ p sin � þ p

R
R sin � ¼ 2p sin �; ð14:34Þ

and inserting the above together with Eq. (14.33) into the second Eq. of (14.30), we
can write the expression for S in the following explicit form:

S ¼ �2px sin � þ L

2
2p sin � þ C ¼ 2p sin �

L

2
� x

� �
þ C: ð14:35Þ

Applying the condition (14.32b), we obtain

C ¼ 0:

Finally, all the membrane forces for the given loading may be represented in the
form

N1 ¼ � px

R
ðL� xÞ cos �; N2 ¼ �pR cos �; S ¼ 2p

L

2
� x

� �
sin �: ð14:36Þ

The variation of N1;N2; and S over the depth of the cross section x=L/4of the
semicircular barrel shell under self-weight is shown in Fig. 14.6b.

It follows from Eqs (14.36) that N2 ¼ 0 at � ¼ ��=2. However, the shear force
S does not vanish on the straight edges of the shell, as it is required there for the free
edges. Figure 14.6a shows the variation of the membrane shear forces S from x ¼ 0
to x ¼ L at the edge � ¼ �=2. From this diagram, it is seen that these edge forces are
self-equilibrating. To resist these forces, the edge members are employed. The latter
are loaded by forces equal and opposite to the edge forces on the shell, i.e., S. Since
the edge shell is compressed by the shear forces S, the edge member is stressed in
tension only (Fig. 14.6a). Thus, the edge members are subjected to tensile axial loads
2pðL=2� xÞ (for � ¼ �=2Þ and they have free ends at the diaphragm supports. This
tensile loading is balanced by the internal axial forces TðxÞ, which are zero at x ¼ 0,
L and may be found from the free-body diagram of the part of this edge member. We
obtain from equilibrium the following expressions:

TðxÞ ¼
ðx
0

2p
L

2
� x

� �
dx ¼ 2p

L

2
x� x2

� �
:

This force has a maximum at x ¼ L=2, which is given by

Tmax ¼
pL2

4
:

The total compressive force on the cross section of the shell at x ¼ L=2 may be
obtained by substituting x ¼ L=2 into the first Eq. (14.36) and integrating over the
cross section. We have, at x ¼ L=2,
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R ¼ 2

ð�=2
0

N1Rd� ¼ � pL2

2

ð�=2
0

cos �d� ¼ � pL2

2
:

It is seen that this unbalanced compressive force on the shell cross section is balanced
by the tensile forces Tmax in the two edge beams, which must be provided. Similarly,
equilibrium will be satisfied on any other section along the shell span. Thus, a
semicircular barrel shell can support dead load under membrane conditions if the
tension edge members are provided at their bottom edges. However, the membrane
conditions are not satisfied because of the incompatibility of deformations at the
shell edges. Indeed, as follows from the first Eq. (14.36), N1 ¼ 0 at �¼� �=2. On the
other hand, the edge member has tensile forces TðxÞ, which will cause it to extend in
the axial direction. Moreover, due to its own weight, the edge member will tend to
deflect vertically. These deflections will be different from the vertical deformations of
the shell and edge members. The membrane theory alone cannot eliminate these
incompatibilities of deformations and must be complemented by the bending theory
(see Chapter 15).

When a cylindrical shell cross section has edges with an angle � different from
90
 (e.g., less than 90
), there arise further complications associated with an applica-
tion of the membrane theory. In fact, in this case, N2 (see the second Eq. of (14.36))
will now be nonzero at the longitudinal edges. Thus, the edge member has to resist
both N2 and S forces from the shell edges. This gives rise to further incompatibilities
of deformation and requires an application of the bending theory of shells.

The procedure for the membrane analysis of cylindrical shells under self-weight
described above is a particular case of a more general approach based on a Fourier
series expansion. The governing differential equations for the membrane forces in
cylindrical shells are given by Eqs (13.50). These equations have constant coefficients
in x and, hence, they can be solved by representing solutions in the form of cosine
and sine functions in x.

For barrel shells having simply supported edges x ¼ 0 and x ¼ L, which are
commonly constructed as roof structures, the solutions of Eqs (13.50) can be repre-
sented as follows:

N1 ¼
X1
n¼1

N1n sin
n�x

L
; S ¼

X1
n¼0

Sn cos
n�x

L
; N2 ¼

X1
n¼1

N2n sin
n�x

L
: ð14:37Þ

It can be shown that the above solutions satisfy the simply supported boundary
conditions. The load components are also expanded into Fourier series in x. This
can be done by assuming odd extensions of the loads in the interval (0;L) (refer to
Appendix B). Introducing Eqs (14.37) and the load expansions into Eqs (13.50),
solutions for membrane stress resultants can be obtained (after solving the resulting
ordinary differential equations).

14.1.4 Shell roofs in the form of an elliptic or hyperbolic paraboloid
covering rectangular areas

Such a type of roof is commonly used for covering public and sports buildings.
Elliptic and hyperbolic paraboloids, considered in this section, fall into the category
of shells of translation introduced in Sec. 11.7.
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At first, assume that an elliptic paraboloid covers a rectangular area with the
dimensions 2a	 2b and that it is subjected to a uniform vertical surface load of
intensity p3 ¼ p (Fig. 14.7a). The equation of the shell middle surface in this case can
be represented as

z ¼ f
x2

2a2
þ x2

2a2
y2

2b2

 !
y2: ð14:38Þ

Taking into account, we obtain

@2z

@x2
¼ f

a2
;
@2z

@y2
¼ f

b2
; and

@2z

@x@y
¼ 0:

Assume, for simplicity, that �pp3 � p3 ¼ p, i.e., the vertical surface load per unit area of
the middle surface is approximately equal to the vertical load of the horizontal
projection of the middle surface. Then, substituting the above into Eq. (13.78), yields
the following:

1

b2
@2�

@x2
þ 1

a2
@2�

@y2
¼ � p

f
: ð14:39Þ

Assume then that the shell edges are attached to supporting arches, so that the
membrane forces N1 and N2 are zero and the vertical load is transmitted to the
supports by means of the membrane shear forces. Express these boundary conditions
in terms of the function �. Taking into account the relations (13.77) and (13.72), we
can write the boundary conditions on the shell edges as follows:

Fig. 14.7
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N1 ¼ 0 and
@2�

@y2
¼ 0

					
x¼�a

; ð14:40aÞ

N2 ¼ 0 and
@2�

@x2
¼ 0

					
y¼�b

: ð14:40bÞ

The solution of Eq. (14.39) is sought in the form

� ¼
X
n

Cn cos	nx cosh
ny�
p

2f
b2x2; ð14:41Þ

where

	n ¼
n�

2a
; 
n ¼

n�

2b
; n ¼ 1; 3; 5; . . . :

It can be easily shown that � in the form of Eq. (14.41) satisfies exactly the homo-
geneous equation (14.39) and the boundary conditions (14.40a). The constants of
integration Cn are evaluated from the boundary conditions (14.40b). We have

@2�

@x2

					
y¼�b

¼ � �2

4a2

X
n

n2Cn cos	nx cosh
ny�
pb2

f
¼ 0:

Next, expand the value �pb2=f
� �

into the Fourier series

� pb2

f
¼
X
n

An cos	nx; ð14:42aÞ

where

An ¼
2

a

ða
0

� pb2

f

 !
cos

n�x

2a
dx ¼ � 4pb2

�f

1

n
sin

n�

2
: ð14:42bÞ

Then,

@2�

@x2

					
y¼�b

¼
X
n

� �2

4a2
n2 cosh 
nbCn �

4pb2

�f

1

n
sin

n�

2

 !
cos	nx: ð14:43Þ

This expression is equal to zero if

Cn ¼ �
16pa2b2 sin n�

2
n3�3f coshðn�=2Þ : ð14:44Þ

Introducing Cn from Eq. (14.44) into Eq. (14.41), we obtain the expression for �,
that satisfies the differential equation (14.39) and the prescribed boundary conditions
(14.40).

Knowing the function �, we can determine �NN1; �NN2; and �SS using the relations
(13.55) as follows:
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�NN1 ¼ � 4pa2

�f

X
n

sinðn�=2Þ
n coshðn�=2Þ cos	nx cosh
ny;

�NN2 ¼
4pb2

�f

X
n

sinðn�=2Þ
n coshðn�=2Þ cos	nx cosh
ny�

pb2

f
;

�SS ¼ � 4pab

�f

X
n

sinðn�=2Þ
n coshðn�=2Þ sin 	nx sinh 
ny:

ð14:45Þ

Having determined the components of the horizontal projections of the mem-
brane forces, we can calculate the membrane forces themselves using the relations
(13.72).

Figures 14.7b and c show the membrane force diagrams for a shell with the
following dimensions: a ¼ 25m; b ¼ 20m; and fx ¼ fy ¼ 5m (from Ref. [1]). It fol-
lows from these diagrams that the membrane shear forces increase very rapidly
approaching infinity at the corner points. This testifies that the membrane theory
alone cannot be applied near the corner points. However, the given formulas and
relations describe quite accurately the stress state throughout the shell, except for
comparatively small areas near the corner points. In addition, they indicate that
these areas should be reinforced due to the presence of the bending and twisting
moments.

A roof in the form of a hyperbolic paraboloid, covering the rectangular area,
can be analyzed similarly. The equation of such surface is given by

z ¼ f
x2

2a2
� y2

2b2

 !
ð14:46Þ

The governing differential equation for the function � will differ from Eq. (14.39) by
the sign for the first term only, i.e.,

� 1

b2
@2�

@x2
þ 1

a2
@2�

@y2
¼ � p

f
: ð14:47Þ

Its solution can be represented in the form

� ¼
X
n

Cn sin 	n�1x cos 
n�1y�
pb2

2f
x2; ð14:48Þ

where

	n�1 ¼
�ðn� 1Þ

2a
; 
n�1 ¼

�ðn� 1Þ
2b

; n ¼ 1; 3; 5; . . . :

Here

Cn ¼ �
16pa2b2ð1� cos n� 1

2
�Þ

ðn� 1Þ3�3f cos n� 1
2

�
:
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Having determined �, we can calculate �NN1; �NN2; and �NN12 as follows:

�NN1 ¼ �
X
n

Cn

2
n�1 sin 	n�1x cos
n�1y;

�NN2 ¼ �
X
n

Cn	
2
n�1 sin 	n�1x cos
n�1y�

pb2

f

�NN12 ¼
X
n

Cn	n�1
n�1 cos 	n�1x sin 
n�1y

: ð14:49Þ

Roofs with hyperbolic paraboloid surfaces are commonly made as suspended shells,
because in this shape the roof’s state of stress is in good agreement with the moment-
less scheme of the analysis.

14.1.5 Asymmetrically loaded domes: wind loading

In the general case of asymmetrically loaded domes, the governing equations of the
membrane theory of shells of revolution must be solved without the simplifications
provided by the axisymmetric membrane theory. As an example of the application of
the general membrane theory, we consider shells subjected to wind loads.

The value and distribution of the wind loading can be established by testing
models of structures in wind tunnels. There are special standard relationships that
allow us to determine the value and distribution of wind loading for commonly used
types of structures.

It is usual to represent dynamic loading, such as wind and earthquake effects,
by statically equivalent for the purposes of design. The wind load on shell struc-
tures is composed of pressure on the wind side and suction on the leeward side.
Here the load component acting perpendicular to the middle surface p3 is taken
into account. The components p1 and p2 are due to the friction forces and are of
negligible magnitude. Assuming, for the sake of simplicity, that the wind acts in
the direction of the meridian plane � ¼ 0
, the components of the wind pressure are
of the form [2]

p1 ¼ p2 ¼ 0; p3 ¼ p sin ’ cos �; ð14:50Þ

where p represents the static wind pressure intensity. Figure 14.8 shows the distribu-
tion of the wind load given by Eq. (14.50) on a spherical dome.

The differential equation (13.23) for the wind loading, given by Eq. (14.50), has
the following form (making n ¼ 1):

1

R1R2 sin ’

d

d’

R2
2 sin ’

R1

dU1

d’

 !
� U1

R1 sin
2 ’

¼ F1ð’Þ; ð14:51Þ

where

F1ð’Þ ¼ �p
1

R1R2 sin ’

d

d’
R3

2 sin
3 ’ cos ’

� �� R2 sin ’

� �
: ð14:52Þ
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Let us introduce some additional function

U
1 ¼ U1R2 sin ’: ð14:53Þ

The replacement of U1 with U
1 changes Eq. (14.51) to the form

d

d’

1

R1 sin ’

dU
1

d’

� �
¼ R1F1ð’Þ: ð14:54Þ

The function U
1 can be evaluated as a result of two successive integrations and using

the integration by parts formula. Dropping intermediate mathematics, one obtains
the following final result:

U
1 ¼ �p C1

ð’
’0

R1 sin �’’d �’’þ
ð’
’0

�ð �’’ÞR1 sin �’’d �’’þ C2

� �
; ð14:55Þ

where ’0 can be chosen arbitrarily. Further, it will be identified with the angle
determining the upper edge of a shell (for truncated shells). The function �ð’Þ is
given by

�ð’Þ ¼ R2
2 sin

2 ’ cos ’�
ð’
’0

R1R2 sin
3 �’’’d �’’: ð14:56Þ

In Eq. (14.55), C1 and C2 are the constants of integration. Using Eq. (14.53), we
determine U1 as follows:

U1 ¼
U

1

R2 sin ’
¼ � p

R2 sin ’
C1

ð’
’0

R1 sin �’’d �’’þ
ð’
’0

�ð �’’ÞR1 sin �’’d �’’þ C2

� �
;

ð14:57Þ
Using the relations (13.10), (13.8c), and (13.22), we find the membrane forces N1 and
N2, as follows (for simplicity, the superscripts 1, corresponding to the first term in the
expansion (13.27), are dropped below):

Fig. 14.8
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N1 ¼ � p

R2
2 sin

3 ’
C1

ð’
’0

R1 sin �’’d �’’þ
ð’
’0

�ð �’’ÞR1 sin �’’d �’’þ C2

� �
cos �; ð14:58Þ

N2 ¼ �p R2 sin ’�
1

R1R2 sin
3 ’

C1

ð’
’0

R1 sin �’’d �’’

�

þ
ð’
’0

�ð �’’ÞR1 sin �’’d �’’þ C2

��
cos �: ð14:59Þ

Knowing U1, we can determine V1 from the first Eq. (13.11). We have the following

@V

@�
¼ �p3R

3
2 sin

2 ’ cos ’� R2
2 sin ’

R1

@U

@’
¼ �p


R3

2 sin
3 ’ cos ’

� C1 R2 sin ’� cot ’

ð’
’0

R1 sin �’’d �’’

� ��
þ�ð’ÞR2 sin ’

� cot ’

ð’
’0

�ð �’’ÞR1 sin �’’d �’’� C2 cot ’

��
cos �:

Taking into account the second relation (13.10), we obtain the following (again
dropping the superscript 1 for the membrane shear force):

S ¼ V

R2
2 sin

2 ’
¼ �p R2 sin ’� C1

1

R2 sin ’
� cos ’

R2
2 sin

3 ’

ð’
’0

R1 sin �’’d �’’

 !"

� �ð’Þ
R2 sin ’

þ cos ’

R2
2 sin

3 ’

ð’
’0

�ð �’’ÞR1 sin �’’d �’’þ C2 cos ’

R2
2 sin

3 ’

#
sin �:

ð14:60Þ

The constants of integration, C1 and C2, are to be evaluated by assigning the mem-
brane forces N1 and N2 on the upper edge of the shell, i.e., at ’ ¼ ’0. Denoting these
forces by N

ð0Þ
1 and Sð0Þ, and letting ’ ¼ ’0 in Eqs (14.58) and (14.60), we obtain the

following expressions:

C1 ¼ � 1

p
N

ð0Þ
1 R

ð0Þ
2

� �2
sin ’0 cos ’0 � Sð0ÞRð0Þ

2 sin ’0

� �
;

C2 ¼ �
R

ð0Þ
2

� �2
sin3 ’0

� �
p

N
ð0Þ
1 :

ð14:61Þ

For domes closed at the vertex, we have ’0 ¼ 0 and C1 ¼ C2 ¼ 0.
As an example, let us determine the expressions for the membrane forces for a

spherical dome of radius R (see Fig. 14.8). For this particular case, R1 ¼ R2 ¼ R;
’0 ¼ 0 and
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�ð’Þ ¼ R2 sin2 ’ cos ’�
ð’
0

sin3 �’’d �’’

� �
¼ R2½sin2 ’ cos ’� ð1� cos ’Þ

þ 1

3
ð1� cos3 ’Þ�

N1 ¼ � pR

sin3 ’

ð’
0

sin3 �’’ cos �’’� ð1� cos �’’Þ sin �’’þ 1

3
ð1� cos3 �’’Þ sin �’’

� �
d �’’ cos �

¼ � pR

3 sin3 ’
sin2 ’ð1þ sin2 ’Þ � 2ð1� cos ’Þ� �

cos �;

S ¼ � pR

3 sin3 ’
2� cos ’ð2þ sin2 ’Þ� �

sin �;

N2 ¼ � pR

3 sin3 ’
sin2 ’ð2 sin2 ’� 1Þ þ 2ð1� cos ’Þ� �

cos �:

ð14:62Þ
It is seen from Eqs (14.62) that the maximum values of the membrane forces occur as
follows:

. for the meridional forces, N1, at ’ � �=4 and �¼ 0;�;

. for the circumferential forces, N2 at ’¼�=2 and �¼0;�; and

. for the shear forces, S; at ’¼�=2 and �¼�=2; 3�=2.
At the top of the dome (’ ¼ 0), all the membrane forces are zero. Figure 14.9 depicts
the variations of N1 and N2 along the meridian � ¼ 0 and the variation of S along the
meridian � ¼ 90
.

14.2 MEMBRANE ANALYSIS OF LIQUID STORAGE FACILITIES

14.2.1 Introduction

Liquid storage facilities in the form of tanks, elevated water towers, cooling towers,
etc., are widely used. They are made of steel or concrete and represent multishell
structures, i.e., a combination of spherical, cylindrical, and conical shells, and

Fig. 14.9
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circular plate, and circular rings located axisymmetrically. They are loaded axisym-
metrically, to withstand water or gas pressure, dead or live loads, etc., or asymme-
trically, for example, to withstand wind pressure. First, we consider the
axisymmetric-type loading.

The walls of closed tanks designed for carrying liquids and gases are subjected
to normal pressure forces p3 (see Fig. 14.10). These forces consist of an excess
pressure of gases p and the hydrostatic liquid pressure. The law of varying of the
hydrostatic pressure over the tank depth can be expressed as

p3 ¼ � p þ �lðx� xÞ½ �; ð14:63Þ
where �l is the specific weight of the liquid; x and x are the coordinates of parallels
corresponding to the cross section of interest and the upper level of liquid, respec-
tively. These coordinates are measured from a vertex of the tank or from its upper
edge (Fig. 14.10).

Let us go from the x coordinate to the angular coordinate ’. Using the
relationships

dx

dr
¼ tan ’;

dr

d’
¼ R1 cos ’; ð14:64Þ

we find

dx ¼ tan ’dr; x ¼
ð’
’0

tan �’’dr ¼
ð’
’0

R1 sin �’’d �’’ ð14:65Þ

and

x� x ¼
ð’
’0

R1 sin �’’d �’’�
ð’
’0

R1 sin �’’d �’’ ¼
ð’
’
R1 sin �’’d �’’: ð14:66Þ

Substituting the above into Eq. (14.63), we obtain

p3 ¼ � p þ �l
ð’
’
R1 sin �’’d �’’

� �
; ð14:67Þ

where ’0 and ’ are the meridional angles corresponding to the coordinates x ¼ 0
and x ¼ x, respectively.

Fig. 14.10
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The meridional forces for tanks can be determined from Eq. (13.33b) and Eq.
(13.39). The former equation can be rewritten for tanks, taking into account Eq.
(14.67) and noting that p1 ¼ 0, as follows:

N1 ¼
1

R2 sin
2 ’

p
ð’
’0

R1R2 cos �’’ sin �’’d �’’

�

þ�l
ð’
’0

R1R2 cos �’’ sin �’’d �’’

ð’
’
R1 sin �’’d �’’

�
þN

ð0Þ
1 R

ð0Þ
2 sin2 ’0

R2 sin
2 ’

ð14:68Þ

If we take into account relation (13.6b), then the first integral in the square brackets
can be represented as follows:ð’

’0

R2 sin �’’ � dðR2 sin �’’Þ ¼ 1

2
R2

2 sin
2 ’� ðRð0Þ

2 Þ2 sin2 ’0
� �

:

Then, Eq. (14.68) appears as

N1 ¼
pR2

2
þ �l

R2 sin
2 ’

ð’
’
R1R2 cos �’’ sin �’’d �’’

ð’
’
R1 sin �’’d �’’

þ N
ð0Þ
1 � pRð0Þ

2

2

 !
R

ð0Þ
2 sin2 ’0

R2 sin
2 ’

:

ð14:69Þ

In the second term of Eq. (14.69), the lower limit of the first integral is ’; because
for ’ < ’ the hydrostatic pressure of the liquid is zero.

Below we consider the membrane analysis of liquid storage facilities made of
various forms of shells of revolution under axisymmetric and asymmetric loads.

14.2.2 Spherical storage tank with supports in its diametrical plane:
axisymmetric loading

For a closed spherical shell R1 ¼ R2 ¼ R
ð0Þ
1 ¼ R

ð0Þ
2 ¼ R and ’0 ¼ 0. Then, it follows

from Eq. (14.69) that

N1 ¼
pR
2

þ �lR
2

6 sin2 ’
cos3 ’ � cos2 ’ 3 cos ’ � 2 cos ’ð Þ� �

: ð14:70Þ

Since the meridional forces N1 have an obvious abrupt change at the support
(’ ¼ �=2), Eq. (14.70) is valid for ’ < �=2.

The circumferential force can be found from Eq. (13.39) as follows:

N2 ¼ �ðp3RþN1Þ; ð14:71Þ
where

p3 ¼ p þ �lR
ð’
’
sin �’’d �’’ ¼ p þ �lRðcos ’ � cos ’Þ:

Let us determine the meridional forces in the lower portion of the sphere tank, i.e.,
for ’ > �=2. Taking the lower vertex of the sphere as a reference point for the
reading of the meridional angles ’, we replace the lower limit in the first integral
of Eq. (14.69) with �, i.e., ’0 ¼ �. We obtain the following:
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N1 ¼
pR
2

þ �lR
2

sin2 ’

ð’
�

cos �’’ sin �’’d �’’

ð’
’
sin �’’d �’’ ¼ pR

2

þ �lR
2

6
3 cos ’ þ 2

1þ cos3 ’

sin2 ’

 ! ð14:72Þ

It follows from Eq. (14.70) that, at the support, for ’ ¼ �=2, we derive

N
0
1 ¼

pR
2

þ �lR
2

6
cos3 ’:

On the other hand, from Eq. (14.72), for ’ ¼ �=2, the meridional force is

N
00
1 ¼ pR

2
þ �lR

2

6
ð3 cos ’ þ 2Þ:

Thus, the value of the abrupt change in the meridional force at the support level in
the diametrical plane is

�N1 ¼ N
00
1 �N

0
1 ¼

�lR
2

6
ð3 cos ’ þ 2� cos3 ’Þ: ð14:73Þ

In particular, if the spherical tank is completely filled by a liquid only, i.e., p ¼ 0
and ’ ¼ 0, then

�N1 ¼
2

3
�lR

2: ð14:74aÞ

Recalling that the volume of the sphere is V ¼ 4

3
�R3, we can rewrite Eq. (14.74a), as

follows:

�N1 ¼
V�l
2�R

: ð14:74bÞ

The above represents the meridional force, which balances the liquid weight filling
the spherical tank. Thus, the meridional forces N1 at the sphere portion 0 � ’ < �=2
are to be determined from Eq. (14.70) and at the portion �=2 � ’ � � from Eq.
(14.72). The circumferential force N2 is determined from Eq. (14.71) for both por-
tions of the sphere, taking into account that N1 for the upper and lower portions are
given by Eqs (14.70) and (14.72), respectively. It is seen from the above equations
that the maximum values of the meridional forces take place when the spherical
storage tank is completely filled by a liquid.

Determine the limit of the second term in parentheses of Eq. (14.72) when
’! �. Using the L’Hospital’s rule, we obtain

N1

		
’¼�¼

pR
2

þ �lR
2

2
ð1þ cos ’Þ: ð14:75Þ

With the use of Eq. (14.71), it will be easily established that

N1j’¼� ¼ N2j’¼�:
The meridional and circumferential force, N1 and N2, diagrams for the spherical
storage tank filled completely by a liquid of a specific weight �l are shown in Fig.
14.11.
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Determination of the meridional and circumferential forces in the spherical
tank caused by a self-weight and snow loading should present no problems. We
denote the load intensity due to the self-weight and snow cover by q1 and q2,
respectively. The latter will be assumed to be uniform at the portion from the
tank vertex to the parallel that corresponds to some value ’ ¼ ’2.

It follows from Eq. (14.1) and Eq. (14.10) that

p1 ¼ q sin ’ and p3 ¼ q cos ’:

Substituting the above into Eq. (13.33b) and taking into account that for a closed
spherical tank R1 ¼ R2 ¼ R and ’0 ¼ 0 and N

ð0Þ
1 ¼ 0, we obtain

N1q ¼ � qR

sin2 ’

ð’
0

sin �’’d �’’ ¼ � qR

sin2 ’
ð1� cos ’Þ: ð14:76Þ

Here, by q it is meant that q ¼ q1 þ q2 for 0 � ’ � ’2 and q1 for ’2 � ’ � �=2.
The meridional force at the lower portion of the tank is derived from Eq.

(14.76). Assuming again that the reference point for angles ’ is taken at the lower
sphere vertex, we obtain

N1q ¼ � qR

sin2 ’

ð’
�

sin �’’d �’’ ¼ qR

sin2 ’
ð1þ cos ’Þ: ð14:77Þ

Referring to Eqs (14.76) and (14.77) we can conclude that the meridional forces due
to the self-weight are compressive over the sphere portion 0 � ’ � �=2, i.e., they are
opposite in sign to the forces due to the internal excessive pressure. Over the sphere
portion �=2 � ’ � �, the meridional forces load the shell. It can be shown that the
values of N1 change abruptly for ’ ¼ �=2 and the amount of this change is equal to
the weight of the sphere and snow load per unit the perimeter of the diametrical
section of the sphere.

14.2.3 Cylindrical tank with bottom in the form of ellipsoid of
revolution: axisymmetric loading

Assume that a cylindrical tank is filled by a liquid with a specific weight �l to the level
x from the top of its cylindrical part, as shown in Fig. 14.12a. In addition, it is

Fig. 14.11
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subjected to the gas vapor pressure p. Hence, the total normal pressure is deter-
mined, as before, by Eq. (14.63). The origin of the coordinate x is taken at the top of
the cylinder.

At first, we consider the cylindrical portion of the tank. For the cylinder, R1 ¼
1; R2 ¼ R and from the third Eq. (13.7) and Eq. (14.63), it follows that

N2 ¼ R p þ �lðx� xÞ½ � for x � x: ð14:78Þ
The distribution of N2 for the cylindrical portion of the tank is shown in Fig. 4.12b.
As seen from this diagram, N2 is constant and it equals pR over the cylindrical
portion where the hydrostatic pressure of the liquid is absent. Then, this force varies
according to the linear law of the rise of the hydrostatic pressure and reaches its
maximum value at the lower edge of the cylinder. The value of the meridional force
N1 depends on the location of the tank supports. In any case, this force can be
directly found from equilibrium of the portion of the cylinder intersected by a
plane, perpendicular to the axis of the tank. So, if the tank is suspended at the
upper edge of its cylinder, the meridional force is expressed

N1 ¼
pR
2

þ G�

2�R
ð14:79Þ

where, G� ¼ Gq þ Gl; Gq ¼
Ð L
x qtdx is the self-weight of a portion of the tank located

below the section of the interest; qt is the self-weight of the tank per unit length; and
Gl is the self-weight of a liquid filling the cylinder. If the tank is supported at the
junction with the lower bottom, then

N1 ¼
pR
2

� 1

2�R

ðx
0

qtd �xx: ð14:80Þ

If qt¼ const, then the meridional force is

N1 ¼
pR
2

� qtx

2�R
: ð14:81Þ

Fig. 14.12
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It should be noted that if a tank is filled by a gas only, then the circumferential force
N2 is always greater than the meridional force N1(twice as large if the self-weight of
the tank is ignored in the formulas (14.79) and (14.80)). Therefore, a wall thickness
should be selected, as a rule, corresponding to the maximum value of the circum-
ferential forces.

We proceed now to determining the membrane forces for the bottom. The total
pressure on the surface of the bottom is

p3 ¼ p þ �lðLþ
ð’
�=2

R1 sin �’’d �’’Þ; ð14:82Þ

where L is the height of the cylindrical part of the liquid column. The principal radii
of curvature for the ellipsoid of revolution are given by Eqs (11.49). We rewrite these
formulas as follows:

R1 ¼
Rð1þ �Þ1=2

ð1þ � sin2 ’Þ3=2 ; R2 ¼
Rð1þ �Þ1=2

ð1þ � sin2 ’Þ1=2 ; ð14:83Þ

where � ¼ R2

b2
� 1; b is the length of the semiaxis of the ellipse (the bottom depth),

and R is the radius of the cylindrical portion of the tank. Substituting the expression
for R1 from Eq. (14.83) into Eq. (14.82) and integrating, we obtain after some algebra

p3 ¼ p þ �l L� b
cos ’

ð1þ � sin2 ’Þ1=2
� �

: ð14:84Þ

Introducing the above into Eq. (14.69) and integrating, we obtain the following
expression for the meridional force:

N1 ¼
pR2

2
þ �l

R2 sin
2 ’

ð’
�=2

R1R2 cos �’’ sin �’’ L� b
cos �’’

ð1þ � sin2 �’’Þ1=2
� �

d �’’

þ N
ð0Þ
1 � pRð0Þ

2

2

 !
R

ð0Þ
2 sin2 ’0

R2 sin
2 ’

:

ð14:85Þ

Near the bottom edge,

N
ð0Þ
1 ¼ Rðp þ �lLÞ

2
þ �lV

2�R
¼ Rðp þ �lLÞ

2
þ �l

3
Rb; R

ð0Þ
2 ¼ R; ’0 ¼ �=2;

where V ¼ 2

3
�R2b is the volume of the liquid filling the bottom. Substituting R1; R2;

N
ð0Þ
1 ; R

ð0Þ
2 ; into Eq. (14.85) and integrating, one obtains

N1 ¼
R2ðp þ �lLÞ

2
þ �lR

2b

3R2 sin
2 ’

1þ cos3 ’

ð1þ � sin2 ’Þ3=2
" #

: ð14:86Þ

With the use of Eq. (13.39) the circumferential force, N2, can be found, as follows:

N2 ¼ �R2 p þ �l L� b
cos ’

ð1þ � sin2 ’Þ1=2
� �� �

�N1

R2

R1

: ð14:87Þ

The maximum values of the meridional and circumferential forces occur at the pole
of the bottom (for ’ ¼ �). Using the L’Hospital rule, we can determine N1max and
N2max from Eqs. (14.86) and (14.87), as follows:
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N1max ¼ N2max

		
’¼�=2¼

R2

b
p þ �lðLþ bÞ½ �:

The meridional force, N1, for the bottom is tensile. The circumferential force, N2,
for shallow bottoms changes its sign as it approaches the junction with the cylind-
rical portion of the tank, i.e., from a tensile force it becomes compressive. The
meridional and circumferential force diagrams for a shallow bottom are shown in
Fig. 14.13.

It should be kept in mind that at the transition from the cylindrical part of
the tank to its bottom, the meridional curvature changes abruptly. The compat-
ibility of deformations is achieved here owing to the occurrence of additional
circumferential forces and bending moments. In this zone, called also ‘‘the edge
effect zone,’’ the membrane shell theory can give significant errors. However, the
moment state of stress will diminish quickly, as we go away from the junction.
Therefore, the thickness of the wall for both the cylindrical portion of the tank and
its bottom can be selected from the membrane shell theory. However, at the edge
effect zone, the corresponding reinforcement of the tank is needed (e.g., this rein-
forcement can be provided by setting up a ring beam or sheets of larger thickness,
etc.).

14.2.4 The axisymmetrically loaded Intze tank

Elevated tanks of different forms of shells of revolution serve for water storage in a
city or town. These water tanks are made of steel or concrete. An economical form of
these tanks that is commonly constructed is the Intze tank, which is shown
schematically in Fig. 14.14a.

The Intze tank consists of a roof shell, cylindrical wall, conical shell, ring beam,
bottom shell, and supporting structure. The tank is filled with a liquid up to the top
of the cylindrical wall. We consider below the membrane analysis of the Intze tank
made of concrete and shown in Fig. 14.14a. The Intze tank can be separated into the
elementary shell components as mentioned above, shown in Fig. 14.14b. Each shell
component will be treated as a membrane shell according to the general procedure
introduced in Chapter 13.

Fig. 14.13
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Roof shell

The roof shell is subjected to a dead load (e.g., the weight of the roof) and live or
snow loading. The membrane analysis of this shell is quite similar to that given in
Sec. 14.1 for a spherical dome. At the base of the shell, the compressive membrane
forces (if ’1 < 51
49

0
), N

ðdÞ
1 and N

ðdÞ
2 will act.

Cylindrical wall

The cylindrical wall at its top, from the shell roof, is loaded by the vertical membrane
force V1 ¼ N

ðdÞ
1 sin 	 and the horizontal forceH1 ¼ N

ðdÞ
1 cos	. Since we restricted our

analysis to the membrane theory only, the above horizontal force will be resisted

Fig. 14.14
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jointly by the edge zones of the roof and the wall near the junction. A more accurate
stress analysis of such a junction, including the moment shell theory, is given in the
next chapter.

The water load acting on the cylindrical part of the tank causes the circumfer-
ential membrane forces only, N

ðsÞ
2 . It is equal to

N
ðsÞ
2 ¼ �lax; ð14:88aÞ

where �l is the water density. The maximum compressive meridional force N
ðsÞ
1

occurs at the base of the cylinder and is

N
ðsÞ
1max ¼ V1 þ �chsL; ð14:88bÞ

where �c and hs are the concrete density and the wall thickness of the cylinder,
respectively. The maximum circumferential force acts at the base of the cylinder.
It is equal to

N
ðsÞ
2max ¼ �laL: ð14:88cÞ

Ring beam

At the top of the cone, the meridional compressive force N
ðsÞ
1max is given by Eq.

(14.88b). Neglecting the self-weight of the ring, this force is directly applied to the
top of the cone, as shown in Fig. 14.14b. The above force can be resolved into a
component along the cone, N

ðcÞ
1 ¼ N

ðsÞ
1max= sin 
, and the horizontal component,

H2 ¼ N
ðsÞ
1max cot 
. The latter component is resisted by the ring beam. The hoop

tension in the ring beam is given by

T ðrÞ ¼ H2ðaþ d=2Þ:

Conical shell

The conical shell is subjected to dead and water loads. The dead load consists of the
self-weight of the conical frustum, Wc, and the total vertical load carried on top of
the cone, which comes from the roof shell and the cylindrical wall, Ws. The above
load components are

Wc ¼ Uchc�c

where Uc ¼ �ðaþ rÞ x2 þ a� rð Þ2� �1=2 ð0 � 	 � l) is the volume of the frustum, hc is
the cone thickness, and r is the radius of the cone parallel circle of interest;

Ws ¼ N
ðsÞ
1max2�ðaÞ:

Then, the meridional force due to dead load and carried by the cone, N
ðcÞ
1D, is given by

N
ðcÞ
1D ¼ � Wc þWs

2�rðsin 
Þ : ð14:89aÞ

The circumferential force in the cone shell, N
ðcÞ
2D due to the dead load, can be obtained

from the third Eq. (13.7) by letting R1 ¼ 1 and p3 ¼ �chc cos
.
The water load components are (using the coordinates s and 
 where s is

measured along line OB starting from point O, as shown in Fig. 14.14b)

p1 ¼ 0; p3 ¼ ��l Lþ ðS � sÞ sin 
½ �: ð14:90Þ
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Substituting the above into Eq. (13.68), integrating, and using the boundary condi-
tions for the case of water loading

N
ðcÞ
1W ¼ 0js¼S;

we obtain

N
ðcÞ
1W ¼ � �l cot


6s
2s3 sin 
� 3s2ðLþ S sin 
Þ þ S2ð3Lþ S sin 
Þ� �

: ð14:89bÞ

The circumferential membrane force due to the water loading can be again obtained
from Eq. (13.39) by letting R1 ¼ 1 and substituting for p3 from Eq. (14.90).

Bottom shell

The membrane forces, N
ðbÞ
1D and N

ðbÞ
2D, due to dead load (the self-weight of the bottom

shell) are readily obtained from Eqs (14.2) and (14.3).
Referring to Fig. 14.14b, we can find water load components, as follows:

p1 ¼ 0; p3 ¼ �l HW þ Rð1� cos ’Þ½ �;
where HW ¼ Lþ f2 is the height of water above the top of the bottom shell.
Substituting the above into Eq. (13.38), setting R1 ¼ R and r ¼ R sin ’, and evaluat-
ing the integral, one obtains

N
ðbÞ
1W ¼ �lR

6 sin2 ’
�3HW sin2 ’þ Rð3 cos2 ’� 2 cos3 ’� 1Þ� �

: ð14:91Þ

The circumferential force due to water load, N
ðbÞ
2W , can be obtained then from Eq.

(13.39).
Finally the resultant membrane forces N1 and N2 from the cone and bottom

shell are transmitted to the tank supports. The latter may have a variety of struc-
tures. For example, the tank may be supported on a circular ring beam (resisting the
horizontal components of the cone meridional membrane force) that spans over a
row of columns (resisting the vertical components of the membrane resultants). The
membrane analysis of a supporting circular ring beam is quite similar to the analysis
of the ring beam between conical and cylindrical shells given above.

14.2.5 Asymmetrically loaded liquid storage facilities: wind loading

In the operating conditions, liquid storage facilities (tanks, reservoirs, containers,
etc.) and high-rise structures (chimneys, etc.) are subjected to unsymmetric, primar-
ily, wind loading. In such facilities, which are not filled by liquid, as well as in high-
rise structures, the wind loads can cause significant stresses and strains. If the mate-
rial of these structures behaves elastically, then stresses and strains can be repre-
sented as a sum of two components. The first component corresponds to the beam
state of stress of a shell with undistorted contour of its cross section. It is figured out
using the well-known formulas of strength of materials [3]. The second term accounts
for an additional state of stress due to the distortion of the shell cross-section con-
tour. The ratio of these two terms depends on the geometric and rigidity parameters
of a shell structure.

Wind loading is characterized by a little variation, which makes it possible to
break down the general state of stress associated with a deformation of the contour
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of the shell cross section into pure membrane and moment (of the edge effect type)
stress states. The former usually governs over the considerable part of the shell.
Moreover, it determines particular solutions of the governing differential equations
for the moment state of stress also. Therefore, a study of the character and value of
the membrane stresses and strains due to static wind loading is of considerable
interest in engineering practice. As mentioned previously, the value and law of dis-
tribution of the wind loading over the shell surface can be established by testing some
models of circular cylindrical shells in wind tunnels. The experimental results
obtained showed that the wind loading can be taken as a normal pressure to the
shell at all points and it can be approximated by the following truncated Fourier
series:

p1 ¼ p2 ¼ 0; p3 ¼ p
X
n

pn cos n�; ð14:92Þ

where p is the maximum value of the face pressure. Wind tunnel experimental
investigations showed that it is possible to be restricted by the three terms in the
expansion (14.92), taking p0 ¼ �0:7; p1 ¼ 0:5; and p2 ¼ 1:2.

The distribution of the normal pressure p3, based on the trinomial approxima-
tion mentioned above is shown in Fig. 14.15a. For not-too-high shells, one can
assume the pressure to be constant along their generators. For high-level cylindrical
shell structures, a variation of the wind pressure over the shell depth may be taken
into account by replacing the given variable wind load with some equivalent constant
load over the shell depth.

Let us consider a circular cylindrical reservoir of radius R and depth H.
Assume that it is fixed at the base and is free from the shear and meridional force
at the top. Then, taking the origin of the coordinate system at the shell top, we can
write the above boundary conditions as follows:

Sð�Þ ¼ N1ð�Þ ¼ 0
		
x¼0
: ð14:93Þ

Directly from Eq. (13.52a) we obtain the expression for the membrane circumfer-
ential forces by letting R2 ¼ R:

Fig. 14.15
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N2 ¼ �p3R ¼ �pR
X
n

pn cos n�: ð14:94aÞ

Then, taking into account that R2 ¼ R; p2 ¼ 0; and f1ð�Þ ¼ 0 (due to the
boundary conditions described above), we obtain from Eq. (13.52b) the following:

S ¼ �
ðx
0

dð�p3RÞ
Rd�

d �xx ¼ �p � x
X
n

pnn sin n� ð14:94bÞ

From Eq. (13.52c) it follows that (letting f2ð�Þ ¼ 0 and p1 ¼ 0)

N1 ¼ �
ðx
0

1

R

@S

@�
d �xx ¼ px2

2R

X
n

pnn
2 cos n�: ð14:94cÞ

In Eqs (14.94b) and (14.94c), the unknown functions f1ð�Þ and f2ð�Þ are equal to zero
due to the prescribed boundary conditions (14.93). The diagrams of the membrane
forces N1;N2; and S are shown in Fig. 14.15b at a section x ¼ H. The circumfer-
ential force N2 is a constant over the shell depth in the membrane theory. However,
it should be noted that when we approach the supporting cross section, the bending
affects the state of stress significantly. Consequently, the membrane forces N1;N2;
and S are redistributed over the length and cross sections of the shell.

14.3 AXISYMMETRIC PRESSURE VESSELS

Pressure vessels are commonly used to resist internal pressure (pressurized liquids or
gases). They are usually made of metals or composite materials. In such construc-
tions, the stresses due to the self-weight of the vessel are negligible compared with the
stresses due to the internal pressure.

Let us consider a pressure vessel in the form of a shell of revolution with an
arbitrary shape of the meridian, which intersects the axis of revolution at a right
angle (Fig. 14.16).

In this section, we determine the membrane forces due to the axisymmetric
internal pressure, p. Thus, the applied load components are

p1 ¼ 0; p2 ¼ 0; and p3 ¼ �p:

Fig. 14.16
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Substituting the above into Eq. (13.38) and noting that r ¼ R2 sin ’ and
dr ¼ ds cos ’=R1d’ cos ’, we obtain the following expression for the meridional
force:

N1 ¼
1

R2 sin
2 ’

ðr0
r0¼0

p�rrd�rr ¼ pr2

2R2 sin
2 ’
;

or upon substituting r ¼ R2 sin ’, we can simplify this expression, as follows:

N1 ¼
pR2

2
; ð14:95aÞ

which is valid for any shape of meridian. Now, using Eq. (13.39), we can determine
N2 as follows:

N2 ¼ pR2 1� R2

2R1

� �
: ð14:95bÞ

Let us now consider a cylindrical pressure vessel with hemispherical heads under an
internal pressure p, as shown in Fig. 14.17.

For the spherical head with R1 ¼ R2 ¼ R, we obtain from the above

N1 ¼ N2 ¼
pR

2
:

For the cylinder, we have N2 ¼ pR and N1 ¼ pR=2. Determine the radial displace-
ments of the two neighboring points A and B at the junction of the cylinder and
sphere (see Fig. 14.17a). We have

�c ¼ R"ðCÞ2 ¼ R

EtC
ðNðCÞ

2 � �NðCÞ
1 Þ ¼ pR2

2EtC
ð2� �Þ: ð14:96aÞ

�s ¼ R"ðSÞ2 ¼ R

EtS
ðNðSÞ

2 � �NðSÞ
1 Þ ¼ pR2

2EtS
ð1� �Þ ð14:96bÞ

Fig. 14.17
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where �c and �s are the radial displacements of the cylinder and sphere, respectively,
at the above-mentioned neighboring points.

It follows from Eqs (14.96), that the radial displacement of the cylinder is
greater than that of the sphere. Hence, in order to provide the compatibility of
the radial displacements at the junction of the two shells, the shear forces, V , and
bending moments,M, are to be applied at this junction, as shown in Fig. 14.17b. The
situation becomes more complicated if we have a shallow spherical shell instead of a
hemispherical shell as a head. In this case, the radial membrane force N1 in the
sphere, at the junction with the cylinder, has to be restricted by the cylinder as an
edge load. Consequently, the displacement of the two shells is much greater and a
ring beam needs to be provided at the junction to resist the radial membrane force
N1. The actual state of stress at the above junction will be discussed in detail in the
next chapter.

A toroidal shell is also used for pressure vessels. A toroid is generated by the
rotation of a closed curve about an axis passing outside. Figure 14.18a shows a shell
in the shape of a toroid or doughut of circular section subjected to internal pressure
p. The membrane force N1 may be found from conditions of equilibrium of a shell
segment shown in Fig. 14.18b, i.e.,

N1ð2�rÞ sin ’ ¼ p�ðr2 � b2Þ;

from which

N1 ¼
p

2
� r

2 � b2

r sin ’
:

Taking into account that r ¼ bþ a sin ’, we represent N1 in the form

N1 ¼
pa

2

2bþ a sin ’

bþ a sin ’
: ð14:97aÞ

Fig. 14.18
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The circumferential membrane force N2 may be found from Eq. (13.39); substituting

there R1 ¼ a;R2 ¼ aþ b

sin ’
and p3 ¼ �p, we have

N2 ¼ � p3R2 þN1

R2

R1

� �
¼ pR2 �N1

R2

R1

¼ 1

2
pa: ð14:97bÞ

The radial displacement w can be determined in the usual fashion, i.e.,

w ¼ r"2 ¼
r

Eh
ðN2 � #N1Þ:

However, if we try to calculate the longitudinal component of the displacement,
which is parallel to the axis of the shell, u, one can show that the integral in the
expression (13.43) diverges, since its integrand approaches infinity as ’ goes to zero.
It follows from the above that in the domain of the shell near a point ’ ¼ 0, the
membrane theory does not describe the state of stress and strain of the toroidal shell,
even loaded by a uniform pressure.

PROBLEMS

14.1 A hemispherical roof dome in Fig. 14.1 is subjected to its own weight. Assume that the

dome is constructed of masonry having a radius of curvature R ¼ 40m. Determine the

required thickness of the dome according to the maximum principal stress theory if the

compressive ultimate stress �u ¼ 22MPa and the factor of safety is 1.9.

14.2 A spherical roof dome in Fig. 14.2 is subjected to its own weight. Determine the

required cross-sectional area of the thrust ring. Take R ¼ 35m; ’1 ¼ 55
; and hs ¼
10 cm (thickness of the dome). Assume that the dome and the thrust ring are con-

structed of concrete with � ¼ 0:15.
14.3 A planetarium dome may be approximated as an edge-supported truncated cone, as

shown in Fig. 14.5b. It is subjected to a snow load with a maximum accumulation over

the dome q ¼ 2:5 kPa. Assume that the dome is constructed of 12 cm thick concrete

having the radii of the parallel circles equal to 40 m at the base and 25 m at the top,

respectively. Determine the membrane stresses in the dome.

14.4 A cooling tower may be approximated by a one-sheet hyperboloid of revolution (see

Fig. 11.9f). The equation of its meridian is r ¼a

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
, where a and b are the

parameters of the hyperbola. Determine the membrane forces, N1 and N2, distribution

over the depth of the cooling tower under its own weight. Assume that the tower is

made of concrete and T ¼ 22:0m; S ¼ 116:0m; a ¼ 51:5m; b ¼ 73:42m; and

h ¼ 0:2m.

Hint: use cylindrical coordinates for the solution.

14.5 The four different dome configurations of the same height, H ¼ 0:5a, are shown in Fig.

P.14.1. The first dome is spherical with R0 ¼ R ¼ 1:25a; the second dome is parabolic

with R0 ¼ a; the third dome has the form of a semiellipsoid with R0 ¼ 2a and �¼ 3;

and the fourth dome represents a segment of ellipsoid (the tangents of the dome

meridian at its edges are not vertical) with R0 ¼ 1:625a and � ¼ 1:5. All the four

domes cover the same areas (of radius a) and they are made of concrete. (a) Find

the meridional and circumferential forces distribution over the height of the above

domes under their self-weight p in terms of a and p. (b) Determine the cross-sectional

area of the thrust ring for all domes if the ring is assumed to be also made of the

reinforced concrete. Take the thickness of the shell h ¼ a=50 and �c ¼ 0:15. (c) Analyze
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and compare the states of stress of the four domes and on this basis select a more

appropriate configuration of the dome. Justify your decision.

14.6 A circular cylindrical barrel shell of semicircular cross section is simply supported at

x ¼ 0 and x ¼ L (Fig. 14.6a). The shell is subjected to its self-weight p. The edge beams

are employed along the rectilinear edges of the barrel shell to resist the membrane shear

forces S. (a) Determine the membrane forces N1;N2; and S. (b) Select the required

cross-sectional area of the edge beam if the shell and the above beam are made of an

aluminum with �y ¼ 414MPa; � ¼ 0:3, and factor of safety is 2.0. Take a ¼ 10m; L ¼
30m; and h ¼ a=100. (c) Discuss the applicability of the membrane theory for the

above barrel shell.

14.7 A horizontal circular pipe of radius a; length L; and thickness h, supporting its own

weight, is made of concrete. (a) Determine the membrane forces distribution over the

pipe length and over its cross section. (b) Determine the deflections u; v; and w for

section x ¼ L=2. (c) Analyze the applicability of the membrane theory for the above

shell. Take p1 ¼ 0; p2 ¼ p sin �; p3 ¼ p cos �, and � ¼ 0. The boundary conditions are of

the form: N1 ¼ 0; v ¼ 0jx¼0;x¼L.

14.8 A simply supported at ðx ¼ 0 and x ¼ LÞ semicircular cylindrical shell (Fig. 14.6) is

subjected to a snow load q which is uniformly distributed over its plane area. Given the

radius of the shell is a, thickness is h, modulus of elasticity and Poisson’s ratio are E

and �, respectively, determine the membrane stresses in the shell.

14.9 Show that the governing equation of the membrane theory for an elliptic paraboloid

under the action of a symmetric normal surface loading p, Eq. (14.39), can be reduced

to the following governing equation of torsion of the prismatic rod:

@2�

@�2
þ @

2�

@2
¼ �2; ðP14:1Þ

where � is the stress function, � ¼ x=a, and  ¼ y=b.
14.10 Using the results of Problem 14.9, determine the membrane forces in the shell roof

approximated by an elliptic paraboloid of revolution on an equilateral triangular plan

Fig. P14.1
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(Fig P.14.2) due to a dead load p: Assume reasonable values for any additional proper-

ties and parameters required.

Hint: it is known from the theory of elasticity that the stress function � for the torsion

of the rod having a cross section in the form of an equilateral triangle is expressed in

the following form:

� ¼ � 1

6a
x3 � 3xy2
� �� 2

3
a2 þ 1

2
ðx2 þ y2Þ

� �
: ðP:14:2Þ

14.11 An auditorium dome of span 350 ft is approximated by a spherical shell of radius

280 ft. The dome is simply supported at its ends. Determine the maximum membrane

forces in the dome under the action of a wind pressure. The components of the wind

pressure are given by Eqs (14.50) and p ¼ 15 psf. Assume reasonable values for any

additional properties required.

14.12 A circular cylindrical chimney shell of height L and radius R is subjected to a wind

pressure p3. The chimney shell is fixed at its base and free at the top. Assuming that the

wind pressure is constant over the height of the chimney and in the circumferential

direction is approximated by the polynomial p3 ¼ pð�0:7þ 0:5 cos � þ 1:2 cos 2�Þ,
determine the membrane forces in the shell.

14.13 A steel cylindrical pressure vessel with conical end caps is subjected to an internal

pressure of p ¼ 1:5 MPa, as shown in Fig. P.14.3. Using the membrane theory

alone, determine the required thickness of the cylinder if the yield stress of the steel

is 250 MPa. Where may additional strengthening be required?

14.14 The tank shown in Fig. P.14.4 has a cylindrical top and a conical bottom. The tank is

supported by a structure (not shown) that applies only vertical forces around the

parallel AB. The tank is filled to depth H ¼ 2:5R with water of weight density �l .
Determine the expressions for the membrane forces just above and just below the

parallel AB.

14.15 Redo Problem 14.14 replacing the conical bottom with a hemispherical bottom of

radius R. Consider two cases: (a) the bottom convexity is directed down and (b) the

bottom convexity is directed up.

14.16 The spherical tank is filled with water at a distance H from the top, as shown in Fig.

P.14.5a. The tank is supported by the outlet pipe. Determine the expressions for the

membrane forces if the radius of the tank is R and water density is �l

Hint: the volume of a spherical segment is U ¼ �l

6
ð3r2A þ 3r2B þ l2Þ; 0 < l < 2R.

Fig. P14.2
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14.17 A horizontal circular pipe of radius R; length l; and thickness h is subjected to internal

gas pressure p. Determine the membrane stresses in the pipe if its ends are assumed to

be built-in.

14.18 The Intze tank, shown in Fig. 14.14a, is filled with water up to the top of the cylindrical

wall. The tank is made of concrete. The total load on the roof shell is taken as p ¼ 3:5
kPa over its surface area. Determine (a) the membrane stresses in the roof shell,

cylindrical wall, conical shell, and bottom shell; (b) the tension forces in the ring

beam at the junction of the wall and cone, and in the supporting ring beam. Let a ¼
7:6m; L ¼ 7:2m, b ¼ 4:8m; f1 ¼ 2:0m; f2 ¼ 1:3m; hr ¼ 95mm, hs ¼ 250mm; and hb
¼ 280mm

Fig. P14.3

Fig. P14.4

Fig. P14.5
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14.19 A circular toroidal shell is subjected to internal pressure p ¼ 2:5MPa, as shown in Fig.

14.18. The dimensions of the toroid are a ¼ 0:09m; b ¼ 0:60m; and h ¼ 1:8mm.

Determine the membrane stresses in the shell.

14.20 A spherical concrete dome having a span of 2a and height H (H ¼ 0:5aÞ supports its
own weight p. The ends of the dome have roller supports (they can freely displace in the

horizontal direction). Determine (a) the horizontal displacements at the dome base and

(b) the vertical displacement at its apex.

14.21 Redo Problem 14.20, except now assume that the dome is subjected to snow loading q.
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15

Moment Theory of Circular Cylindrical
Shells

15.1 INTRODUCTION

The membrane theory of thin shells, discussed in previous chapters, is sufficient to
analyze with a high degree of accuracy many commonly encountered loading con-
ditions. However, at locations where the deflections are restricted, or there is a
change in geometry, such as the cylindrical-to-spherical shell junction (see Sec.
14.7), the membrane theory is inadequate to maintain deflection and rotation com-
patibility between the shells. At these locations, discontinuity forces and moments
are developed that result in bending and shear stresses in the shell. It should be noted
that these bending and shear stresses are localized over a small area of the shell, and
they dissipate rapidly along the shell. Many structures, such as shell roof structures,
storage tanks, pressure vessels, missiles, etc., are designed according to the mem-
brane theory and the total stress at discontinuities is determined from the membrane
and moment theories. Thus, a complete analysis of various thin shell forms would
require an appropriate moment theory, which is to be combined with the previously
discussed membrane theory.

It should be noted that, due to the small thickness of the shell, even small
bending moments cause large stresses in the shell. Therefore, it is very important
to determine the bending stress–strain field correctly to insure a design reliability.
The complete moment theory of thin shells is mathematically intricate. The govern-
ing differential equations of the moment theory of shells enable analytical or exact
solutions only for some particular cases. Therefore, approximate shell theories were
developed (see Chapter 17). The numerical methods, usually the finite element
method (FEM), discussed in Chapters 6 and 18, were also applied for the moment
analysis of thin shells.

We begin the moment analysis of thin shells with cylindrical shells. A cylind-
rical shell presents one of the most generally acceptable and optimal structural form
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of shells employed in engineering. A cylindrical shell, as mentioned previously, is
successful in combining simplicity, compactness, and almost an ideal technological
effectiveness. The latter enables one to develop items by usual rolling-up a given
sheet skelps. Therefore, pattern cutting of a material and the subsequent process of
manufacturing of a given structural form requires a minimum of technological
effort. On the other hand, unlike the other shell forms – say, noncircular shells of
revolution – the governing differential equations of the moment theory of a circular
cylindrical shell of constant thickness represent a system of equations with constant
coefficients, which gives us the possibility to analyzing their solutions in the general
form.

15.2 CIRCULAR CYLINDRICAL SHELLS UNDER GENERAL LOADS

Here we will use the same coordinates x and � as we did for the membrane theory of
cylindrical shells (Fig. 11.13), where x is the distance of a point of interest from a
datum plane normal to the generators (this plane usually coincide with one edge of
the shell) and � measures the angular distance of the point from a datum generator.
In this case, the Lamé parameters are given by Eqs (11.53) and the principal radii of
curvature are

R1 ¼ 1; R2 ¼ R: ð15:1Þ

The equilibrium equations of the general classical shell theory, Eqs.(12.41) and
(12.42), and the relations (12.43), appear in the following form:

R
@N1

@x
þ @S
@�

þ p1R ¼ 0;

@N2

@�
þ R

@S

@x
�Q2 �

@H

@x
þ p2R ¼ 0;

@Q2

@�
þ R

@Q1

@x
þN2 þ p3R ¼ 0; ð15:2Þ

@M2

@�
þ R

@H

@x
� RQ2 ¼ 0;

R
@M1

@x
þ @H
@�

� RQ1 ¼ 0: ð15:3Þ

This system of five differential equations of equilibrium can be reduced to the fol-
lowing system of three equations, by eliminating the shear forces, Q1 and Q2, from
Eqs (15.3):

R
@N1

@x
þ @S
@�

þ p1R ¼ 0;

@N2

@�
þ R

@S

@x
� 1

R

@M2

@�
� 2

@H

@x
þ p2R ¼ 0;

1

R

@2M2

@�2
þ 2

@2H

@x@�
þ R

@2M1

@x2
þN2 þ p3R ¼ 0:

ð15:4Þ
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The kinematic relations for thin cylindrical shells may be obtained from the corre-
sponding equations of the general shell theory, Eqs (12.23) and (12.24), by using Eqs
(15.1) and (15.2). We have the following:

"1 ¼
@u

@x
; "2 ¼

1

R

@v

@�
� w

R
; �12 ¼

1

R

@u

@�
þ @v

@x
; ð15:5aÞ

�1 ¼ � @
2w

@x2
; �2 ¼ � 1

R2

@v

@�
þ @

2w

@�2

 !
; �12 ¼ � 1

R

@v

@x
þ @2w

@x@�

 !
: ð15:5bÞ

Substituting the above into Eqs (12.45) and (12.46), we obtain the following stress
resultant – and stress couples – displacements relations for circular cylindrical shells

N1 ¼
Eh

1� �2
@u

@x
þ �

R

@v

@�
� w

� �� �
; N2 ¼

Eh

1� �2
1

R

@v

@�
� w

� �
þ � @u

@x

� �
;

S ¼ Eh

2ð1þ �Þ
@v

@x
þ 1

R

@u

@�

� �
; ð15:6a--cÞ

M1 ¼ �D
@2w

@x2
þ �

R2

@v

@�
þ @

2w

@�2

 !" #
; M2 ¼ �D

1

R2

@v

@�
þ @

2w

@�2

 !
þ � @

2w

@x2

" #
;

H ¼ �Dð1� �Þ @v

@x
þ @2w

@x@�

 !
1

R
ð15:6d--fÞ

Then, upon substituting Eqs (15.6) into Eqs (15.4) and introducing the dimensionless
coordinate � ¼ x=R in place of x, one derives a set of three expressions in the three
displacements u; v; and w. It is convenient to write this system of equations in the
matrix form

Lu ¼ g; ð15:7Þ
where

u ¼
u

v

w

8><
>:

9>=
>;; L ¼

l11 l12 l13

l21 l22 l23

l31 l32 l33

2
64

3
75; g ¼ 1� �2

Eh
R2

�p1

�p2

p3

8><
>:

9>=
>;; ð15:8Þ

and elements of the differential matrix L are

l11 ¼
@2

@�2
þ 1� �

2

@2

@�2
; l12 ¼ l21 ¼

1þ �
2

@2

@�@�
; l13 ¼ l31 ¼ �� @

@�
;

l22 ¼
1� �
2

@2

@�2
þ @2

@�2
þ a2 2ð1� �Þ @

2

@�2
þ @2

@�2

" #
;

l23 ¼ l32 ¼ � @

@�
þ a2 ð2� �Þ @3

@�2@�
þ @3

@�3

" #
; l33 ¼ 1þ a2

@2

@�2
þ @2

@�2

 !2

;

ð15:9Þ
where
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a2 ¼ h2=12R2 ð15:10Þ
For thin shells the values of a2 are very small (10�4–10�6). These are the

governing differential equations for the displacements in circular cylindrical shells
under general loading.

Following Gol’denveizer [1] the problem of solving Eqs (15.7) is reduced to the
integration of a single differential equation for some potential function. For this
purpose, it is convenient to use the operator method introduced in [1]. Noting that
the coefficients of Eqs. (15.7) are constants; we will consider those relations, according
to the above method, as algebraic equations in u; v; and w. These have coefficients in
which the symbols of differentiation, @k=@�k and @k=@�k ðk ¼ 1; 2; 3; 4Þ occur together
with other quantities (the symbol of multiple differentiation is to be considered as the
product of appropriate degrees of @=@� and @=@�). Let us set these as follows:

u ¼ 	11�1 þ	12�2 þ	13�3; v ¼ 	21�þ	22�2 þ	23�3;

w ¼ 	31�1 þ	32�2 þ	33�31;
ð15:11Þ

where

	 ¼
l11 l12 l13
l21 l22 l23
l31 l32 l33

2
4

3
5 ð15:12Þ

is the determinant made up of the operators given by Eq. (15.7) and 	ik ði; k ¼
1; 2; 3Þ are the minors of the above determinant, i.e., the determinants obtained
by excluding the ith and the kth column from 	ik.

Substituting the expressions (15.11) into Eqs (15.7) and using the well-known
theorems of the theory of linear algebraic equations, one finds the following rela-
tions:

	�1 þ g1 ¼ 0; 	�2 þ g2 ¼ 0; 	�3 þ g3 ¼ 0: ð15:13Þ
Equations (15.13) are nonhomogeneous. Their solutions can be represented in the
form

�1 ¼ �10 þ�11; �2 ¼ �20 þ�21; �3 ¼ �30 þ�31; ð15:14Þ
where the second subscript 0 refers to the solutions of the homogeneous equations
(complementary solutions) and the second subscript 1 stands for particular solu-
tions. The former solutions of Eqs (15.13) are found from the following equations:

	�10 ¼ 0; 	�20 ¼ 0; 	�30 ¼ 0: ð15:15Þ
Thus, the functions u0; v0; and w0 are defined as

u0 ¼ 	11�10 þ	12�20 þ	13�30; v0 ¼ 	21�10 þ	22�20 þ	23�30;

w0 ¼ 	31�10 þ	32�20 þ	33�30

ð15:16Þ
They correspond to solutions of the homogeneous equations (15.7) for any �10;�20;
and �30 that satisfy Eqs (15.15). In particular, we can let

�10 ¼ 0; �20 ¼ 0; �30 ¼
2

1� �F : ð15:17Þ
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Then, each solution of the equation

	F ¼ 0 ð15:18Þ
corresponds to an integral of the homogeneous equations (15.7), given by the expres-
sions

u0 ¼
2

1� �	13F; v0 ¼
2

1� �	23F; w0 ¼
2

1� �	33F; ð15:19Þ

or using the explicit form of the symbols 	13;	23; and 	33 from Eqs (15.9) and
(15.12), we obtain

u0 ¼ � @3

@�@�2
:þ � @

3

@�3
þ a2

ð1þ �Þð2� �Þ
1� � :

@5

@�3@�2
þ 1þ �
1� �

@5

@�@�4
þ 4�

@3

@�3

"(

þ 2�

1� �
@3

@�@�2

#)
F;

v0 ¼ ð2þ �Þ @3

@�2@�
þ @3

@�3
� a2

2ð2� �Þ
1� �

@5

@�4@�
þ 4� 3�þ �2

1� �
@5

@�2@�3
þ @5

@�5

" #( )
F;

w0 ¼
@4

@�4
þ 2

@4

@�2@�2
þ @4

@�4
þ a2 4

@4

@�4
þ 2ð2� 2�þ �2Þ

1� �
@4

@�2@�2
þ @4

@�4

" #( )
F :

ð15:20Þ
Substituting for the operators lik from the relations (15.9) into (15.12) and (15.18), we
obtain the latter equation in the explicit form, as follows:

ð1þ 4a2Þ @
8F

@�8
þ 4ð1þ a2Þ @8F

@�6@�2
þ 6þ a2ð1� �2Þ� � @8F

@�4@�4
þ 4

@8F

@�2@�6
þ @

8F

@�8

þ ð8� 2�2Þ @6F

@�4@�2
þ 8

@6F

@�2@�4
þ 2

@6F

@�6
þ ð1� �2Þ 1

a2
þ 4

� �
@4F

@�4

þ 4
@4F

@�2@�2
þ @

4F

@�4
¼ 0:

ð15:21Þ
Thus, the problem is reduced to funding solutions of one single eighth-order dif-
ferential equation (15.21) and the function F can be considered as a potential
function for the integration of the homogeneous equations (15.7). Solving Eq.
(15.21), we can determine the function F and then, using the relations (15.20),
find the complementary solutions, u0; v0; and w0. The particular solutions for
nonhomogeneous equations (15.7), u1; v1; and w1, can be reduced to determining
the particular integrals for the nonhomogeneous equations (15.13). In many cases,
the particular solutions can be obtained from the membrane theory introduced in
Chapter 13.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Thus, the analysis of arbitrarily loaded cylindrical shells is reduced to the
integration of differential equations (15.7) with operators (15.9) or equivalent
equations (15.13). In the general case of loading and boundary conditions, solu-
tions of the above equations can be obtained only by numerical methods, such as
the FEM and the finite difference method (FDM), etc. However, in some parti-
cular cases, it is possible to obtain closed-form solutions. Such solutions, even if
approximate, are of great theoretical importance because they provide the possi-
bility of carrying out a comprehensive analysis of a shell’s state of stress and
strain under general loads. As a result, one can introduce various simplifications
into the governing equations. In particular, it was shown in Refs [1–3] that a
complete state of stress of cylindrical shells under general loads can be repre-
sented as a sum of the following elementary stress states, based on fulfillment of
some assumptions about the variation of the stress and strain components or the
potential function:

. the beam state that provides a static equilibrium of a shell as a rigid
body;

. the membrane state, corresponding to a particular solution of the govern-
ing equations of a shell carrying surface loads;

. the so-called basic state, corresponding to the stress and strain compo-
nents varying slightly along the shell generator;

. the edge effect state, corresponding to rapidly varying the stress and strain
components along the shell generator.

We now discuss briefly the stress analysis of cylindrical shells based on the closed-
form solutions of the governing equations and possible simplifications that can be
introduced from this analysis.

15.2.1 Analysis of closed cylindrical shells

For closed cylindrical shells, it is convenient to seek a solution of Eq. (15.21) in the
form of the trigonometric series in the variable �, as follows:

F ¼
X1
n¼2

Fn cos n� þ F
n sin n�ð Þ; ð15:22Þ

in which n ¼ 0 and n ¼ 1, the terms corresponding to axisymmetric and beam states
of stress, are eliminated. The axisymmetric state of stress of cylindrical shells is
studied in detail in Sec. 15.3, while the state of stress of a beam type is presented
in Mechanics of Materials (see, for example, [4]). The first term in the parenthesis of
Eq. (15.22) refers to symmetric states and the second term refers to skew-symmetric
states of stress about the reference meridional plane � ¼ 0. Substituting Eq. (15.22)
into the differential equation (15.21), yields

X1
n¼2

dnðFnÞ cos n� þ dnðF
n Þ sin n�½ � ¼ 0; ð15:23Þ

where dnis a differential operator to be defined below. By requiring that each term on
the left-hand side of this equality be zero, we obtain for Fn and F

n one and the same
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ordinary linear differential equation with constant coefficients. We present this
equation for the function Fn:

dnðFnÞ � ð1þ 4a2Þ d
8Fn

d�8
� 4ð1þ a2Þn2 d

6Fn

d�6
þ
�
6n4 þ a2ð1� �2Þn4:� ð8� 2�2Þn2

þ ð1� �2Þ 1

a2
þ 4

� ��
d4Fn

d�4
� 4n2ðn2 � 1Þ2 d

2Fn

d�2
þ n4ðn2 � 1Þ2Fn ¼ 0:

ð15:24Þ
Its solution can be represented in the form

Fn ¼ Ae�� ðA¼ constÞ:
Inserting the above into Eq. (15.24) and neglecting small quantities of the order of a2

in comparison with those of order unity in its coefficients, yields the following
characteristic equation for determining roots �:

�8 � 4n2�6 þ 6n4�4 � ð8� 2�2Þn2�4 þ ð1� �2Þa�2�4 � 4n2ðn2 � 1Þ2�2

þ n4ðn2 � 1Þ2 ¼ 0:
ð15:25Þ

The detailed investigation of the roots of this equation and the corresponding ana-
lysis of the state of stress and strain of closed cylindrical shells has been carried out
by Gol’denveizer [1]. In particular, it was shown in the above reference that if
n � a�1=2 ¼ ffiffiffiffiffi

12
p

R=h, the roots of the characteristic equation are broken down
into small ( �j j � a1=2n2) and large ( �j j � a�1=2) roots. The above inequality holds
for closed cylindrical shells having a large and an intermediate relative reduced
lengths, L=R. The small roots correspond to the basic state of stress for the shell,
described by the simplified equations of the semi-membrane theory of shells (Sec.

17.2). By the way, if the relative length is not too large, so that L=R <
0:8

n2

ffiffiffiffi
R

h

r
, the

membrane theory can also be applied to describe a slowly varying state of stress. The
large roots correspond to the edge effect state of stress described by simplified
equations introduced in Sec. 17.5. Both the approximate theories mentioned above
are introduced and analyzed in Chapter 17.

If n � a�1=2, the above division of the roots into the small and large is impos-
sible. The above inequality holds for closed cylindrical shells having a small and very
small reduced length L=R. These shells are in a complete state of stress, which cannot
be uncoupled into the previously introduced elementary stress states. However, for
an analysis of these shells under general loading, the Donnell–Mushtari–Vlasov
approximate theory, introduced in Sec. 17.3, can be applied. According to that
theory, the characteristic equation (15.25) may be simplified significantly. It has
eight mutually complex conjugate roots of the form

�1�4 ¼ �p1 � iq1; �5�8 ¼ �p2 � iq2;

where p1; q1; p2; and q2 are real positive numbers. To eliminate the complex
quantities, the arbitrary constants are replaced according to the following
expressions:
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A1 ¼
1

2i
ðC1 þ iC2Þ; A2 ¼ � 1

2i
ðC1 � iC2Þ; A3 ¼

1

2i
ð�C3 þ iC4Þ;

A4 ¼
1

2i
ðC3 þ iC4Þ;

A5 ¼
1

2i
ðC5 þ iC6Þ; A6 ¼ � 1

2i
ðC5 � iC6Þ; A7 ¼

1

2i
ð�C7 þ iC8Þ;

A8 ¼
1

2i
ðC7 þ iC8Þ:

ð15:26Þ

Then, a solution of the homogeneous equation (15.24) can be represented, as follows

Fn ¼ ep1�ðC1 sin q1� þ C2 cos q1�Þ þ e�p1�ðC3 sin q1� þ C4 cos q1�Þ

þ ep2�ðC5 sin q2� þ C6 cos q2�Þ þ e�p2�ðC7 sin q2� þ C8 cos q2�Þ:
ð15:27Þ

Equation (15.27) involves eight constants of integration. They are evaluated from the
boundary conditions on the curvilinear shell edges for the expression of the potential
function, including the complementary (Eq. (15.27) and particular solutions. As
mentioned previously, the latter can be obtained from the membrane shell theory.
The boundary conditions (four on each curvilinear shell edge) are formulated in
terms of the three displacements u; v;w, slope #2, internal forces N1; T1; V1; and
moment M1. Having determined these constants, we can then calculate the potential
function, the displacements and, finally, using Eqs (15.6), the stress resultants and
stress couples for a closed cylindrical shell under general loads. The problem of an
analysis of the shell is completed if an axisymmetric and beam states of stress,
corresponding to the harmonics n ¼ 0 and n ¼ 1 (previously eliminated from the
consideration) are added.

15.2.2 Analysis of open cylindrical shells

Open circular cylindrical shells are commonly used in civil engineering for roof
structures. The curvilinear edges of these shells rest upon some supporting elements
in the form of solid diaphragms, tied arches, elevated gridwork, arched truss, etc.
These supports are rigid for deformations in their own planes but are flexible for
deformations outside their planes (Fig. 15.1).

Such cylindrical shells are sometimes referred to as barrel shells (see also Sec.
14.1.3). If the length of such a barrel shell (along its meridian) is L, the above
boundary conditions are of the form

w ¼ 0; v ¼ 0; N1 ¼ 0; and M1 ¼ 0
		
�¼0:�¼L=R

; ð15:28aÞ

or in terms of the displacement components,

w ¼ 0; v ¼ 0;
@u

@�
¼ 0; and

@2w

@�2
¼ 0

					
�¼0;�¼L=R

: ð15:28bÞ
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The boundary conditions on the rectilinear shell edges, � ¼ const, can be arbitrary.
These edges are usually supported by edge beams. In the case of a multiwave shell
structure, neighboring shells are joined by their longitudinal edges.

For open cylindrical shells, the boundary conditions (15.28) on the curvilinear
edges will be satisfied if the potential function, F , is represented in the form of the
trigonometric series

F ¼
X1
m¼1

Fmð�Þ sin 
m�; ð15:29Þ

where,


m ¼ m�R

L
: ð15:30Þ

The problem of determining the complementary solution of the partial differential
equation then leads to the integration of a sequence of ordinary differential
equations of the form (see Eq. (15.21):

d8Fm

d�8
� ð4
2m � 2Þ d

6Fm

d�6
þ 6
4m þ a2ð1� �2Þ
4m � 8
2m þ 1
� � d4Fm

d�4

� 4ð1þ a2Þ
6m � ð8� 2�2Þ
4m þ 4
2m
� � d2Fm

d�2

þ ð1þ 4a2Þ
8m þ ð1� �2Þ 1

a2
þ 4

� �

4m

� �
Fm ¼ 0:

ð15:31Þ

We seek a solution of the above equation in the form

Fm ¼ Ae��::

Inserting the above into Eq. (15.31) and again neglecting the quantities of the order
of a2 in comparison with those of order unity in the coefficients of the equation,
yields the following characteristic equation:

�8 � ð4
2m � 2Þ�6 þ ð6
4m � 8
2m þ 1Þ�4 � 4
6m � ð8� 2�2Þ
4m þ 4
2m
� �

�2

þ 
8m þ 1� �2
a2


4m

 !
¼ 0:

ð15:32Þ

Fig. 15.1
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The eight roots of this characteristic equation can be expressed as

�1--4 ¼ ��1 � i�2; �5--8 ¼ �&1 � i&2; ð15:33Þ

where �1; �2; &1; and &2 are real and positive numbers. As mentioned in Sec. 15.2.1,
for a closed cylindrical shell, the eight roots of the characteristic equation can be
divided into the small and large roots. For an open shell, that cannot be achieved.
Thus, a solution of the homogeneous equation (15.31), after replacing the complex
quantities with real constants Ci by using Eqs (15.26), is of the form

Fm ¼ e�1�ðC1 sin�2� þ C2 cos�2�Þ þ e��1�ðC3 sin�2� þ C4 cos�2�Þ

þ e&1�ðC5 sin &2� þ C6 cos &2�Þ þ e�&1�ðC7 sin &2� þ C8 cos &2�Þ
: ð15:34Þ

The eight constants of integration are evaluated from the boundary conditions on
the shell edges � ¼ 0 and �¼L=R for the summarized expression of Fm, including a
particular and complementary solution (Eq. (15.34)).

As for closed cylindrical shells, open cylindrical shells may also be classified,
depending on the parameter 
m. Following Gol’denveizer [1], the classification has
the following form:

1. shells of very large relative reduced length, for which 
m � a1=2;
2. shells of large relative reduced length, for which 
m � a1=2;
3. shells of an intermediate relative reduced length, for which a1=2 � 
m

� a�1=2;
4. shells of small relative reduced length, for which 
m � a�1=2;
5. shells of very small relative reduced length, for which 
m � a�1=2.

Let us analyze the states of stress for the above classes of open cylindrical shells
under general loads and discuss the corresponding approximate methods for deter-
mining the stress and strain components for those shells.

The shells of the Class 1 can be treated as thin-walled bars, because defor-
mations of these shells are only slightly constrained in the circumferential direc-
tion. The shells of the Class 2 are in the basic state of stress, because the stress
and strain components (or the potential function) are characterized by a small
variation along the shell generator. Such shells can be analyzed using the approx-
imate semi-membrane theory of thin shells (Sec. 17.2). The shells of the Class 3
are in the simplified basic state of stress, which is characterized by a small
variation of the potential function along the generator and by a rapid variation
in the circumferential direction. So, further simplifications of the semi-membrane
theory are possible for such shells (see, for example Ref. [2]). The complete state
of stress for Class 4 of open cylindrical shells cannot be broken down into the
elementary states of stress. However, such shells can be treated by the Donnell–
Mushtari–Vlasov approximate theory (see Sec. 17.3). Finally, the shells of the
Class 5 can be considered as cylindrical plates [2]. The equilibrium equations
for such plates may be broken down as follows: two of them represent the
plane stress problem and the third equation is the biharmonic equation of the
plate bending problem.
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15.3 AXISYMMETRICALLY LOADED CIRCULAR CYLINDRICAL
SHELLS

Pipes, tanks, boilers, and various other vessels subjected to internal pressure can be
classified as axisymmetrically loaded cylindrical shells.

A closed circular cylindrical shell of radius R will be deformed axisymmetri-
cally if its external load and boundary conditions on ends are symmetrical about the
axis of the shell, i.e., p1 ¼ p1ðxÞ; p2 ¼ 0; and p3 ¼ p3ðxÞ and the boundary conditions
do not depend upon the angular coordinate �. Under these conditions, the displace-
ments, strains, internal forces, and moments will be functions of the coordinate x
only, and the tangential displacement v ¼ 0, because the displacement v, being inde-
pendent of �, will cause a skew-symmetric deformation of the shell about its axis.

Subject to the foregoing simplifications, the terms S;H;Q2; �12; �2 and �12
drop out. Correspondingly, only three out of the five equilibrium equations (15.2)
and (15.3) remain to be satisfied. These remaining equations of static equilibrium are
of the following form:

dN1

dx
þ p1 ¼ 0; ð15:35a

dQ1

dx
þN2

1

R
þ p3 ¼ 0; ð15:35bÞ

dM1

dx
�Q1 ¼ 0: ð15:35cÞ

From Eq. (15.35a), the meridional force N1 is

N1 ¼ �
Z

p1dxþ C; ð15:36Þ

where C is a constant of integration. It may be expressed via the meridional force
N

ð0Þ
1 in a reference cross section of the shell, x ¼ 0, N

ð0Þ
1 . We have

N1 ¼ �
ð
p1dxþN

ð0Þ
1 : ð15:37Þ

The kinematic relations (Eqs (15.5)), from symmetry, are of the form

"1 ¼
du

dx
; "2 ¼ �w

R
; �1 ¼ � d2w

dx2
: ð15:38Þ

The corresponding stress resultant and stress couples-displacement relations (Eqs
(15.6)) take the form

N1 ¼
Eh

1� �2
du

dx
� �w

R

� �
; N2 ¼

Eh

1� �2 �
du

dx
� w

R

� �
; ð15:39Þ

M1 ¼ �D
d2w

dx2
; M2 ¼ �D�

d2w

dx2
¼ �M1: ð15:40Þ

Eliminating Q1 from Eqs (15.35b) and (15.35c), yields

d2M1

dx2
þN2

1

R
þ p3 ¼ 0: ð15:41Þ
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Then, using the first and second of Eqs (15.39), we can express N2 in terms of N1 and
w:

N2 ¼ �Eh

R
wþ �N1: ð15:42Þ

Substituting Eq. (15.42) and Eq. (15.39) into Eq. (15.41), and assuming that
h ¼ const, we obtain the following equation:

D
d4w

dx4
þ Eh

R2
w ¼ p3 þ

�

R
N1: ð15:43Þ

A more convenient form of this equation is shown below:

d4w

dx4
þ 4
4w ¼ 1

D
p3 þ

�

R
N1

� �
; ð15:44Þ

where,


4 ¼ Eh

4R2D
¼ 3ð1� �2Þ

R2h2
ð15:45Þ


 is a geometric parameter of the dimension [length]�1. Equation (15.44) or Eq.
(15.43) represent the governing differential equation of an axsymmetrically loaded
circular cylindrical shell.

It can be easily shown that Eq. (15.44) coincides with the governing differential
equation of bending of a strip-beam cut off from the shell by two neighboring
longitudinal sections � and � þ d� and resting on an elastic Winkler foundation [5]
(shaded in Fig. 15.2). The elastic foundation for the strip-beam is the support part of
the shell (not shaded in Fig. 15.2), resisting its deflections at the expense of the
circumferential membrane forces N2. These forces produce a projection in the
normal direction that equals N2d�, which can be interpreted as the reactive forces
of the foundation.

The shear force Q1 is given by

Fig. 15.2
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Q1 ¼
dM1

dx
¼ �D

d3w

dx3
: ð15:46Þ

The general solution of Eq. (15.44) can be represented in the form

w ¼ wh þ wp ð15:47Þ
where wh is a complementary solution of the homogeneous equation (15.44) and wp

is a particular solution of the above equation with the right-hand side. wh is sought in
the form

wh ¼ Cekx:

Substituting the above into Eq. (15.44), yields the following characteristic equation:

k4 þ 4
4 ¼ 0:

The roots of this equation are

k1;2 ¼ ð1� iÞ
; k3;4 ¼ �ð1� iÞ
:
Therefore, the complementary solution of Eq. (15.44) is of the form

wh ¼ e
xðC1e
i
x þ C2e

�i
xÞ þ e�
xðC3e
i
x þ C4e

�i
xÞ; ð15:48Þ
where Ci ði ¼ 1; 2; 3; 4Þ are constants of integration (complex). Applying Euler’s
formula

ei’ ¼ cos ’þ i sin ’; e�i’ ¼ cos ’� i sin ’;

we can replace the exponential functions (15.48) with trigonometric functions. We
have the following:

wh ¼ e�
xðA1 sin 
xþ A2 cos 
xÞ þ e
xðA3 sin 
xþ A4 cos
xÞ; ð15:49Þ
where Ai (i ¼ 1; 2; 3; 4) are new, real arbitrary constants of integration.

The particular solution of Eq. (15.44), wp, depends upon the law of distribution
of the surface loads p1 and p3. If the latter vary along the longitudinal coordinate x
as a power law with an exponent not more than three, then the particular solution
has the form

wp ¼
p3R

2

Eh
þ �N1R

Eh
: ð15:50Þ

If the surface loads mentioned above vary according to another law, but fairly
smoothly, then the expression (15.50) may also be used as an approximate particular
solution of the equation. The following strong inequality is a necessary condition for
the validity of the last statement:

d4wp

dx4

					
					� 
4wp

		 		:
It is possible to write the exact expression for the particular solution of Eq. (15.44)
for arbitrary surface loads p1 and p3, by using the well-known method of variation of
parameters [6], i.e.,
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wp ¼ 4


ðx
0

K½
ðx� �Þ��ð�Þd�; ð15:51Þ

where

Kð
xÞ ¼ 1

4
ðcosh 
x sin 
x� sinh 
x cos
xÞ and �ðxÞ ¼ p3R

2

Eh
þ �N1R

Eh
:

The particular, wp, and the complementary solutions of Eq. (15.44) can be
interpreted as follows. The particular solution is the solution obtained by assuming
the membrane action for the shell. This solution may not satisfy the prescribed
boundary conditions of the shell. The complementary solution expresses the correc-
tion to the particular one, i.e., membrane solution, so that the prescribed boundary
conditions can be satisfied for the sum of wp and wh.

The constants of integration, Ai, are evaluated from the boundary conditions
assigned on the edges of a shell. Two boundary conditions are usually prescribed on
any edge. Let us consider some typical boundary conditions for the closed cylindrical
shell shown in Fig. 15.3.

(a) The shell edge is built-in.
In this case the boundary conditions are (Fig. 15.3a)

w ¼ 0;
dw

dx
¼ 0: ð15:52aÞ

(b) The shell edge is simply supported.
In this case the boundary conditions are (Fig. 15.3b)

w ¼ 0;
d2w

dx2
¼ 0 ðsince M1 ¼ 0Þ; ð15:52bÞ

(c) The shell edge is free.
The boundary conditions are, for this case (Fig. 15.3c),

Fig. 15.3
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d2w

dx2
¼ 0 ðsince M1 ¼ 0Þ; d

3w

dx3
¼ 0 ðsince Q1 ¼ 0Þ: ð15:52cÞ

(d) The shell edge is loaded by a given force Q0 and moment M0 (Fig. 15.3d)
The boundary conditions for this case are of the following form:

�D
d2w

dx2
¼ M0;�D

d3w

dx3
¼ Q0: ð15:52dÞ

In the case of joining a cylindrical shell with a shell of another geometry (Fig.
15.3e), it is necessary to satisfy the following four boundary conditions (two condi-
tions are required for each edge of the joining shells): equality of the deflections w or
circumferential strains "2; equality of slopes dw=dx; equality of moments M1; and
equality of thrusts, i.e.,

ð�N1 cos ’þQ1 sin ’Þh ¼ ðQ0Þc; ð15:52eÞ
where the subscripts h and c refer to the head shell and cylindrical shell,
respectively.

If a cylindrical shell is joined with the flat bottom (Fig. 15.3f), then the bound-
ary conditions are somewhat simplified because the first condition of joining, due to
the assumption of nonstretching the middle surface of the plate, has a form w0 ¼ 0,
the fourth condition, (15.52e), is not needed.

15.3.1 Analysis of long cylindrical shells

To evaluate the constants of integration it is necessary to solve a system of four
linear algebraic equations for four unknowns Ai ði ¼ 1; 2; 3; 4Þ. However, for
some practically important cases this procedure may be simplified. Consider a
long thin cylindrical shell. Take the origin of the x axis at one of the shell edges.
It is seen from Eq. (15.49) that the first two terms, which are multiplied by e�
x

will diminish quickly as we go away from the edge x ¼ 0. Hence, for a long
cylinder, these first two terms have a negligible effect at the edge x ¼ L (where L
is the length of the shell). The second two terms involving e
x, in contrast,
increase quickly. Taking into account that the deflections w for large values of
x should be finite and small quantities, one can conclude that the constants A3

and A4 should be very small for the above-mentioned long shell. Thus, in the
field located near the origin of the coordinates, the second two terms may be
neglected, i.e., it is possible to set A3 ¼ A4 ¼ 0. Then, the solution becomes the
following:

w ¼ e�
xðA1 sin 
xþ A2 cos
xÞ þ wp; ð15:53Þ
where A1 and A2 are constants of integration, to be determined from the boundary
conditions at x ¼ 0. The function w in the form of Eq. (15.53) is applicable for the
shell field near its edge x ¼ 0. For the field located near the opposite edge of the shell,
x ¼ L, the second two terms in Eq. (15.49) cannot be dropped because the factor e
x

takes very large values. However, one can take a new origin of the coordinate
system, locating it at the second edge of the shell and pointing the x axis out to
the opposite side. Then, we can again employ the expression (15.53) and, evaluating
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new constants of integration A1 and A2, obtain the function w for the field located
near the second edge of the shell.

Let us define more precisely the conditions under which a shell can be regarded
as long. Assume that the permissible error of the shell stress analysis is, say, 5%. It
can be easily shown that this requirement will be achieved if the following inequal-
ities hold in this case (for � ¼ 0:3):


L � 3 or ð15:54Þ

L � 3



¼ 3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� �2Þ4
p ffiffiffiffiffiffi

Rh
p

� 2:3
ffiffiffiffiffiffi
Rh

p
; i:e:; L � 2:3

ffiffiffiffiffiffi
Rh

p
: ð15:55Þ

Shells satisfying the above inequality will be referred to as long, or semi-infinite shells,
and the error of approximate solutions, by using Eq. (15.53), will not be more than
5%.

Consider a long shell loaded by a uniform internal pressure p3 ¼ �p ¼ const,
an axial force N

ð0Þ
1 ; and p1, as well as the edge loads M0 and Q0, as shown in Fig.

15.4.
The boundary conditions for the shell edge x ¼ 0 are of the form

�D
d2w

dx2
¼ M0

					
x¼0

; �D
d3w

dx3
¼ Q0

					
x¼0

: ð15:56Þ

The general solution for the semi-infinite shell is taken in the form of Eq. (15.53).
Substituting this solution into the conditions (15.56) yields the following values of
the constants of integration:

A1 ¼
M0

2
2D
; A2 ¼ � 1

2
3D
ðQ0 þ 
M0Þ:

Substituting the above constants into Eq. (15.53) yields the following equation for
the deflections:

w ¼ M0

2D
2
e�
xðsin 
x� cos
xÞ � Q0

2D
3
e�
x cos
xþ wp: ð15:57aÞ

Inserting the above into Eqs (15.39), (15.40), and (15.46), and letting p3 ¼ �p, we
obtain

Fig. 15.4
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# ¼ dw

dx
¼ M0

D

e�
x cos
xþ Q0

2D
2
e�
xðcos 
xþ sin 
xÞ þ dwp

dx
; ð15:57bÞ

M1 ¼ �D
d2w

dx2
¼ M0e

�
xðcos
xþ sin 
xÞ þQ0



e�
x sin 
x�D

d2wp

dx2
; ð15:57cÞ

M1 ¼ �D
d2w

dx2
¼ M0e

�
xðcos
xþ sin 
xÞ þQ0



e�
x sin 
x�D

d2wp

dx2
; ð15:57dÞ

Q1 ¼ �D
d3w

dx3
¼ �2M0
e

�
x sin 
xþQ0e
�
xðcos 
x� sin 
xÞ �D

d3wp

dx3
;

ð15:57eÞ

N2 ¼ �Ehw

R
þ �N1 ¼ 2R � e�
x
2 M0ðcos
x� sin 
xÞ þQ0



cos
x

� �
þ p0R:

ð15:57fÞ
The normal stress components are given by

�1 ¼
N1

h
þ 12M1

h3
z; �2 ¼

N2

h
þ 12M2

h3
z: ð15:58Þ

Example 15.1

A long cylindrical shell is subjected to end moment m, as shown in Fig. 15.5a. Derive
and plot the values of w and M1 along the 
x axis.

Solution

From Eqs (15.57), setting M0 ¼ �m, we have the following:

w ¼ � m

2D
2
e�
xðsin 
x� cos
xÞ; M1 ¼ �me�
xðcos
xþ sin 
xÞ:

On the loaded edge of the shell, x ¼ 0, we obtain the following:

Fig. 15.5
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wjx¼0 ¼ wmax ¼
m

2D
2
; M1

		
x¼0

¼ M1max ¼ �m:

Figure 15.5b shows the plots of the deflections and moments in a dimensionless form
over the shell length. It is seen that all these values practically diminish at a distance
x ¼ 2:3

ffiffiffiffiffiffi
Rh

p
from the loaded edge of the shell. Such a sharp decrease of the moment

state components, as we move away from the loaded shell edge, is called the edge
effect. It will be discussed in more detail later, in Sec. 17.5.

Example 15.2

Determine the stresses and deformations in a long thin-walled cylinder with a rigid
end, as shown in Fig. 15.6a. The cylinder is subjected to an internal pressure of
intensity p. Assume that R ¼ 1:2m; h ¼ 0:01m; p3 ¼ �p ¼ const; and � ¼ 0:3.

Fig. 15.6
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Solution

Since the end is absolutely rigid, the shell edge may be assumed to be built-in with the
end, and the boundary conditions are given by Eqs (15.52a). Making p1 ¼ 0, we can
find the meridional force at the edge x ¼ 0 from the equilibrium of part of the shell
cut off along the circle x ¼ const. We have the following:

N
ð0Þ
1 ð2�RÞ ¼ pð�R2Þ; from which N

ð0Þ
1 ¼ pR

2
:

Thus N1 ¼ N
ð0Þ
1 ¼ pR=2 ¼ const and the particular solution (Eq. (15.50)) is of the

form

wp ¼ � pR2

Eh
ð1� �=2Þ:

The geometric parameter is


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2h2

4

s
¼ 11:73ð1=mÞ:

Substituting for w and # ¼ dw=dx from Eqs (15.57a) and (15.57b) into the boundary
conditions (15.52a), we obtain the two following equations:

� M0

2D
2
� Q0

2D
3
� p

R2

Eh
1� �

2

� �
¼ 0;

M0


D
þ Q0

2
2D
¼ 0:

Solving these equations for M0 and Q0 gives

M0 ¼
p

2
2
1� �

2

� �
; Q0 ¼ � p



1� �

2

� �
:

Then, using Eqs (15.57), we can determine the following deflections, internal forces,
and moments:

w ¼ pR2

Eh
1� �

2

� �
e�
xðsin 
xþ cos 
xÞ � 1
� �

;

N2 ¼ pR 1� 1� �

2

� �h
e�
xðcos
xþ sin 
xÞ

�
;

M1 ¼
p

2
2
1� �

2

� �
e�
xðcos
x� sin 
xÞ;M2 ¼ �M1:

Figure 15.6b shows the diagrams of w;M1; and N2 along the shell length. The
maximum bending moments occur at the junction of the shell and the head (at x ¼
0Þ and they are, as follows:

M1max ¼
p

2
2
1� �

2

� �
¼ 3:08	 10�3p ðNm=mÞ;

M2max ¼ �M1max ¼ 0:924	 10�3p ðNm=mÞ:
The tensile membrane forces at x ¼ 0 are

N1 ¼
pR

2
¼ 0:6p; N2 ¼ pR 1� ð1� �=2Þð Þ ¼ 0:18p ðN=mÞ:
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The maximum normal stresses at outside points of the shell section located at the
junction of the shell and head (x ¼ 0) are the following:

�1 ¼
6M1

h2
þN1

h
¼ 184:8pþ 60p ¼ 244:8p ðN=m2Þ;

�2 ¼
6M2

h2
þN2

h
¼ 55:4pþ 18p ¼ 73:4p ðN=m2Þ:

At sections of the cylinder remote from the end, the bending moments vanish and the
tensile membrane forces take the following values:

N1 ¼
pR

2
¼ 0:6p; N2 ¼ pR ¼ 1:2p ðN=mÞ:

The zone of the bending stresses is very small and at a distance of R=16 from the
head, the bending stresses vanish.

Example 15.3

Determine the normal stresses in the cylinder of Example 15.2, (Fig. 15.6a), assum-
ing that the flat end has a thickness comparable with the thickness of cylinder wall.
Given: h (thickness of the cylinder wallÞ ¼ 0:01m; h1 (thickness of the
headÞ ¼ 0:04m, R ¼ 1:2m, � ¼ 0:3; E ¼ 200GPa; and p ¼ const.

Solution

Separate mentally the cylinder and end into two independent components by taking
a section at the point of intersection of the middle surfaces of the cylinder and end.
This point may be regarded as a junction. Since the deformations of the independent
components (cylinder and end) do not match each other at the junction, we have to
apply unknown forces and couples, Q0;M0; and N

ð0Þ
1 , as shown in Fig. 15.7. These

unknown forces and couples are to be determined from the compatibility conditions
at the junction of the cylinder and end. We make the following reasonable assump-
tion that stretching of the flat end may be neglected, i.e., the end is infinitely rigid for
any in-plane deformations. Then, the compatibility conditions can be formulated as
follows:

Fig. 15.7
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wc ¼ 0
		
x¼0

ðaÞ and #c
		
x¼0

¼ #h
		
r¼R

ðbÞ; ð15:59Þ

i.e., the deflection of the cylinder at the junction is zero and the relative rotation of
the wall of cylinder, #c, and flat end, #h, at the junction is also zero. The positive
directions of the rotations are shown in Fig. 15.7. We have two equations and three
unknowns. However, the meridional membrane force can be directly determined
from the equilibrium conditions of the head, i.e.,

pð�R2Þ ¼ N1ð2�RÞ; from which N1 ¼
pR

2
: ðaÞ

Deflections and slopes of the edge of the cylinder may be determined from Eqs
(15.57) and (15.50) with regard to Eq. (a), as follows:

wc

		
x¼0

¼ � M0

2D
2
þ Q0

2D
3
þ pR2

Eh
1� �

2

� �" #
; #c

		
x¼0

¼ M0

D

þ Q0

2D
2
: ðbÞ

The angle of rotation of a normal of the end edge, #h, due to p and M0 can be
obtained by differentiating Eqs (4.26) and (4.38) with respect to r. Letting p0 ¼ �p
and a ¼ R in Eq. (4.26) and b ¼ 0, m2 ¼ 0, and m1 ¼ M0 in Eq. (4.39), yields, after
differentiation the following expression for #h,

#h
		
r¼R

¼ #hðpÞ
		
r¼R

þ #hðM0Þ
		
r¼R

¼ pR3

8D1ð1þ �Þ
� M0R

D1ð1þ �Þ
: ðcÞ

In writing this equation, it has been taken into account that the angles of rotation of
normals to the end middle surface produced by p and M0 have different signs (see
Fig. 15.7) at the junction.

Substituting for wc; #c; and #h from Eqs (b) and (c) into Eq. (15.59) yields the
following equations for the unknowns M0 and Q0:

M0

2D
2
þ Q0

2D
3
þ pR2

Eh
1� �

2

� �
¼ 0;

M0

D

þ Q0

2D
2
¼ � M0R

D1ð1þ �Þ
þ pR3

8D1ð1þ �Þ
ðdÞ

where


 ¼ 11:734 ð1=mÞ (see Example 15:2Þ;

D ¼ Eh3

12ð1� �2Þ ¼ 18:315	 103ðNmÞ; and

D1 ¼
Eh31

12ð1� �2Þ ¼ 1172	 103ðNmÞ:

Using the above numerical data, and solving Eqs (d) for M0 and Q0, yields the
following:

M0 ¼ 0:04783p ðNm=mÞ; Q0 ¼ �0:5972	 10�2p ðN=mÞ:
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Note that for an absolutely rigid end, the bending moment at the junction was

M1 ¼ 0:00308p ðNm=mÞ:
Thus, because of the compliance of the flat end, the bending moment at the cylinder
edge increases more than 10 times. This can be explained by the fact that the end is
deflected as if it turns the edge of the cylinder inside out. The bending moment
diagrams are shown in Fig. 15.8.

The maximum stresses at the center of the head are

�r ¼ �t ¼
6M1

h21
¼ 0:252pð6Þ

42ð10�4Þ ¼ 945p ðN=m2Þ:

The maximum stresses in the cylinder occur in the neighborhood of the edge. They
are

�1 ¼
pR

2h
þ 6M1

h2
¼ 2930p N=m2Þ; �2 ¼ �

pR

2h
þ 6M1

h2

� �
¼ 879p ðN=m2Þ:

The tensile stresses in the cylinder away from the edge are

�1 ¼
pR

2h
¼ 60p; �2 ¼

pR

h
¼ 120p ðN=m2Þ:

Example 15.4

A long thin-walled cylindrical shell is subjected to a circumferential line load P
(force/length), as shown in Fig. 15.9. Determine the expressions for the deflections,
internal forces, and bending moments.

Solution

Consider a free-body diagram of the small ring cut from the shell and enclosing
the line load P, as shown in Fig. 15.10. For the right half of the cylinder, the
following boundary conditions may be formulated from the symmetry of the
loading:

Fig. 15.8
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:
dw

dx
¼ 0

				
x¼0

; ð15:60aÞ

Q0 ¼ �P

2

				
x¼0

(see Fig. 15.10). ð15:60bÞ

Substituting for dw=dx from Eq. (15.57b) into Eq. (15.60a) yields

M0


D
þ Q0

2
2D
¼ 0;

or taking into account Eq. (15.60b), we obtain from the above M0 ¼
P

4

.

Inserting the above into Eqs (15.57), we obtain the following expressions for
the deflections, internal forces, and bending moments:

w ¼ P

8
3D
e�
xðsin 
xþ cos
xÞ; ð15:61aÞ

M1 ¼
P

4

e�
xðcos
x� sin 
xÞ;M2 ¼ �M1; ð15:61bÞ

N2 ¼ � EhP

8
3RD
e�
xðsin 
xþ cos 
xÞ;N1 ¼ 0: ð15:61cÞ

Fig. 15.9

Fig. 15.10
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The deflection, bending moment, and circumferential force diagrams are shown in
Fig. 15.9b.

Expressions (15.61) may be used as Green’s functions for determining the
deflections, internal forces, and bending moments in long cylindrical shells subjected
to radial loading uniformly distributed around the circumference of a shell, but
arbitrarily distributed along the x axis (along the shell meridian), as shown in Fig.
15.11. For the use of w in the form of Eq. (15.61a) as Green’s function, we rewrite it
as follows:

wðxÞ ¼ P

8
3D
� Fð
xÞ; ð15:62aÞ

where

Fð
xÞ ¼ e�
xðsin 
xþ cos
xÞ: ð15:62bÞ
First, we assume that a point of observation A (point where the deflection is to

be determined) is located outside the loaded region pð�Þ, as shown in Fig. 15.11a.
Take the origin of the Cartesian coordinate system at a point A. The elementary
deflection at point A caused by an elementary radial line load pð�Þd� applied at a
distance � from the origin is given by Eq. (15.62a), replacing P with pd�, and x with �:

dwA ¼ pð�ÞdxFð
�Þ
8
3D

:

The deflection at point A produced by the entire load is derived as follows:

wA ¼ 1

8
3D

ðaþL

a

pð�ÞFð
�Þd�; ð15:63Þ

which can be calculated once pð�Þ is specified. Consider a particular case, p ¼ const.
Inserting Eq. (15.62b) into the above and letting p ¼ const, we obtain the following
after integration:

Fig. 15.11
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wA ¼ pR2

2Eh
e�
a cos
a� e�
L cos
ðaþ LÞ� �

: ð15:64Þ

Secondly, locate the point of observation, A, within the loaded region, as shown in
Fig. 15.11b. Let us take the origin of the Cartesian coordinates again at point A. An
elementary deflection at that point owing to load pd� is given by Eq. (15.62). Thus,
the resulting deflection at point A produced by the entire load can be again obtained
by integration of Eq. (15.62). We have

wA ¼ 1

8
3D

ðb
0

pð�ÞFð
�Þd� þ
ðc
0

pð�ÞFð
�Þd�
� �

: ð15:65Þ

If p ¼ const, then inserting Eq. (15.62b) into the above and putting p ¼ const, we
obtain the following after integration:

wA ¼ pR2

2Eh
2� e�
b cos
b� e�
c cos
c
h i

: ð15:66Þ

Note that if the distance a is large and L is finite, then, as follows from Eq. (15.64),
wA � 0. This agrees well with the physical meaning. If b and c are large in Eq.
(15.66), then the deflection will be approximately equal to pR2=Eh, which represents
the deflection of a long cylindrical shell subjected to an axisymmetrical uniform load
of intensity p ¼ const:

Example 15.5

A stiffening ring is placed around a long cylinder at a distance remote from the
ends, as shown in Fig. 15.12a. The cylinder is subjected to an internal pressure
of intensity p. The radius of the shell middle surface is R and the wall thickness
is h. The ring dimensions are hi (thickness of the ring) and bi (the width of the
ring). Determine the stresses at the ring attachment. Assume that the ring does
not resist rotation, the dimensions of the ring cross section are small compared
with the shell radius, and the shell and ring are made of one and the same
material.

Fig. 15.12
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Solution

Figure 15.12b shows the free-body diagram of the ring and adjacent parts of the
cylinder walls. The contact forces and moments between the cylinder and ring are the
shear force Q0 and the bending moment M0. Compatibility of the deflections for the
shell, ws, and for the ring, wr, require that

ws ¼ wr: ðaÞ
From symmetry, the angle of rotation of the shell, #s, due to the pressure and contact
forces, Q0, and moments, M0, must be zero. So, the second compatibility equation is
the following:

#s ¼ 0: ðbÞ
The deflection of the ring due to 2Q0 is

wr ¼
ð2Q0RÞR

AiE
; ðcÞ

where Ai ¼ bi � hi is the cross-sectional area of the ring. The deflection of the shell
due to the pressure and contact forces and moments is determined by Eq. (15.57a), as
follows:

ws ¼ � M0

2D
2
þ Q0

2D
3
þ pR2

Eh
1� �

2

� �" #
: ðdÞ

The signs for wr and ws due to the internal pressure and contact forces and moments
are in an agreement with the general sign convention adopted in this book for the
deflections w in thin shells. The angle of rotation of the shell due to the pressure and
contact forces and moments at the ring attachment is determined by Eq. (15.57b) as
follows:

#s ¼
dws

dx
¼ M0


D
þ Q0

2
2D
ðeÞ

(it can be easily shown by inspection that M0 and Q0 produce rotation of the same
signs).

Substituting for ws and #s from Eqs (d) and (e) into Eqs (a) and (b), results in
the following equations:

2Q0R
2

AiE
¼ � M0

2D
2
þ Q0

2D
3
þ pR2

Eh
1� �

2

� �" #
;

M0


D
þ Q0

2
2D

ðfÞ

Solving this system of equations for M0 and Q0 gives the following:

M0 ¼
p

2h


1� �=2
2=Ai þ 
=hð Þ ; Q0 ¼ � p

h

1� �=2
2=Ai þ 
=hð Þ : ð15:67Þ
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Stress in the ring is

�r ¼
2Q0R

Ai

¼ � 2pRð1� �=2Þ
h 2þ Ai
=hð Þ : ð15:68Þ

The maximum longitudinal stress in the shell occurs at the ring attachment and is
given by

�ðsÞ1 ¼ pR

2h
þ 6M1

h2
¼ pR

2h
þ 3pð1� �=2Þ
h3
ð2=Ai þ 
=hÞ

: ð15:69Þ

The deflection of the shell at the ring junction is

ws ¼ � 2pR2ð1� �=2Þ
Eð2hþ Ai
Þ

: ð15:70Þ

The circumferential membrane force is given by Eq. (15.57e). Substituting for M0

and Q0 from Eqs (15.67) into the above, and letting x ¼ 0, gives the following:

N2 ¼ pR � 
ð1� �=2Þ
hð2=Ai þ 
=hÞ

þ 1

� �
: ð15:71Þ

The circumferential bending moment is

M2 ¼ �M1 ¼
�p

2h


1� �=2
ð2=Ai þ 
=hÞ

:

Finally, the circumferential stress in the shell is given by

�ðsÞ2 ¼ N2

h
þ 6M2

h2
¼ p

h
Rþ ð1� �=2Þ

hð2=Ai þ 
=hÞ
3�


h
� 
R

� �� �
: ð15:72Þ

15.3.2 Analysis of short cylindrical shells

It was shown in the above analysis of long cylindrical shells that the deflection and
stress components due to the applied edge shear forces and bending moments dis-
sipate rapidly as x increases and it becomes larger than 2:3

ffiffiffiffiffiffi
Rh

p
. This rapid reduction

in deflections and stresses, as x increases, simplifies the solution (15.49) by letting
A3 ¼ A4 ¼ 0. When the length of the cylinder, L, is less than about 2.3

ffiffiffiffiffiffi
Rh

p
, A3 and

A4 cannot be ignored and all four constants in Eq. (15.49) must be evaluated. Thus,
when the length of the shell is comparatively small, a mutual effect of the shell edges
is so considerable that the constants of integration in Eq. (15.49) cannot be deter-
mined separately. Shells whose length does not satisfy the inequality (15.55) are
referred to as short shells. A solution for short shells involves all the four constants
of integration.

To simplify the procedure of evaluating the constants Ai ði ¼ 1; 2; 3; 4Þ, we
introduce the so-called Krylov’s functions [7], as follows:
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V1ð
xÞ ¼ cosh
x cos
x;V2ð
xÞ ¼
1

2
cosh
x sin 
xþ sinh 
x cos
x½ �;

V3ð
xÞ ¼
1

2
sinh 
x sin 
x;V4ð
xÞ ¼

1

4
½cosh
x sin 
x� sinh 
x cos
x�:

ð15:73Þ
A transition from the exponential functions to Krylov’s functions is implemented
with the use of Euler’s expression, as follows:

ei’ ¼ cos ’þ i sin ’; e’ ¼ cosh ’þ sinh ’:

As a result, the general solution (15.47) may be transformed to the following form:

w ¼ C1V1ð
xÞ þ C2V2ð
xÞ þ C3V3ð
xÞ þ C4V4ð
xÞ þ wp; ð15:74Þ
where C1; . . . ;C4 are new constants of integration.

Krylov’s functions possess the following properties. First, they are related to
one another by the following simple differential relationships:

d

dx
V1ð
xÞ ¼ �4
V4ð
xÞ;

d

dx
V2ð
xÞ ¼ 
V1ð
xÞ;

d

dx
V3ð
xÞ ¼ 
V2ð
xÞ;

d

dx
V4ð
xÞ ¼ 
V3ð
xÞ:

ð15:75Þ

Secondly, when x ¼ 0, all these functions vanish except for the function V1, which is
equal to unity, i.e.,

V1ð0Þ ¼ 1; V2ð0Þ ¼ 0; V3ð0Þ ¼ 0; V4ð0Þ ¼ 0: ð15:76Þ
These properties of Krylov’s functions enable one to express the constants of
integration Ci ði ¼ 1; 2; 3; 4Þ in terms of the so-called initial parameters
w0; #0;M10, and Q10, i.e., the deflection, slope, bending moment, and shear force
prescribed at the shell edge x ¼ 0: Taking into account Eqs (15.57) and (15.74)–
(15.76), one can write the following:

w0 ¼ C1 þ wp0 0 ; ð15:77aÞ
#0 ¼ 
C2 þ w 0

p0; ð15:77bÞ
M10 ¼ �Dð
2C3 þ wp0

00 Þ; ð15:77cÞ
Q10 ¼ �Dð
3C4 þ wp0Þ: ð15:77dÞ

where wp0; w
0
p0; wp0

00 ; and wp0
000 are the particular solution and its derivatives with

respect to x at the shell edge x ¼ 0: Evaluating C1; . . . ;C4 from Eqs (15.77) in
terms of the initial parameters and inserting them into Eq. (15.74), we obtain the
following expressions for the deflections in terms of the initial parameters:

w ¼ ðw0 � wp0ÞV1ð
xÞ þ
1



#0 � w 0

p0

� �
V2ð
xÞ �

1


2
M10

D
þ wp0

00
� �

V3ð
xÞ

� 1


3
Q10

D
þ wp0

000
� �

V4ð
xÞ þ wp:

ð15:78Þ
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Differentiating the above and using relations (15.75) leads to the following expres-
sions for #;M1; and Q1

# ¼ �4
ðw0 � wp0ÞV4ð
xÞ þ ð#0 � w 0
p0ÞV1ð
xÞ �

1




M10

D
þ wp0

00
� �

V2ð
xÞ

� 1


2
Q10

D
þ wp0

000
� �

V3ð
xÞ þ w 0
p; ð15:79Þ

M1 ¼ 4D
2ðw0 � wp0ÞV3ð
xÞ þ 4D
ð#0 � w 0
p0ÞV4ð
xÞ þ ðM10 þDwp0

00 ÞV1ð
xÞ

þ 1



ðQ10 þDwp0

000ÞV2ð
xÞ �Dwp
00; ð15:80Þ

Q1 ¼ 4D
3ðw0 � wp0ÞV2ð
xÞ þ 4D
2ð#0 � w
0
p0ÞV3ð
xÞ � 4
ðM10 þDw

00
p0ÞV4ð
xÞ

þ ðQ10 þDwp0
000ÞV1ð
xÞ �Dwp

000: ð15:81Þ

The particular solution is determined by Eq. (15.50). If p3 ¼ const and N1 ¼ const;
then w 0

p ¼ wp
00 ¼ wp

000 ¼ 0.
Since two out of the four initial parameters are usually known from the bound-

ary conditions on the shell edge x ¼ 0, then the problem of evaluating the constants
of integration is reduced to a solution of a system of algebraic equations for two
unknowns. The latter is set up from the boundary conditions at the shell edge x ¼ L
(where L is the shell length).

Example 15.6

Determine the equation of the deflected surface of a short cylindrical shell of radius
R loaded by uniformly distributed moments m along the edge x ¼ L, as shown in
Fig. 15.13.

Fig. 15.13
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Solution

Since for the edge x ¼ 0, M1 ¼ 0; Q1 ¼ 0, and no transverse load is applied to the
shell, then the deflection surface of the shell is of the form

w ¼ w0V1ð
xÞ þ
1



#0V2ð
xÞ: ðaÞ

The initial parameters, w0 and #0, may be evaluated from the boundary conditions
on the edge x ¼ L. The boundary conditions are

M1 ¼ m
		
x¼L

; Q1 ¼ 0
		
x¼L

: ðbÞ

Inserting the expressions for the bending moment and shear force, Eqs (15.80) and
(15.81), into the above, yields the following equations:

4D
2w0V3ð
LÞ þ 4D
#0V4ð
LÞ ¼ m;

4D
3w0V2ð
LÞ þ 4D
2#0V3ð
LÞ ¼ 0:
ðcÞ

Solving these equations for w0 and #0 gives

w0 ¼ � mV3ð�Þ
4D
2½V4ð�ÞV2ð�Þ � V2

3 ð�Þ�
; #0 ¼

mV2ð�Þ
4D
½V4ð�ÞV2ð�Þ � V2

3 ð�Þ�
;

where � ¼ 
L. Substituting the above into Eq. (15.78) gives the deflection surface of
the short cylindrical shell loaded by a uniformly distributed moment m applied along
the edge x ¼ L:

wðxÞ ¼ m

4D
2½V4ð�ÞV2ð�Þ � V2
3 ð�Þ

½�V3ð�ÞV1ð
xÞ þ V2ð�ÞV2ð
xÞ�: ð15:82Þ

In a general case of loading, a cylindrical shell may be subjected to circumfer-
ential axisymmetric line loads P and moments m, respectively, as well as to uniform
pressure p distributed over some shell length, as shown in Fig. 15.14. This shell can
be divided into several segments (I, II, III, etc.) between sections where the loading
conditions change. For each such segment, the function w will be different. To avoid
the determination of a large number of constants of integration, it is convenient to
set up a general-purpose equation of the middle surface of the shell which is contin-
uous function of x throughout a shell in spite of the discontinuity of the loading
diagram.

In setting up the general-purpose equation of the deflection surface of the shell,
it should be taken into account that the function w and its first derivative should be
continuous everywhere. The second derivative changes abruptly at sections where
the radial moments m are applied, the third derivative may have a jump at sections
where the radial forces P are applied, etc.

Dropping intermediate mathematics, we present below the general-purpose
equation of the deflections for a cylindrical shell subjected to discontinuous loads,
as shown in Fig.15.14:
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wðxÞ ¼ ðw0 � wp0ÞV1ð
xÞ þ
1



ð#0 � w 0

p0ÞV2ð
xÞ �
1


2
M10

D
þ wp0

00
� �

V3ð
xÞ

� 1


2
Q10

D
þ wp0

000
� �

V4ð
xÞ þ wp1

				
I

� P

D
3
V4½
ðx� lPÞ�

				
II

� m

D
2
V3½
ðx� lmÞ�

				
III

þ
�
� pþ �N1

R

�
R2

Eh
1� V1½
ðx� lNÞ�
� �					

IV

;

ð15:83Þ
where wp1 is a particular solution for the first segment; lP; lm; and lN are the coordi-
nates of an application of the applied line forces P, moments m, and meridional
forces N1, respectively. In a general case, a number of terms in Eq. (15.83) depend on
a number of discontinuous loads applied to the shell. The signs of the terms adopted
in this equation correspond to directions of loads indicated in Fig. 15.14 and to the
sign convention for deflections used in this book. The initial parameters w0; #0;M10;
and Q10 are determined, as usual, from the boundary conditions. Two of them are
known for x ¼ 0, the remaining two parameters are evaluated from the boundary
conditions at the shell edge x ¼ L.

Example 15.7

A short cylinder is loaded by two moments m uniformly distributed along circular
sections x ¼ 2:5 in: and x ¼ 7:5 in:, respectively, as shown in Fig. 15.15. Assuming
that R ¼ 20 in:; h ¼ 1 in:; � ¼ 0:3; and L ¼ 10 in:, determine the equation of the
deflected midsurface of the cylinder.

Solution

For the given data,


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
h2R2

4

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� 0:32Þ
ð1Þ2ð20Þ2

4

s
¼ 0:28741=in:

Taking the origin of the coordinate system at the left edge of the shell, we can write
the general-purpose equation (Eq. (15.83)) for the problem under consideration:

Fig. 15.14
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w ¼ w0V1ð
xÞ þ
1



#0V2ð
xÞ �

M10


2D
� Q10


3D

				
I

� m


2D
V3½
ðx� 2:5Þ�

				
II

þ m


2D
V3½
ðx� 7:5Þ�

				
III

:

ðaÞ

Taking into account that M10 ¼ Q10 ¼ 0, this equation simplifies to the form

w ¼ w0V1ð
xÞ þ
#0


V2ð
xÞ

				
I

� m


2D
V3½
ðx� 2:5Þ�

				
II

þ m


2D
V3½
ðx� 7:5Þ�

				
III

ðbÞ
Applying Eqs (15.39), (15.46), and (15.73), one obtains the corresponding equations
for the bending moments and shear forces:

M1 ¼ �D �4
2w0V3ð
xÞ � 4
#0V4ð
xÞ
		
I
�m

D
V1½
ðx� 2:5�

n 			
II

þm

D
V1½
ðx� 7:5Þ�

			
III

�
;

Q1 ¼ �D �4
3w0V2ð
xÞ � 4
2#0V3ð
xÞ
				
I

þm
4


D
V4½
ðx� 2:5Þ�

				
II



�m
4


D
V4½
ðx� 7:5Þ�

				
III

�
:

ðcÞ

Boundary conditions on the right edge of the shell are of the form

M1 ¼ 0
		
x¼10 in:

; Q1 ¼ 0
		
x¼10 in:

ðdÞ
Substituting Eqs (c) into the above boundary conditions, we obtain the system of
two equations for w0 and #0. Solving this system of equations, yields the following
values of the initial parameters:

w0 ¼ �3:67
m

D
; #0 ¼ 1:56

m

D
:

Inserting the above values of the initial parameters into Eq. (b) yields the equation of
the deflected middle surface of the shell in the form

Fig. 15.15
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w ¼ m

D
�3:67V1ð0:2874xÞ þ 5:428V2ð0:2874xÞ

		
I
þ12:107V3½0:2874ðx� 2:5Þ�		

II

�
þ 12:107V3½0:2874ðx� 7:5Þ�		

III

�
:

15.4 CIRCULAR CYLINDRICAL SHELL OF VARIABLE THICKNESS
UNDER AXISYMMETRIC LOADING

Consider a state of stress and strain of circular cylindrical shells whose thickness
varies only along the shell generator, i.e., h ¼ hðxÞ, and remains symmetrical with
respect to the middle surface. This shell is subjected to axisymmetrically applied edge
and distributed loads. It follows from the preceding sections that in this case a
deformation of the shell does not depend on the circumferential angle �.

The governing differential equation for bending of an axisymmetrically loaded
circular cylindrical shell, Eq. (15.43), can be generalized to the case of the above-
mentioned shell with variable thickness, as follows:

d2

dx2
DðxÞ d

2w

dx2

" #
þ Eh

R2
w ¼ p3 þ

�

R
N1; ð15:84Þ

where

DðxÞ ¼ Eh3ðxÞ
12ð1� �2Þ : ð15:85Þ

is the flexural stiffness of the shell with variable thickness h ¼ hðxÞ. Equation (15.84)
is a fourth-order ordinary differential equation with variable coefficients. It may be
solved analytically for some particular laws of D ¼ DðxÞ only. For instance,
Timoshenko provided an analytical solution of this equation when h ¼ 	x ð	 > 0Þ
using the Bessel functions [8]. In a general case, when DðxÞ is an arbitrary function of
x, a solution of Eq. (15.84) can be obtained only numerically. For this purpose, one
has to transform Eq. (15.84) in the following way. Using Eqs (15.39), (15.41), and
(15.46), one can reduce the fourth-order differential equation to the system of four
first-order differential equations, as follows:

dw

dx
¼ #1;

d#1
dx

¼ d2w

dx2
¼ �M1

D
;

dM1

dx
¼ Q1;

dQ1

dx
¼ � p3 þ

N2

R

� �
¼ �p3 � �

N1

R
þ Eh

R2
w:

ð15:86Þ

Let us introduce a dimensionless variable � and dimensionless parameters of the state
of stress and strain at any section of the cylinder Xi ði ¼ 1; 2; 3; 4Þ, as follows:

� ¼ x

R
; X1 ¼

w

R
; X2 ¼ #1 ¼

dw

dx
;

X3 ¼
R

D0

M1 ¼ �R
D

D0

d2w

dx2
; X4 ¼

R2

D0

Q1 ¼ �R2 D

D0

d3w

dx3

ð15:87Þ
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where D0 ¼ const is the flexural stiffness of the shell at some reference section, say, at
� ¼ 0; D ¼ DðxÞ is the flexural stiffness at a section of interest.

Applying the above-introduced dimensionless variables and parameters (Eqs
(15.87)), one can represent Eqs (15.86) in the form

1

d�
¼ X2;

dX2

d�
¼ �D1

D
X3;

dX3

d�
¼ X4;

dX4

d�
¼ EhR2

D0

X1 �
R3

D0

p3 þ �
N1

R

� �
:

ð15:88Þ

This system of first-order ordinary differential equations is equivalent to the fourth-
order single differential equation (15.84). In turn, the former system may be written
in the following matrix form:

dX

d�
¼ Að�ÞXþ f; ð15:89Þ

where

X ¼

X1

X2

X3

X4

2
666664

3
777775 ð15:90Þ

is the column vector that characterizes the parameters of the state of stress and strain
at a section of interest and

A ¼

0 1 0 0

0 0 �D0=D 0

0 0 0 1

EhR2

D0
0 0 0

2
66666664

3
77777775
; f ¼

0

0

0

�R3

D0
p3 þ �N1

R

� �

2
66666664

3
77777775

ð15:91Þ

are the square matrix (4	 4) and the column vector of the right-hand sides, res-
pectively. The system of differential equations (15.89) may be efficiently solved
numerically using, for example, the sweep method [9] or Godunov’s method of
discrete orthogonalization [10].

Example 15.8

Consider a circular cylindrical shell of variable thickness under the action of pressure
p. Two cases of variation of the shell thickness are analyzed: (a)

h1 ¼ h0 � 1

c2
x2 þ 4

3

� �
and (b) h2 ¼ h0 ¼ const, as shown in Fig. 15.16a and b, respec-
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tively. As this takes place, the area of an axial cross section for all the three shells is
identical in the interval �c � x � c, i.e., the above shells are of the same weight. The
parallel edges of the shells are simply supported. Assuming that h0 ¼ 0:5; c ¼ 20; R
¼ 15; and � ¼ 0:3, determine the deflections, internal forces, and moments in the
shell.

Solution

Since the shells and loading are symmetrical about x ¼ 0, all the above problems are
solved for the interval 0 � x � c. Boundary conditions of the simply supported type
for the shell edge x ¼ c and the symmetry conditions for the section x ¼ 0 are
prescribed. The numerical values of the components of the state of stress and strain
are given in Table 15.1 for h ¼ h1. Analogous results are given in Table 15.2 for
h ¼ h2. The system of ordinary differential equations (15.89) was solved by
Godunov’s method of discrete orthogonalization. From these tables it is seen how
the thickness redistribution of the shell influences the state of stress and strain under
the condition of the conservation of the shell weight. It makes it possible to select the
most efficient parameters of shell structures.

Fig. 15.16

Table 15.1

x ðM1=pÞ 	 10 ðN1=pÞ 	 10�1 Q1=p ðw= p
E
Þ 	 10�3

0 �0:31633 0.40996 0 0.30976

2 �0:32035 0.40996 �0:39650	 10�3 0.31210

4 �0:33230 0.40996 �0:82848	 10�3 0.31931

6 �0:35740 0.40996 �1:18812	 10�2 0.33193

8 �0:42139 0.40996 �0:50151	 10�2 0.35117

10 �0:58015 0.40996 �0:11284	 10�1 0.37985

12 �0:86017 0.40996 �0:14980	 10�1 0.42531

14 �0:99610 0.40996 �0:97754	 10�2 0.50433

16 0:1056	 10�1 0.40996 0.10333 0.63605

18 0.29781 0.40996 0.14807 0.71609

20 0 0.40996 �0:73044 0
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PROBLEMS

15.1 Indicate cases when the membrane theory alone cannot describe adequately the state of

stress of cylindrical shells under applied transverse loading.

15.2 Verify Eqs (15.21) and (15.24).

15.3 What are the conditions at which a complete state of stress in open and closed cylind-

rical shells can be broken down into elementary states of stress? Characterize these

elementary stress states.

15.4 A long steel pipe is subjected to the edge line load Q0 that is applied uniformly around

the circumference x ¼ 0. The radius and thickness of the pipe are R ¼ 0:5m and

h ¼ 5mm, respectively. (a) Derive and plot the values of w and M vs. 
x. (b)

Determine the distance x at which the deflections and moments are 5% of their abso-

lute maximum values. Take E ¼ 200GPa; and � ¼ 0:3.
15.5 A very long cylinder of radius R and of thickness h is subjected to uniform loading

p0 over L of its length (Fig. 15.11) (a) Determine the ratio of maximum bending

stress to maximum magnitude of membrane stress. (b) Calculate the deflections and

bending moments at a point A for two cases of location of that point, as shown in

Figs 15.11a and b. Take R ¼ 1:5m; h ¼ 6mm; p0 ¼ 5 kPa; E ¼ 200GPa; and

� ¼ 0:3.
15.6 Verify Eqs (15.57).

15.7 The infinite circular cylinder of radius R is subjected to a uniformly distributed around

a circumference moment m, as shown in Fig. P.15.1. Assuming that the moment is

applied near the center of the cylinder, find the expressions for w; #;M1; and Q1 as

functions of m and x:
15.8 A stiffening ring is placed around a long steel cylindrical shell at a distance remote

from the ends, as shown in Fig. 15.12a. The cylinder is loaded by an internal pressure

p0. Determine stress at the ring attachment if: (a) the ring is assumed to be infinitely

rigid and (b) the ring is assumed to be 100 mm wide and 10 mm thick. Take the radius

of the cylinder as 1.25 m and its thickness as 6 mm, p0 ¼ 10 kPa; E ¼ 200GPa; and
� ¼ 0:3:

15.9 Determine stresses in a cylindrical component reinforced by a ring and subjected to

internal pressure p ¼ 4 MPa (Fig. P.15.2). All dimensions in Fig. P.15.2 are given in

mm. Take E ¼ 200GPa; and � ¼ 0:3.

Table 15.2

x M1=p N1=p Q1=p ðw= p
E
Þ 	 10�3

0 0:13028	 10�4 0:42808	 10 0 0.41154

2 0:31492	 10�3 0:42808	 10 0:29494	 10�3 0.41153

4 0:10442	 10�2 0:42808	 10 0:33756	 10�3 0.41140

6 0:82148	 10�3 0:42808	 10 �0:91417	 10�3 0.41095

8 �0:44991	 10�2 0:42808	 10 �0:48864	 10�2 0.41030

10 �0:18990	 10�1 0:42808	 10 �0:97479	 10�2 0.41154

12 �0:27954	 10�1 0:42808	 10 0:55193	 10�2 0.41935

14 0:39696	 10�1 0:42808	 10 0:73855	 10�1 0.43480

16 0.30266 0:42808	 10 0.18704 0.43047

18 0.65488 0:42808	 10 0:82290	 10�1 0.31639

20 0 0:42808	 10 �0:97407 0

This example has been taken from Ref. [10]
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15.10 A long cylindrical shell is reinforced by two equal stiffening rings at a distance 5 cm

from one another. Both stiffening rings are placed far from the shell ends. The shell is

loaded by an internal pressure p0. Determine the deflections and stresses at the ring

attachments if each ring has a rectangular cross section 2.5 cm wide and 0.5 cm thick.

The parameters of the shell are R ¼ 1:5m. h ¼ 5mm. Take p0 ¼ 500 kPa;
E ¼ 200GPa; and � ¼ 0:3.

15.11 A long cylindrical pipe of diameter D ¼ 1:0 m and of wall thickness h ¼ 6 mm is

subjected to load P, uniformly distributed along a circular cross section (Fig. 15.9).

Determine the value of P required according to the Tresca criterion. Use �ys ¼ 220

MPa; E ¼ 200GPa; and � ¼ 0:3.
15.12 Consider a semi-infinite cylindrical shell of radius R and thickness h loaded by an

internal pressure p0 ¼ const. Compare the maximum values of bending stresses, �1,
for two types of boundary conditions, prescribed on the shell edge x ¼ 0: built-in and

simply supported edges. Indicate in the solution the locations of these maximum

stresses.

15.13 A stepped water tower, shown in Fig. P.15.3, is filled to capacity with a liquid of

specific weight �. Determine the values of the discontinuity moments and shear forces

along the joint and at the base of the tower. Assume that the water tower is built-in at

its base. The self-weight of the tower can be neglected. TakeH ¼ 4:0m; R ¼ 1m;H1 ¼
1:0m; h1 ¼ 25mm; h2 ¼ 15mm; E ¼ 30GPa; � ¼ 9800N=m3; and � ¼ 0:15.

15.14 Solve a problem of Example 15.7 (see Fig. 15.15) replacing the two moments applied to

the short shell by two equal line forces P distributed along circular sections of a shell

x ¼ 2:5 in: and x ¼ 7:5 in:
15.15 Verify the general-purpose equation of the middle surface deflections, Eq. (15.83).

Fig. P15.1

Fig. P15.2
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16

The Moment Theory of Shells of
Revolution

16.1 INTRODUCTION

As mentioned, shells of revolution belong to a highly general class of shells fre-
quently used in engineering. One representative of this class, cylindrical shells, was
considered in Chapter 15, and we will not dwell on these shells. The shell types
analyzed in this chapter are subclasses of shells of revolution having non-zero
Gaussian curvature. As mentioned in Sec. 11.7, such shells have non-developable
surfaces. Hence, they are stronger, stiffer, and more stable than shells with zero
Gaussian curvature. These shells are frequently used to cover the roofs of sport
halls and large liquid storage tanks. The containment shield structures of nuclear
power plants also have dome-like roofs. Various pressure vessels are either com-
pletely composed of a single rotational shell or have shells of revolution at their end
caps. Conical shells with zero Gaussian curvature are also representative of this
class of shells: they are used to cover liquid storage tanks and the nose cones of
missiles and rockets.

In the membrane analysis of shells of revolution considered in Chapters 13 and
14, we saw that the membrane theory alone cannot accommodate all the loads,
support conditions, and geometries in actual shells. Thus, in a general case, shells
of revolution experience both stretching and bending to resist an applied loading,
which distinguishes significantly the bending of shells from the elementary behavior
of plates (see also Sec. 10.4).

However, the character of bending deformation may be different. If a shell of
revolution is subjected to a concentrated force (Fig. 16.1a), bending exerts a crucial
effect on its strength, because, in this case, the bending deformation increases with a
growth of the forces until the load-carrying capacity of the shell structure is exhausted.
In places of junction of a shell with its supports (Fig. 16.1b) or other structural
members (shell of another geometry, ring beam, etc.), or in places of jump change in
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the radii of curvature (Fig. 16.1c), the bending has another character; here, bending
propagates only if it is needed to eliminate the discrepancies between the membrane
displacements or to satisfy the conditions of statics. If a shell material is ductile, the
bending deformations of the latter type are usually decreased and do not practically
influence the load-carrying capacity of shell structures. If the material of the shell is
brittle, the bending deformations remain proportional to the applied loads until failure
and can result in a significant decrease in the strength of the shell structure

In this chapter we consider the bending theory of shells of revolution. It should
be noted that the solutions of the governing differential equations involve many
difficulties for a general shell of revolution, and therefore, we solve these equations
for some particular shell geometries and load configurations that are frequently used
in engineering practice.

16.2 GOVERNING EQUATIONS

We present below the governing differential equations of the moment theory of shells
of revolution of an arbitrary shape. As curvilinear coordinates 	 and 
 of a point on
the shell middle surface, it is convenient to take the spherical coordinates, introduced
in Sec. 11.8, and used in the membrane theory of shells of revolution in Chapters 13
and 14. Thus, we take 	 ¼ ’ and 
 ¼ �. As before, the angle ’ defines the location of
a point along the meridian, whereas � characterizes the location of a point along the
parallel circle (see Fig. 11.12). Let R1 and R2 be the principal radii of curvature of the
meridian and parallel circle, respectively. Obviously, R1 and R2 will be functions of ’
only, i.e., R1 ¼ R1ð’Þ and R2 ¼ R2ð’Þ. The Lamé parameters in this case are deter-
mined by the following formulas (see Sec. 11.8):

A ¼ R1ð’Þ; B ¼ R2ð’Þ sin ’; r ¼ R2 sin ’: ð16:1Þ
The Codazzi and Gauss conditions are given by Eqs (11.41).

Let us consider the kinematic relations of the moment theory of shells of
revolution. Displacement components of the middle surface along the given coordi-

Fig. 16.1
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nate axes are u (in the meridional direction), v (in the circumferential direction), and
w (in the normal direction to the middle surface). The strain–displacement relations
(12.23) and (12.24) of the general shell theory – taking into account Eqs (16.1) and
(11.41) – take the following form for shells of revolution:

"1 ¼
1

R1

@u

@’
� w

� �
;

"2 ¼
1

R2 sin ’

@v

@�
þ u cos ’� w sin ’

� �
;

�12 ¼
1

R1

@v

@’
� cos ’

R2 sin ’
vþ 1

R2 sin ’

@u

@�
; ð16:2Þ

�1 ¼ � 1

R1

@

@’

1

R1

uþ @w
@’

� �� �
;

�2 ¼ � 1

R2 sin ’ð Þ2
@v

@�
sin ’þ @

2w

@�2

 !
� cos ’

R1R2 sin ’
uþ @w

@’

� �
;

�12 ¼
1

R2 sin ’

cos ’

R2 sin ’

@w

@�
� 1

R1

@2w

@�@’
� 1

R1

@u

@�
� sin ’

R1

@v

@’
þ cos ’

R2

v

" #
; ð16:3Þ

where "1 and "2 are in-plane meridional and circumferential strain components in the
middle surface, �12 characterizes a shear of the middle surface; �1 and �2 represent
the changes in curvature of the coordinate lines in the middle surface due to its
bending, and �12 characterizes a twist of the middle surface. The rotations of the
shell edges that coincide with the coordinate lines � and ’, respectively, can be
obtained from Eqs (12.2) using the relations (16.1) and (11.41). We obtain

#1 ¼
u

R1

þ 1

R1

@w

@’
; #2 ¼

1

R2 sin ’

@w

@�
þ v sin ’

� �
: ð16:4Þ

Equations of static equilibrium (12.41) and (12.42) with regard to relations (12.43),
(11.41), and (16.2) take the form

@

@’
N1R2 sin ’ð Þ þ R1

@

@�
S � H

R1

� �
�N2R1 cos ’�Q1R2 sin ’

þ p1R1R2 sin ’ ¼ 0;

R1

@N2

@�
þ @

@’
R2 sin ’ S � H

R2

� �� �
þ S � H

R1

� �
R1 cos ’

�Q2R1 sin ’þ p2R1R2 sin ’ ¼ 0;

@

@’
ðQ1R2 sin ’Þ þ

@

@�
ðQ2R1Þ þN1R2 sin ’þN2R1 sin ’þ p3R1R2 sin ’ ¼ 0;

@

@’
ðHR2 sin ’Þ þ R1

@M2

@�
þHR1 cos ’�Q2R1R2 sin ’ ¼ 0;

R1

@H

@�
þ @

@’
ðM1R2 sin ’Þ �M2R1 cos ’�Q1R1R2 sin ’ ¼ 0:

ð16:5Þ
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Taking into account the relations for the effective shear forces (in-plane and
out-of-plane) introduced in Sec. 12.5, the following static quantities can be assigned
on a boundary coinciding with the edge parallel circle ’ ¼ ’e:

N1;T1 ¼ S � 2H

R2

; M1; and V1

where

V1 ¼ Q1 þ
1

R2 sin ’

@H

@�
¼ 1

R2 sin ’
2
@H

@�
þ @ðM1R2 sin ’Þ

R1@’
�M2 cos ’

� �
: ð16:6Þ

The constitutive relations are found to be in the form of Eqs (12.45) and
(12.46).

The governing equations and relations introduced above allow one to deter-
mine the stress and displacement components that occur in a shell of revolution
supported along its edges and subjected to given external loads. The unknown
functions characterizing the state of stress and strain (deformations and stress
resultants and couples) depend upon variables � and ’ in Eqs (16.3), (16.5), and
(12.45), (12.46). These unknowns are periodic functions of variable � for shells of
revolution. Thus, one can apply the separation of variables method for solving the
governing differential equations of shells of revolution. This method implies that
all loads, displacements, and stress resultants and couples may be represented in
the form

fið�; ’Þ ¼
X1
k¼0

f
ðsÞ
ik cos k� þ

X1
k¼1

f
ðaÞ
ik sin k�;

�ið�; ’Þ ¼
X1
k¼1

�ðsÞik sin k� �
X1
k¼0

�ðaÞik cos k�;

ð16:7Þ

where by functions fi are meant the functions p1; p3; u;w; "1; "2; #1; �1; �2;N1;N2;
M1; M2; and Q1, and by functions �i are meant the functions p2; v; �12; #2;S;H;
and Q2. It can be seen that the functions having the superscripts s and a corre-
spond to symmetric and skew-symmetric of the above-mentioned functions about
a zero meridian, respectively. It is easily verified that the symmetric and skew-
symmetric components of the displacements, stress resultants, etc., determined by
the same system of equations. Therefore, we present the corresponding relations
and equations for functions having the superscript s only, without using this
index. So, substituting the expressions (16.7) into the kinematic relations (16.2)
and (16.3), equilibrium equations (16.5), and eliminating the shear forces, Q1 and
Q2, we obtain some systems of ordinary differential equations for unknown
functions of deformations, and stress resultants and couples. Note that the con-
stitutive equations (12.45) and (12.46) remain unchanged. It is required only to
provide all the quantities involving in these equations with the index k. Let us
present these equations:
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Kinematic equations (strain–displacement relations)

"1k ¼
1

R1

duk
d’

� wk

� �
;

"2k ¼
1

R2 sin ’
ðkvk þ uk cos ’� wk sin ’Þ;

�12k ¼
1

R1

dvk
d’

� cos ’

R2 sin ’
vk �

kuk
R2 sin ’

;

�1k ¼ � 1

R1

d

d’

uk
R1

þ 1

R1

dwk

d’

� �
;

�2k ¼ � 1

ðR2 sin ’Þ2
kvk sin ’� k2wk

� �� cos ’

R1R2 sin ’
uk þ

dwk

d’

� �
;

�12k ¼
1

R2 sin ’
� cos ’

R2 sin ’
kwk þ

k

R1

dwk

d’
þ k

R1

uk �
sin ’

R1

dvk
d’

þ cos ’

R2

vk

� �
;

#1k ¼
1

R1

uk þ
dwk

d’

� �
; #2k ¼

1

R2 sin ’
ð�kwk þ vk sin ’Þ

ð16:8Þ
Equations of static equilibrium

d

d’
N1kR2 sin ’ð Þ þ R1kSk �

1

R1

d

d’
ðM1kR2 sin ’Þ þM2k cos ’

� 2kHk �N2kR1 cos ’þ p1kR1R2 sin ’ ¼ 0

� R1kN2k þ
1

R2 sin ’

d

d’
SkðR2 sin ’Þ2
� �

� 1

R2

R1ð�kÞM2k þ 2R2 sin ’
dHk

d’

�
þ2 cos ’HkðR1 þ R2Þ

�

þ p2kR1R2 sin ’ ¼ 0:

N1k

R1

þN2k

R2

þ 1

R1R2 sin ’

d

d’


Hkkþ 1

R1

d

d’
ðM1kR2 sin ’Þ �M2k cos ’

� �

þ 1

R2 sin ’

k

R2 sin ’

d

d’
ðR2 sin ’Þ2Hk

� �� k2R1M2k

� ��
þ p3k ¼ 0:

ð16:9Þ

Equations (16.8) and (16.9), together with the constitutive equations (12.45) and
(12.46) and proper boundary conditions, form the closed eight-order system of the
ordinary differential equations for each kth harmonic of the expansion (16.7). This
system of the governing equations describes the state of stress and strain for the
general moment theory of shells of revolution having a meridian of an arbitrary
shape. This system of ordinary equations may be solved by applying the standard
numerical methods intended for a solution of ordinary differential equations and
introduced, for example, in Refs. [1,2]. The finite element method can also be applied
to the analysis of the state of stress and strain for shells of revolution of a general
shape [3,4].
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It should be noted that numerical difficulties associated with a solution of the
differential equations (16.8) and (16.9) may be partially eliminated for some specific
shapes of shells of revolution and loading.

16.3 SHELLS OF REVOLUTION UNDER AXISYMMETRICAL LOADS

When a shell of revolution is subjected to rotationally symmetrical loads (p2 ¼ 0), its
deformations and stress resultants and couples do not depend upon the variable �.
The conditions of symmetry dictate that

S ¼ Q2 ¼ H ¼ 0 and v ¼ �12 ¼ �12 ¼ 0: ð16:10Þ
For this particular case of loading, the strain–displacement relations (16.2) and
(16.3) and equilibrium equations (16.5) and constitutive equations (12.45) and
(12.46) take the following form:

Strain–displacement relations

"1 ¼
1

R1

du

d’
� w

� �
; "2 ¼

1

R2

ðu cot ’� wÞ;

�1 ¼ � 1

R1

d

d’

1

R1

uþ dw

d’

� �� �
; �2 ¼ � cot ’

1

R1R2

uþ dw

d’

� �
;

#1 ¼
u

R1

þ 1

R1

dw

d’
;

ð16:11Þ

where #1 is the angle of rotation of the tangent to the shell meridian.

Equilibrium equations

d

d’
ðN1R2 sin ’Þ �N2R1 cos ’�Q1R2 sin ’þ p1R1R2 sin ’ ¼ 0;

d

d’
ðQ1R2 sin ’Þ þN1R2 sin ’þN2R1 sin ’þ p3R1R2 sin ’ ¼ 0;

d

d’
ðM1R2 sin ’Þ �M2R1 cos ’�Q1R1R2 sin ’ ¼ 0:

ð16:12Þ

Constitutive equations

N1 ¼
Eh

1� �2 ð"1 þ �"2Þ; N2 ¼
Eh

1� �2 ð"2 þ �"1Þ;

M1 ¼ Dð�1 þ ��2Þ; M2 ¼ Dð�2 þ ��1Þ:
ð16:13Þ

It is convenient to express the fourth and fifth Eqs (16.11) in terms of #1. So,
inserting the fifth Eq. (16.11) into the above equations, one obtains the following

�1 ¼ � 1

R1

d#1
d’

; �2 ¼ � cot ’
1

R2

#1: ð16:14Þ

Substituting for the strain components from the first two Eqs (16.11) and Eqs (16.14)
into Eqs (16.13), gives the following stress resultants and couples–displacement
relations
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N1 ¼ B
1

R1

du

d’
� w

� �
þ �

R2

ðu cot ’� wÞ
� �

; ð16:15aÞ

N2 ¼ B
1

R2

ðu cot ’� wÞ þ �

R1

du

d’
� w

� �� �
; ð16:15bÞ

M1 ¼ �D
1

R1

d#1
d’

þ �

R2

#1 cot ’

� �
; ð16:15cÞ

M2 ¼ �D
1

R2

#1 cot ’þ
�

R1

d#1
d’

� �
; ð16:15dÞ

where

B ¼ Eh

1� �2 ;D ¼ Eh3

12ð1� �2Þ : ð16:16Þ

Equations (16.11), (16.12), and (16.13) or (16.15) form a closed system of 12
ordinary differential equations for 12 unknowns (strains, stress resultants and
couples). Solving this system of equations, one obtains the internal forces, moments,
and displacements. The stress components are calculated by the following formulas:

�1max ¼
N1

h
þ 6M1

h2
; �2max ¼

N2

h
þ 6M2

h2
: ð16:17Þ

Let us bring the above system of equations to two symmetric governing equa-
tions for two unknowns. Following Meissner [5], we introduce the new variables

#1 and U ¼ R2Q1ð’Þ: ð16:18Þ
We now express the internal forces and moments in terms of the new variables.
Canceling the circumferential force N2 from the first and second Eqs (16.12), we
obtain the following equation:

1

R1

d

d’
ðN1 sin ’þQ1 cos ’Þr½ � þ ðp1 sin ’þ p3 cos ’Þr ¼ 0: ð16:19Þ

Integrating this equation over ’, we obtain

ðN1 sin ’þQ1 cos ’Þr ¼ �Fð’Þ; ð16:20Þ
where

Fð’Þ ¼
ð’
’e

R1rðp1 sin �’’þ p3 cos �’’Þd �’’þ C; ð16:21Þ

here �’’ is a dummy variable; ’e is the angular coordinate of one of the shell edges –
say, the top edge; Fð’Þ represents the resultant of all external surface loads applied to
an isolated part of the shell per unit ’; and C takes into account an axial component
of the external loads applied to the top edge of the shell.

Comparing Eqs (16.21) and (13.37), we can conclude that a particular solution
of Eq. (16.19), corresponding to the integral Fð’Þ; represents a membrane solution of
the general bending theory of axisymmetrically loaded shells of revolution.

Taking into account Eq. (16.18), we can express the meridional force N1 in
terms of U from Eq. (16.20), as follows:
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N1 ¼ � cot ’

R2

U � Fð’Þ
R2 sin

2 ’
: ð16:22Þ

Substituting for N1 from (16.22) into the second Eq. (16.12) and using Eq. (16.18),
we obtain the expression for the meridional circumferential force in the form

N2 ¼ � dU

d’

1

R1

þ Fð’Þ
R1 sin

2 ’
� p3R2: ð16:23Þ

According to Eqs (16.11) and Eqs (16.15a) and (16.15b), we have

du

d’
� w ¼ R1

Eh
ðN1 � �N2Þ;

u cot ’� w ¼ R2

Eh
ðN2 � �N1Þ

ð16:24Þ

Eliminating w from the above equations yields

du

d’
� u cot ’ ¼ 1

Eh
ðR1 þ �R2ÞN1 � ðR2 þ �R1ÞN2½ �: ð16:25Þ

Differentiating the last Eq. (16.24), we obtain

du

d’
cot ’� u

sin2 ’
� dw

d’
¼ d

d’

R2

Eh
ðN2 � �N1Þ

� �
: ð16:26Þ

Eliminating the derivative du=d’ from Eqs (16.25) and (16.26), one obtains

uþ dw

d’
¼ R1#1 ¼

cot ’

Eh
ðR1 þ �R2ÞN1 � ðR2 þ �R1ÞN2½ � � d

d’

R2

Eh
ðN2 � �N1Þ

� �
:

ð16:27Þ
Inserting Eqs (16.22) and (16.23) into the above equation, taking into account the
third equation (16.11) and substituting for M1;M2; and Q1 from (16.15c) and
(16.15d), together with the notations (16.18) into the third Eq. (16.12), yields the
following equations for #1 and U (for shells of constant thickness):

R2

R1

d2U

d’2
þ d

d’

R2

R1

� �
þ R2

R1

cot ’

� �
dU

d’
� R1

R2

cot2 ’� �
� �

U ¼ EhR1#1 þ�ð’Þ;

R2

R1

d2#1
d’2

þ d

d’

R2

R1

� �
þ R2

R1

cot ’

� �
d#1
d’

� �þ R1

R2

cot2 ’

� �
#1 ¼ �R1

D
U;

ð16:28Þ
where

�ð’Þ ¼ cot ’
R1 þ �R2

R2 sin
2 ’

Fð’Þ þ ðR2 þ �R1Þ
Fð’Þ

R1 sin
2 ’

� p3R2

� �� �

þ d

d’

Fð’Þ
sin2 ’

R2

R1

þ �
� �

� p3R
2
2

� �
:

ð16:29Þ

Equations (16.28) may be rewritten in the following operator form:
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LðUÞ þ �U ¼ EhR1#1 þ�ð’Þ;

Lð#1Þ � �#1 ¼ �R1

D
U:

ð16:30Þ

where

Lð::Þ ¼ R2

R1

d2ð::Þ
d’2

þ d

d’

R2

R1

� �
þ R2

R1

cot ’

� �
dð::Þ
d’

� cot2 ’ð::Þ R1

R2

� �
ð16:31Þ

Equations (16.30) are the governing differential equations of the axisymmetric bend-
ing of shells of revolution of constant thickness. A particular solution of the system
of ordinary differential equations (16.30) can be found from the membrane theory of
axisymmetrically loaded shells of revolution (see Sec. 13.5).

Setting

U ¼ 1

R1

Lð Þ � � ð Þ; #1 ¼ � 1

D
 ; ð16:32Þ

where  is some function of forces and displacements. We identically satisfy the
second Eq. (16.30). Inserting Eqs (16.32) into the first Eq. (16.30), we obtain

L
1

R1

Lð Þ
� �

� �L  

R1

� �
þ �

R1

Lð Þ þ EhR1

D
� �2

R1

 !
 ¼ �ð’Þ: ð16:33Þ

If the radius of the shell curvature R1 ¼ const (sphere, cone, toroid), then Eq. (16.33)
takes the following form:

LLð Þ þ �2 ¼ R1�ð’Þ; ð16:34Þ
where

�2 ¼ EhR2
1

D
� �2 � b2 ð16:35Þ

and b2 ¼ 12ð1� �2ÞR2
1=h

2 is the basic characteristic of a shell. Equation (16.34) can
be represented in the form

Lþ i�½ � Lð Þ � i� ½ � ¼ R1�ð’Þ; ð16:36Þ
and its general solution can be obtained in a complex form.

It is convenient to express the boundary conditions of the shell of revolution
via the horizontal, �, and vertical, , displacements of a point of the middle surface,
as shown in Fig. 16.2. The formulas that relate the displacement components u and v
to the displacements � and  can be directly obtained from Fig, 16.2, i.e.,

� ¼ w sin ’� u cos ’;  ¼ w cos ’þ u sin ’: ð16:37Þ
Let us consider some typical boundary conditions for the shells of revolution

shown in Fig. 16.3.

(a) The edge of a shell is built-in (Fig. 16.3a)
The boundary conditions are of the form

#1 ¼ � ¼ 0j’¼’e : ð16:38aÞ
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The relative stretching in the circumferential direction is

"2 ¼
�

r
¼ �

R2 sin ’
; from which � ¼ "2R2 sin ’: ðaÞ

Using the above relation (a) and Eqs (16.13), the second boundary condition (Eq.
(16.38a)) can be rewritten as follows:

Fig. 16.2

Fig. 16.3
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"2 ¼ 0j’¼’e or N2 � �N1 ¼ 0j’¼’e ð16:38bÞ
(b) The edge of a shell is pinned (Fig. 16.3b)
In this case

� ¼ 0j’¼’e or "2 ¼ 0; N2 � �N1 ¼ 0j’¼’e and

M1 ¼ 0j’¼’e or
1

R1

d#1
d’

þ � cot ’
R2

#1 ¼ 0j’¼’e :
ð16:38cÞ

(c) The edge of a shell is simply supported (Fig. 16.3c)
In this case the boundary conditions are of the form

M1 ¼ 0

				
’¼’e

or
1

R1

d#

d’
þ � cot’

R2

#1 ¼
		
’¼’e and

N1 cos ’e þQ1 sin ’e ¼ 0
		
’¼’e :

ð16:38dÞ

(d) The edge of a shell is free (Fig. 16.3d)
Here the boundary conditions are

M1 ¼ 0j’¼’e or
1

R1

d#1
d’

þ � cot ’
R2

#1 ¼ 0j’¼’e
Q1 ¼ 0j’¼’e or U ¼ 0j’¼’e:

ð16:38eÞ

(e) The edge of a shell is loaded by edge forces Ne;Qe; and Me (Fig. 16.3e)
In this case the boundary conditions are

M1 ¼ Me

		
’¼’e or

1

R1

d#1
d’

þ � cot ’
R2

#1 ¼ Me

		
’¼’e

Q1 ¼ Qe

		
’¼’e or U ¼ QeR2

		
’¼’e :

ð16:38f Þ

(f) A shell is built-in from both sides (Fig. 16.3f)
Since such a shell is statically indeterminate, we must impose the following five
conditions:

#1 ¼ 0j’¼’e1 ; "2 ¼ 0j’¼’e1 ; #1 ¼ 0j’¼’e2 ; "2 ¼ 0j’¼’e2 ;

A=B ¼ 0 or

ð’¼’e2
’¼’e1

ð"1 sin ’þ #1 cos ’ÞR1d’ ¼ 0:
ð16:38gÞ

(g) Two joined shells (Fig. 16.3g)
It is necessary for this case to satisfy the four boundary conditions, namely,

�ð1Þe ¼ �ð2Þe or "ð1Þ2e ¼ "ð2Þ2e ;

#ð1Þ1e ¼ #ð2Þ1e ; M
ð1Þ
1e ¼ M

ð2Þ
1e ;

N
ð1Þ
1e cos ’e1 þQ

ð1Þ
1e sin ’e1 ¼ N

ð2Þ
1e cos ’e2 �Q

ð2Þ
1 sin ’e2 :

ð16:38hÞ

The last condition expresses the equality of the radial forces (thrusts).
(h) If a shell is closed at its vertex, for ’ ¼ 0, then the following conditions must be
satisfied:

#1 ¼ 0j’¼0 and Q1 ¼ 0j’¼0: ð16:39Þ
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16.4 APPROXIMATE METHOD FOR SOLUTION OF THE GOVERNING
EQUATIONS (16.30)

The solution of the governing differential equations (16.30) is quite complicated. In
the present section, we introduce one approximate method for the bending analysis
of shells of revolution under axisymmetric edge loads.

Figure 16.4 shows two shells of revolution subjected to distributed over the
edge loads N1e, Me and Qe. The first shell (Fig. 16.4a) is a shallow one. In axisym-
metric bending of such a shell, the radial displacements and the corresponding
circumferential tensile deformations are small near the loaded edge. Therefore,
deformations caused by the bending moments diminish slowly and their influence
may extend over, practically, the entire shell.

In the second case, shown in Fig. 16.4b, the slope of the normal, #1, is large.
Here, considerable circumferential tension occurs near the loaded edge as the shell
bends axisymmetrically. As a consequence, the bending deformations diminish
rapidly and they practically vanish at a small distance from the edge.

The effect of the circumferential tension in an axisymmetric bending of a shell
with large angle of rise is similar to that of an elastic foundation. A similar effect of
rapid decrease of the bending deformations near the loaded edge was observed in the
axisymmetrically loaded cylindrical shells in Sec. 15.5. Based on this analogy, a very
efficient approximate method may be developed for shells of revolution with large
angle of a rise and subjected to edge loading. This method uses the following
assumptions:

(a) All functions characterizing the stress and strain components in a shell near its edge,
as well as their first derivatives, are small compared with their higher derivatives.
This assumption is based on that fact that all the considered functions will
contain multipliers of the type e�	’; where ’ is the angle measured from the
shell edge of interest and 	 is some parameter. In differentiating these functions,
the parameter 	appears every time in the form of the multiplier. Since these
functions are rapidly decaying, the value of the parameter 	 is large. Therefore,
values of the first derivative are sufficiently greater than the values of the func-
tions themselves, and values of the second derivatives are greater than the first
derivatives, etc., i.e.,

dnUn

d’n
� dðn�1ÞUn

d’n�1
and

dn#1
d’n

� dðn�1Þ#1
d’n�1

:

Fig. 16.4
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On this basis, terms containing the functions themselves and their first derivatives on
the left-hand side of Eqs (16.30) are dropped. The function �ð’Þ on the right-hand
side of Eqs (16.30) is zero for loads applied to the edge of the shell. As a result, the
governing differential equations (16.30) take the form

R2

R1

d2U

d’2
¼ EhR1#1; ð16:40aÞ

R2

R1

d2#1
d’2

¼ �R1

D
U: ð16:40bÞ

(b) The radii of curvature, R1 and R2, are assumed to be constant near the shell edge.
This is true for spherical shells only. For shells of other shapes this assumption is
carried out the more precisely the closer the shape of a shell approaches a spherical
one.

The approximate method for the bending analysis of axisymmetrically loaded
spherical shells of revolution based on the above-mentioned assumptions was first
introduced by H. Reissner [6] and Geckeler [7]; it was then generalized to shells of
revolution of an arbitrary shape of a meridian by Meissner [5,8]. Equations (16.40)
can be reduced to a single differential equation with one unknown. Differentiating
Eq. (16.40a) twice with regard to the second assumption, and inserting d2#1=d’

2 into
Eq. (16.40b), we obtain the following fourth-order governing differential equation:

d4U

d’4
þ 4	4U ¼ 0; ð16:41Þ

where

	 ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2

2h
2

4

s
: ð16:42Þ

Note that it is impossible to neglect the function U compared with its fourth deri-
vative in Eq. (16.41) because the multiplier 4	4 is sufficiently large.

Equation (16.41) is referred to as the edge effect differential equation because its
solution is expressed in terms of rapidly damped functions. The edge effect governing
equation and the corresponding numerical procedure for the general theory of thin
shells is discussed in more detail in Sec. 17.5. Equation (16.41) is analogous to that of
an axisymmetric deformation of a circular cylindrical shell (see Eq. (15.44)). Hence,
we can apply the edge effect technique developed in Sec. 15.3 to axisymmetric
bending analysis of shells of revolution. The general solution of Eq. (16.41) for U
can be written in the form

U ¼ e�	’ðB1 sin 	’þ B2 cos	’Þ þ e	’ðB3 sin 	’þ B4 cos 	’Þ: ð16:43Þ

It is convenient to introduce a new independent variable !, representing also the
angular coordinate and counting off from the shell edge, as shown in Fig. 16.5.

If the lower shell edge is of interest (Fig. 16.5a), then

! ¼ ’e � ’: ð16:44aÞ
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If the upper shell edge is of interest (Fig. 16.5b), then the angle ! is counted off
oppositely and

! ¼ ’� ’e: ð16:44bÞ
Since, in both the above-mentioned cases,

d4U

d’4
¼ d4U

d!4
;

in the transition to a new variable, the differential equation remains unchanged, i.e.,

d4U

d!4
þ 4	4U ¼ 0: ð16:45Þ

The solution of this equation can be written in the form

U ¼ e�	!ðC1 sin 	!þ C2 cos	!Þ þ e	!ðC3 sin 	!þ C4 cos	!Þ; ð16:46Þ
where C1; . . . ;C4 are constants to be determined from the boundary conditions.
Since the function U has to die down as the angle ! increases, the second term in
Eq. (16.46), involving the multiplier e	!, must vanish as we move away from the
loaded edge of the shell. Therefore, the constants C3 and C4 should be equal to zero
and the above solution takes the form

U ¼ e�	!ðC1 sin 	!þ C2 cos	!Þ: ð16:47Þ
This solution describes the moment state of stress and strain near a loaded edge
(either bottom or top). However, in differentiating Eq. (16.47), it should be taken
into account that on the top edge of the shell angle ! is counted off in the side of an
increase of angle ’; therefore, dU=d’ ¼ dU=d!. On the bottom edge, reference
directions of angles ’ and ! are opposite, therefore, dU=d’ ¼ �dU=d!. Let us
determine the derivatives of the function U with respect to ’, as follows:

dU

d’
¼ �	e�	! C1ðcos	!� sin 	!Þ � C2ðcos	!þ sin 	!Þ½ �;

d2U

d’2
¼ 2	2e�	! �C1 cos	!þ C2 sin 	!½ �;

d3U

d’3
¼ �2	3e�	! C1ðcos 	!þ sin 	!Þ þ C2ðcos	!� sin 	!Þ½ �:

Fig. 16.5
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Signs indicated at the top of the right-hand sides of these expressions stand for the
upper edge of the shell; signs indicated at the bottom stand for the lower edge. Since,
for this case, only the edge loads are of interest, we can put p1 ¼ 0; p3 ¼ 0; and
Fð’Þ ¼ 0;�ð’Þ ¼ 0 (see Eq. (16.28) and (16.29)). The stress resultants and couples
and the displacement components are related to function U, as follows:

N1 ¼ � cot ’

R2

U; N2 ¼ � 1

R1

dU

d’
; Q1 ¼

U

R2

;

#1 ¼
R2

EhR2
1

d2U

d’2
; M1 ¼ � D

R1

d#1
d’

¼ � DR2

R3
1Eh

d3U

d’3
;

M2 ffi �M1; "2 ¼
1

Eh
ðN2 � �N1Þ; � ¼ "2r:

ð16:48Þ

Based on the smallness of #1 compared with its first derivative, the terms containing
#1 in the expressions for bending moments (see Eqs (16.15c and d)) have been
dropped in the above equations.

Let us consider a shell of revolution subjected to the edge loads in the form of
the shear force Qe and bending moment Me applied either to the top or to the
bottom edges of the shell. The boundary conditions for these types of loading are

M1 ¼ Me

		
!¼0

;Q1 ¼ Qe

		
!¼0

: ð16:49Þ

Substituting for U from Eq. (16.47) into Eqs (16.48) for M1 and Q1 and then
the latter equations into the above boundary conditions, results in the following
algebraic equations:

Me ¼ � R1

2R2	
ðC1 þ C2Þ; Qe ¼

1

R2

C2;

from which

C1 ¼ � 2MeR2	

R1

�QeR2; C2 ¼ QeR2:

Substituting the above into Eqs (16.47) and (16.48), gives the following expressions
for the internal forces, moments, and deformations:

N1 ¼ cot ’ �Me

2	

R1

e�	! sin 	!�Qee
�	!ðcos	!� sin 	!Þ

� �
;

N2 ¼
2	R2

R1

Me

	

R1

e�	!ðcos	!� sin 	!Þ �Qee
�	! cos	!

� �
;

M1 ¼ Mee
�	!ðcos	!þ sin 	!Þ �QeR1

	
e�	! sin 	!;M2 ¼ �M1;

#1 ¼ �Me

R1

	D
e�	! cos	!þQe

R2
1

2	2D
e�	!ðcos	!þ sin 	!Þ:

ð16:50Þ

On the shell edge, for ! ¼ 0, one obtains the following:
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#1e ¼ �Me

	D
R1 þ

QeR
2
1

2	2D
;

N1e ¼ �Qe cot ’e;N2e ¼ Me

2R2	
2

R2
1

�Qe

2R2	

R1

;

"2e ¼
1

Eh
Me

2R2	
2

R2
1

�Qe

2R2	

R1

þ �Qe cot ’e

" #
; �e ¼ "2ere ¼ "2eR2e sin ’e:

ð16:51Þ
The upper signs in all the above equations refer to the top edge of the shell, whereas
the lower signs refer to the bottom edge. If a shell of revolution is loaded by the
horizontal force (thrust) He per unit length applied to the shell edge ’ ¼ ’e, then the
internal forces and deformations can also be determined from Eqs (16.50) and
(16.51) by substituting for Qe from the following equation:

Qe ¼ �He sin ’e: ð16:52Þ
If an arbitrary surface load is applied to the shell of revolution, then the solutions
(16.48) must be complemented by a particular solution of the nonhomogeneous
equations. This particular solution in most cases is determined from the membrane
theory of shells introduced in Chapter 13 .

The accuracy of the introduced approximate Geckeler’s analysis was analyzed
in Refs [5–9]. It has been established that for thin shells with fairly big angle of rise,
these formulas give satisfactory accurate results. The error of approximate formulas
of the edge effect theory has an order of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h cot2 ’=R

p
. Practically, this method can be

used if the angle of the shell edge ’e > 35
.
In the next section we apply the approximate solution procedure discussed

above to the analysis of some specific geometric forms of shells of revolution used
in practical application. We assume that for the geometry of the shells under con-
sideration all requirements about accuracy of applicability of the approximate
method introduced above are satisfied.

16.5 AXISYMMETRIC SPHERICAL SHELLS, ANALYSIS OF THE
STATE OF STRESS AT THE SPHERICAL-TO-CYLINDRICAL
JUNCTION

For spherical shells, R1 ¼ R2 ¼ R, and the governing equations of axisymmetric
bending of shells of revolution, Eqs (16.40) are simplified. The solution procedure
based on the approximate method introduced in Sec. 16.4, as applied to the bending
analysis of axisymmetrically loaded spherical shells, is illustrated below by the fol-
lowing examples.

Example 16.1

Calculate stresses in the hemispherical shell stiffened on its edge by a flange and
loaded by an internal pressure p which is balanced by a force P, as shown in Fig.
16.6a. Given R ¼ 50 cm; h ¼ 0:3 cm; r1 ¼ 49:85 cm; r2 ¼ 53 cm; r3 ¼ 51:6 cm; b ¼
3:15 cm; h1 ¼ 0:8 cm; � ¼ 0:3, and E ¼ 20GPa.
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Solution

Detach the spherical shell from the flange and apply to them the interface forces and
moments M0;Q0, and N10, as shown in Fig. 16.6b. The meridional force can be
determined from the equilibrium condition, i.e.,

N10 ¼
pð�r21Þ
2�R

¼ 24:8pðN=cmÞ:

The bending moment M0 and shear force Q0 must be found from the compatibility
of deformations conditions at the junction of the shell and flange.

Deformations of the flange may be calculated from the corresponding formulas
of the theory of axisymmetrical deformations of rings [11,12]. Geometrical properties
of the ring cross section are

I1 ¼
ð
A

dA

r
¼ h1 ln

r2
r1

¼ 0:049 cm; I3 ¼
ð
A

z2

r
dA ¼ h31

12
ln
r2
r1

¼ 2:614	 10�3cm2:

Determine the internal bending moment MðrÞ and the membrane normal force NðrÞ at
a cross section of the ring. We have

NðrÞ ¼ ph1r1 þQ0R ¼ 39:9pþ 50Q0;

MðrÞ ¼ pr23 �N10R
2 þM0RþQ0R

h1
2
¼ 1:99	 103pþ 50M0 þ 20Q0:

The angle of rotation of the ring section is

�ðrÞ ¼ MðrÞ

EI3
¼ 1

E
0:7605	 106pþ 19:13	 103M0 þ 7:65	 103Q0

� �ðradÞ: ðaÞ

The radial displacement of the ring, �ðrÞ, at a point of the junction with the shell is

�ðrÞ ¼ NðrÞ

EI1
þ �

ðrÞh1
2

¼ 1

E
0:305	 106pþ 7:65	 103M0 þ 4:08	 103Q0

� �ðcmÞ:
ðbÞ

Fig. 16.6
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The state of stress of the shell can be represented as a sum of the membrane state
caused by the internal pressure p and membrane force N10, and the moment state
caused by the edge loads M0 and Q0.

For the membrane state of stress of the shell corresponding to a particular
solution of the governing equations, we have

#ðsÞ1p ¼ 0; Up ¼ 0; N1p ¼ N2p ¼ pr21
2R

¼ N10 ¼ 24:8p;

where the subscript p refers to the quantities associated with the membrane state. It
can also be assumed that r1 � R; then

N1p ¼ N2p ¼ pR

2
¼ 25p:

The radial (horizontal) displacement of the shell edge, �ðsÞp , corresponding to the
membrane state of stress, is given by

�ðsÞp ¼ R

Eh
N2p � �N1p

� � ¼ 50	 24:8pð1� 0:3Þ
0:3ðEÞ ¼ 2:9	 103

p

E
ðcmÞ: ðcÞ

Now, we can calculate the linear and angular displacements on the shell edge caused
by the edge loads, M0 and Q0. These displacement components are determined with
the use of the approximate solution procedure introduced in Sec. 16.4. In this case, a
particular solution is zero. The general solution of the governing equations of the
edge effect is given by Eqs (16.49). First, let us compute the parameter 	 (see Eq.
(16.42)) and the flexural stiffness. We have

	 ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2h2

4

s
¼ 16:6ðcmÞ; D ¼ Eh3

12ð1� �2Þ ¼ 2:475	 10�3EðN � cmÞ:

Substituting R1 ¼ R2 ¼ R into Eq. (16.51), determine #ðsÞ10; "
ðsÞ
20; and �

ðsÞ
0 at the junction

of the shell and ring which are caused by the above-mentioned edge loads. Taking
the bottom signs in the above equations and letting ’ ¼ 90
, one obtains

#ðsÞ10 ¼ �M0R

	D
þQ0R

2

2	2D
¼ � 1220M0

E
þ 1840Q0

E
; ðdÞ

�ðsÞ0
			
’¼90


¼ R"ðsÞ ¼ R

Eh

M02	
2

R
�Q02	

" #
¼ 1835M0

E
� 5330Q0

E
: ðeÞ

Let us set up the compatibility equations at the junction of the shell and ring:

�ðsÞp þ �ðsÞ0 ¼ �ðrÞ;

#ðsÞ10 ¼ �ðrÞ
ðfÞ

Substituting for all the components on the left- and right-hand sides of Eqs (f) from
Eqs (a), (b), (c), (d), and (e), we obtain the following system of algebraic equations:

2:90	 103
p

E
� 5530

Q0

E
þ 1835

M0

E
¼ 305	 103

p

E
þ 4080

Q0

E
þ 7650

M0

E
;

1840
Q0

E
� 1220

M0

E
¼ 760:5	 103

p

E
þ 7650

Q0

E
þ 19130

M0

E
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Solving these equations, yields

M0 ¼ �33:8pðN � cm=cmÞ; Q0 ¼ �10:7pðN=cmÞ:
The maximum stresses occur at an outside point of the shell at ’ ¼ 90
. They are

�1max ¼
N1

h
� 6M1

h2
; �2max ¼

N2

h
� 6M2

h2
; ðgÞ

where

N1 ¼ N10 ¼ 24:8pðN=cmÞ; M1 ¼ M0 ¼ �33:8pðN � cm=cmÞ;

N2 ¼ N20 þN2pðN=cmÞ; M2 ¼ �M1 ¼ �10:1pðN � cm=cmÞ;
and N20 is given by Eq. (16.49), i.e.,

N20 ¼ M0

2	2

R
�Q0ð2	Þ ¼ �17:32p (N/cm):

Finally, N2 can be determined as follows:

N2 ¼ N2p þN20 ¼ 24:8p� 17:32p ¼ 7:48p (N/cm).

Substituting all the above data into Eqs (g) yields the following values of the max-
imum stresses:

�1max ¼
24:8p

0:3
þ 6ð33:8pÞ

ð0:3Þ2 ¼ 2336pðN=cm2Þ;

�2max ¼
7:48p

0:3
þ 6ð10:1pÞ

ð0:3Þ2 ¼ 698:2ðN=cm2Þ:

These values of the normal stresses coincide with the numerical data obtained in Ref.
[12], where the same problem had been solved using the exact governing equations
(16.30). The above-mentioned coincidence for this case can be explained by the fact
that the meridional angle at the shell edge, ’e, is equal to 90
 and the radii of
curvature had constant values throughout the shell.

Example 16.2

Consider a cylindrical vessel, made of steel, with a hemispherical head, as shown in
Fig. 16.7a, under an internal pressure p. Determine the internal forces, moments, and
stresses at the junction of the cylindrical and spherical shells. Given the radii of the
cylinder and sphere are assumed to be the same and equal R ¼ 1:5 m, the thickness
of the cylinder and shell is h ¼ 0:01m; E ¼ 200GPa, and � ¼ 0:3.

Solution

First, consider the membrane state of stress of the cylinder and head separately (Fig.
16.7b). In the spherical shell (at the junction):

N
ðsÞ
1p ¼ N

ðsÞ
2p ¼ pR

2
; �ðsÞp ¼ � pR2

2Eh
ð1� �Þ:
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In the cylindrical shell (at the junction):

N
ðcÞ
1p ¼ pR

2
; N

ðcÞ
2p ¼ pR; �ðcÞp ¼ � R

Eh
N

ðcÞ
2p � �NðcÞ

1p

� �
¼ � pR2

Eh
ð2� �Þ:

In the above equations �ðsÞp and �ðcÞp refer to the membrane radial (horizontal) dis-
placements at the juncture of the hemisphere and cylinder, respectively. Since at the
junction of two shells N

ðsÞ
1p ¼ N

ðcÞ
1p , then the membrane state of stress satisfies the

static conditions of joint operation of the two shells. However, conditions of defor-
mations’ compatibility are not satisfied because the radial displacements of the
cylindrical shell at the juncture are greater than the corresponding radial displace-
ments of the spherical shell. Therefore, at the junction of the two shells, the interface
force Q0 and momentM0 occur (Fig. 16.7c). These interface force and moment cause
the moment stress of the edge effect type in the vicinity of the joint (see also Sec. 17.5).
The values of the interface force and moment may be found from the conditions of
compatibility of deformations at the junction of the spherical and cylindrical shells.
Equating the total (i.e., caused by both the membrane state and edge effect) radial
displacements and the angles of rotation at the juncture of the shells (the positive
directions for displacements and angles of rotation are shown on the right part of
Fig. 16.6c), we obtain the following:

� �ðsÞp �Q0�
ðsÞ
Q �M0�

ðsÞ
M ¼ ��ðcÞp þQ0�

ðcÞ
Q �M0�

ðcÞ
M

�M0#
ðsÞ
1M �Q0#

ðsÞ
1Q ¼ M0#

ðcÞ
1M �Q0#

ðcÞ
1Q;

ðaÞ

where �Q; �M and #1Q; #1M refer to the radial displacements and slopes at the junc-
ture caused by the unit interface shear force, Q0 ¼ 1, and unit bending moment,
M0 ¼ 1; superscripts s and c stand for the hemisphere and cylinder, respectively. The
deformation components at the junction for both cylindrical and spherical shells
may be determined from Eqs (16.51) by setting ’e ¼ �=2 and making R1 ¼ 1; R2 ¼
R and 	 ¼ 
R for the cylindrical shell and letting R1 ¼ R2 ¼ R and ’ ¼ �=2 for the
spherical shell. Consequently, we obtain

Fig. 16.7
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�ðsÞQ ¼ �ðcÞQ ¼ 1

2D
3
; �ðsÞM ¼ �ðcÞM ¼ 1

2D
2
; #ðsÞ1M ¼ #ðcÞ1M ¼ 1

D

; #ðsÞ1Q ¼ #ðsÞ1Q ¼ 1

2D
2
;

where


 ¼ 	

R
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

p
ffiffiffiffiffiffi
Rh

p ¼ 10:4931 ð1=mÞ:

Then, it follows from the compatibility equations (a) that

M0 ¼ 0;Q0 ¼
�ðcÞp � �ðsÞp
�ðsÞQ þ �ðcÞQ

¼ pR2ðD
3Þ
2Eh

¼ p
ffiffiffiffiffiffi
Rh

p

8
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

p ¼ 0:01191p (N � m/m).

Using Eqs (16.48) and (15.57), we can obtain the displacements and stress resultants
and couples caused by the edge loads and the given internal pressure in both the
cylindrical and spherical shells.

Figure 16.8a and b shows the bending moment M1 and circumferential force
N2m diagrams, where N2M is due to the edge loads only.

The maximum values ofM1 and N2M at the junction of the two shells are found
to be

M1max ¼
pR2

2Eh
D
2e��=4

ffiffiffi
2

p

2
¼ 3:6	 10�4p ðN �m=mÞ;

N2M

		 		 ¼ Q02	 ¼ 0:375p ðN=mÞ:
Note that N2M has different signs for the cylindrical and spherical shells at the
juncture (see Fig. 16.8b).

The normal stresses due to the bending edge effect are

�1M ¼ 6M1max

h2
¼ 0:146

pR

h
¼ 21:9p; �2M ¼ 0:1�1M ¼ 2:19p:

The circumferential force N2M eliminates a discontinuity in the forces of the mem-
brane state. It can be easily shown that the total membrane force N2 ¼ N2p þN2M is
identical for both shells at the junction and equal N2 ¼ 1:125p. Thus, the total
circumferential force N2 varies continuously in the compound shell, as shown in
Fig. 16.8c.

Fig. 16.8
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It is seen that the stresses due to the edge effect have a magnitude of the same
order ðpR=hÞ as the membrane stresses in the shells under consideration. This is
typical for shells at which the edge effect occurs, because the compatibility of defor-
mations is not satisfied by the membrane state only.

Example 16.3

A compound steel shell consists of a cylinder (radius R and wall thickness h) and of a
head in the form of a spherical segment (radius Rs ¼ 2R and thickness h), as shown
in Fig. 16.9a. This compound shell is subjected to an internal pressure p. Determine
the internal forces and moments in the compound shell if R ¼ 1:5m; h ¼ 0:02m; � ¼
0:3; E ¼ 200GPa, and ’1 ¼ 30
.

Solution

First, consider the membrane state of the head and cylinder separately, as shown in
Fig. 16.9b. From the membrane shell theory, it follows that

N
ðsÞ
1p ¼ N

ðsÞ
2p ¼ pRs

2
¼ pR; N

ðcÞ
1p ¼ pR

2
;NðcÞ

2p ¼ pR ðaÞ

where, again, the subscript p refers to the membrane solution and superscripts s and
c stand for the sphere and cylinder, respectively. It is seen from Fig. 16.9b that, apart
from the latter example, the membrane state alone does not satisfy the conditions of
static equilibrium in the head and cylinder. Therefore, the edge effect occurs at the
junction of the compound shell to satisfy both the statics and compatibility of
deformations conditions.

Consider the edge effect procedure being applied to the given compound shell.
The membrane force N

ðsÞ
1p at the edge of the head has a horizontal component, which

is equal to

Fig. 16.9
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T0 ¼ N
ðsÞ
1p cos ’1 ¼ pR

ffiffiffi
3

p

2
: ðbÞ

To ensure that the shell loading by the membrane scheme (Fig. 16.9b), together with
the edge effect, would be equivalent to the given loading applied to the compound
shell, it is necessary to include the thrust that is equal and oppositely directed to T0

among the edge effect forces, as shown in Fig. 16.8c. Thus, in applying the edge
effect solution procedure, we should assume that the cylindrical shell is loaded by the
edge moment M0 and shear force H0, whereas the spherical shell is loaded by the
edge moment M0 and thrust ðH0 � T0Þ, as shown in Fig. 16.9c. The unknown quan-
tities M0 and H0 are evaluated from the compatibility of deformations’ conditions,
i.e., the radial (horizontal) displacements and angles of rotation of normals should
be identical at the juncture of both shells. Equating the edge radial displacements of
the sphere and cylinder at the juncture, we obtain

�ðsÞ ¼ �ðcÞ ðcÞ

where,

�ðsÞ ¼ � R

Eh
ðNðsÞ

2p � �NðsÞ
1p Þ þ ðT0 �H0Þ�ðsÞH �M0�

ðsÞ
M

�ðcÞ ¼ � R

Eh
N

ðcÞ
2p � �NðcÞ

1p Þ þH0�
ðcÞ
H �M0�

ðcÞ
M :

� ðdÞ

In Eqs (c) and (d), the first terms on the right-hand sides correspond to the mem-
brane solution.

The conditions of compatibility for the slopes (the positive direction of the
slopes is shown in Fig. 16.9c to the right) has the form

ðT0 �H0Þ#ðsÞ1H �M0#
ðsÞ
1M ¼ �H0#

ðcÞ
1H þM0#

ðcÞ
1M : ðeÞ

In Eqs. (d) and (e), the subscripts H and M indicate the cause of the corresponding
displacements. The coefficients �ðsÞH ; �

ðsÞ
M ; #

ðsÞ
1H; #

ðsÞ
M and �ðcÞH ; �

ðcÞ
M ; #

ðcÞ
1H; #

ðcÞ
1M can be

calculated from Eqs (16.51) by setting R1 ¼ R2 ¼ Rs ¼ 2R; ’e ¼ ’1; and replacing
Q0 with H0 sin ’1 or T0 sin ’1) according to Eq. (16.50) for the spherical shell, and
by setting R1 ¼ 1; R2 ¼ R; and ’e ¼ ’1 for the cylindrical shell. As a result, we
obtain

�ðsÞH ¼ sin2 ’1
2D
3s

; �ðsÞM ¼ sin ’1
2D
2s

; #ðsÞ1M ¼ 1

D
s
; #ðsÞ1H ¼ �ðsÞM ;

�ðcÞH ¼ 1

2D
3c
; �ðcÞM ¼ 1

2D
2c
; #ðcÞM ¼ 1

D
c
; #ðcÞ1H ¼ �ðcÞM ;


s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

p
ffiffiffiffiffiffiffiffiffi
2Rh

p ; 
c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

p
ffiffiffiffiffiffi
Rh

p :

ðfÞ
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Substituting the numerical data into the relations (a), (b), (d), and (f), one obtains the
following:

D ¼ Eh3

12ð1� �2Þ ¼ 146:52	 103ðNmÞ; 
c ¼ 7:4213ð1=mÞ; 
s ¼ 5:2477ð1=mÞ;

N
ðsÞ
1p ¼ N

ðsÞ
2p ¼ 1:5p ðN=mÞ; N

ðcÞ
1p ¼ 0:75p ðN=mÞ; N

ðcÞ
2p ¼ 1:5p; T0 ¼ 1:3p ðN=mÞ;

�ðsÞH ¼ 0:005903	 10�6ðm2=NÞ; �ðsÞM ¼ 0:06196	 10�6ðm=NÞ;
#ðsÞM ¼ 1:301	 10�6ð1=NÞ;

�ðcÞH ¼ 0:008362	 10�6ðm2=NÞ; �ðcÞM ¼ 0:06196	 10�6ðm=NÞ;
#ðcÞM ¼ 0:9196	 10�6ð1=NÞ:

Substituting the above into the compatibility equations (c) and (e) and taking into
account the relations (d), we can calculate H0 and M0. We have

H0 ¼ 0:5401p ðN=mÞ; M0 ¼ 0:03627p ðN �m=mÞ:
Using Eqs (16.48) for a spherical shell and Eqs (15.57) for the cylindrical shell, we
can determine the membrane forces N2;N1 and bending moments M1;M2 in the
spherical and cylindrical parts of the given compound shell. The equations for the
membrane forces and bending moments are of the following form:

– for the cylindrical shell

N
ðcÞ
2 ¼ 1:5p 1� 4:0075e�
cxðcos
cxþ sin 
cxÞ

� �
; N

ðcÞ
1 ¼ 0:75p;

M
ðcÞ
1 ¼ 0:03627pe�
cxðcos
cx� sin 
cxÞ;

ðgÞ

where the coordinate x is counted off from the juncture of the spherical and cylind-
rical shells.
–for the spherical shell

N
ðsÞ
2 ¼ 1:5p 1� 4:0075e�	!ðcos	!þ sin 	!Þ½ �;

N
ðsÞ
1 ¼ 1:5p 1� 0:44e�	! cos	!½ �;

M
ðsÞ
1 ¼ 0:03627pe�	!ðcos	!� sin 	!Þ;

ðhÞ

where 	 ¼ Rs
s and ! ¼ ’1 � ’ ¼ 30
 � ’.
The diagrams of the membrane force N2 and bending momentM1 are shown in

Fig. 16.10.
The maximum normal stresses occur in the cylindrical shell at points in its

inner surface at the junction with the sphere segment. The total meridional stress
is tensile at the above points and is equals to

�1 ¼
N1

h
þ 6M1

h2
¼ 37:5pþ 544p ¼ 581:5p: ðiÞ

The circumferential stress at the same points is compressive and is given by

�2 ¼
N2

h
þ � 6M1

h2
¼ �61:8p: ðjÞ
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It can be shown that in the given compound shell the edge effect normal stress is
larger by an order of magnitude

ffiffiffiffiffiffiffiffiffiffiffiffiðR=hÞp
than the corresponding membrane stress.

Therefore, the compound shell, like that analyzed in this example, is inefficient.
However, it is possible to essentially decrease the stresses at the junction of

compound shell structures. Figure 16.11a shows two shells, cylindrical and spherical,
joined by a ring. The latter is supposed to support the thrust T0 (Fig. (16.11a)). In the
analysis of such shell structures, one can assume that the bending stiffness of the ring
in the direction perpendicular to its plane is negligible. Thus, the ring resists only the
radial load in its own plane. The free-body diagrams of the shells and ring are shown
in Fig. 16.11b.

Let us determine the stress components at the junction of the two shells, shown
in Fig. 16.11. The geometrical and mechanical parameters of the shells are taken
from Example 16.3.

The values of the unknown interface forces, H1 and H2, as well the moment
M0, are evaluated from the conditions of deformations, compatibility of the shell
parts and ring. Let the shell and ring be made of the same material. Assume that the

Fig. 16.10

Fig. 16.11
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cross-sectional area of the ring, Ar, has an order of magnitude Rh and the terms of
the order of magnitude

ffiffiffiffiffiffiffiffiffi
h=R

p
can be neglected compared with unity. In this case, the

radial compliance of the ring, R2=ArE, will be significantly lower than the radial
compliance of the shells, i.e.,

�ðcÞH ¼ 1

2D
3c
¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

q
R

Eh

ffiffiffiffi
R

h

r
:

Therefore, one can assume that the thrust T0 is completely carried by the ring and
the ring’s horizontal displacement, T0R

2=EAr, determines the corresponding dis-
placements of the shell parts (cylindrical and spherical shells). Thus, the above-
mentioned compatibility equations can be represented in the following form:

� R

Eh
ðNðsÞ

2p � �NðsÞ
1p Þ þH1�

ðsÞ
H �M0�

ðsÞ
M ¼ T0R

2

EAr

;

� R

Eh
ðNðcÞ

2p � �Nðc
1pÞ þH2�

ðcÞ
H �M0�

ðcÞ
M ¼ T0R

2

EAr

;

M0#
ðcÞ
M �H2#

ðcÞ
H ¼ �M0#

ðsÞ
M þH1#

ðsÞ
H :

ðkÞ

Let us select the cross-sectional area of the ring, Ar, from the condition

�r ¼ �2p ðlÞ
where

�r ¼
T0R

Ar

¼ pR2
ffiffiffi
3

p

2Ar

;

is the compressive stress in the ring and

�2p ¼ pR

h

is the maximum tensile stress in the shell by the membrane theory. Thus, we have

Ar ¼
ffiffiffi
3

p

2
Rh ¼ 0:02598ðm2Þ: ðmÞ

Substituting for the coefficients �H; �M; #H; and #M from Eqs (f) and taking into
account Eq. (k), we can solve Eqs (p) for H1;H2; and M0. We obtain

M0 ¼ 0:01605p; H1 ¼ 0:2434p; H2 ¼ 0:3308p:

Having determined the edge effect forces and moments, we can calculate the
internal forces and bending moments in the spherical and cylindrical parts of the
given compound shell by using Eqs (16.48) and (15.57), respectively. It can be seen
that for this compound shell reinforced by the ring, the maximum edge effect bend-
ing stresses will have the same order of magnitude as the membrane stresses. In
particular, the maximum edge effect bending stress in the zone of the junction of
the two shells is given by

�1 ¼
6M1

h2
¼ 240:75p:
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Comparing this bending stress due to the edge effect with the corresponding stress
from the previous example, we can conclude that the setup of the ring allows one to
decrease the edge effect maximum stress by more than two times, although the above
stress remains quite considerable.

16.6 AXISYMMETRICALLY LOADED CONICAL SHELLS

For a conical shell, a distance s measured from the vertex of the cone along the
straight meridian may be conveniently taken as a meridional coordinate of a point
on the middle surface (see Sec. 13.6.2). Replacing the variable ’ with a new variable
s, we use the following obvious relationships

ds ¼ R1d’;
dð. . .Þ
d’

¼ R1

dð. . .Þ
ds

ð16:53aÞ

For conical shells R1 is a constant at infinity and does not vary with s, so that
dR1=ds ¼ 0; hence,

d2ð. . .Þ
d’2

¼ R2
1

d2ð. . .Þ
ds2

and R2 ¼ s cot ’;
dR2

ds
¼ cot ’: ð16:53bÞ

where ’ is the constant value for all points on the straight meridian (Fig. 13.3).
In this section, we are concerned with the bending theory of a conical shell

subjected to axisymmetrically applied edge loads. Therefore, we seek only solutions
of the homogeneous bending theory equations (the edge effect solutions), because
the membrane solution may be used as a particular integral of the general theory
equations for conical shells. Using the relationships (16.53), we can rewrite the
governing equation (16.28) in terms of the variable s, setting R1 ¼ 1 for conical
shells and �ð’Þ ¼ 0, as follows:

d2#1
ds2

þ 1

s

d#1
ds

� 1

s2
#1 ¼ � 1

DR2

U;

d2U

ds2
þ 1

s

dU

ds
� 1

s2
U ¼ Eh

R2

#1;

ð16:54aÞ

or in the following operator form

L1ð#1Þ þ
1

D
U ¼ 0

L1ðUÞ � Eh#1 ¼ 0

ð16:54bÞ

where the operator L1ð::Þ is given by

L1ð. . .Þ � cot ’ s
d2ð. . .Þ
ds2

þ dð. . .Þ
ds

� 1

s
ð. . .Þ

" #
:

The solution of the governing differential equations (16.54b) can be expressed in
terms of the Bessel functions or their modifications [13]. However, this rigorous
approach is not suited to practical engineering calculations, as it is too lengthy
even when tables of the Bessel functions are available. The problem of straining
the conical shells may be solved by using the numerical methods introduced in
Chapter 6 or by the finite element method technique [3,4].
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A simpler solution for the conical shell problems, analogous to the Geckeler
approximation, (see Sec. 16.4) is now introduced. Dropping terms with #1 and
d#1=ds and the terms U and dU=ds from the left-hand sides of Eqs (16.54a), yields
the following approximate equations:

d2#1
ds2

� � U

DR2

;

d2U

ds2
� Eh

R2

#1:

ð16:55Þ

Differentiating the second equation twice with respect to s and substituting it into the
first equation, gives the following governing differential equation of the edge effect
for conical shells:

d4U

ds4
þ Eh

R2
2D

U ¼ 0 or

d4U

ds4
þ 4
4U ¼ 0;

ð16:56Þ

where


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2

2h
2

4

s
: ð16:57Þ

Remember that in deriving the governing differential equation of the edge effect
the following assumptions have been adopted: the lower derivatives of functions
and functions themselves are small compared with the higher derivatives and the
radius R2 varies slightly near the shell edge. It has been shown that these assump-
tions are fairly fulfilled if

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h=ðr sin ’Þp � 1 (r is the radius of the parallel circle)

[14] or for conical shells with a considerable slope of the meridian
(’ > 35
 � 40
).

Let x be the coordinate measured from the edge of interest. Then we have

– for the top edge x ¼ s� s0,
– for the bottom edge x ¼ s0 � s,

where s0 is some coordinate that corresponds to the given edge of the shell. In
transition to the variable x, Eq. (16.56) remains unchanged, i.e.,

d4U

dx4
þ 4
4U ¼ 0: ð16:58Þ

Using the edge effect procedure, developed in Sec. 16.4, we can obtain the
solution of Eq. (16.58) and the following expressions for the deformations, internal
forces, and moments in a conical shell subjected to the edge loadsMe and Qe in terms
of the variable x, as follows:
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U ¼ �Me2
R2e
�
x sin 
xþQeR2e

�
xðcos
x� sin 
xÞ;

N1 ¼ cot ’ �Me2
e
�
x sin 
x�Qee

�
xðcos
x� sin 
xÞ� �
;

N2 ¼ 2
R2 Me
e
�
xðcos 
x� sin 
xÞ �Qee

�
x cos 
x
� �

;

M1 ¼ Mee
�
xðcos 
xþ sin 
xÞ �Qe

1



e�
x sin 
x;M2 ¼ �M1;

#1 ¼ �Me

1


D
e�
x cos
xþQe

1

2
2D
e�
xðcos
xþ sin 
xÞ;

� ¼ "2r ¼ R2 sin ’
1

Eh
ðN2 � �N1Þ:

ð16:59Þ

The positive directions of the edge force Qe and moment Me are shown in Fig. 16.12.
The upper sign in Eqs (16.59) refers to the top edge (at ’ ¼ ’e1Þ and the lower sign
refers to the bottom edge (at ’ ¼ ’e2Þ of the shell.

Example 16.4

Determine the internal forces in a conical shell subjected to the edge loads m and
H, as shown in Fig. 16.13. Given h ¼ 0:5 in; ’ ¼ 60
; s1 ¼ 10 in:; s2 ¼ 30 in:; R2 ¼
s2 cot ’ ¼ 17:3 in:; and � ¼ 0:3.

Solution

The parameter 
 for the bottom edge is obtained from Eq. (16.57):


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2

2h
2

4

s
¼ 0:4371 ð1=in:Þ:

The edge loads on the bottom edge are

Me ¼ m; Qe ¼ H sin 60
 ¼ 0:866H:

Fig. 16.12
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Using Eqs (16.59) and setting x ¼ 0, we can calculate the angle of rotation of the
normal to the meridian, #1, and the internal forces at the bottom edge. We have

#1 ¼ � m


D
þ Qe

2
2D
¼ �2:29

m

D
þ 2:28

H

D
;

N1 ¼ �Qe cot ’ ¼ �0:5H;

N2 ¼ 2
R2ðm
�QeÞ ¼ 6:58m� 13:1H:

Comparing these numerical data with those obtained by using the exact edge effect
procedure based on the use of the Bessel functions [12], we can conclude that the
error of this approximate analysis does not exceed 1% for the given case.

16.7 AXISYMMETRIC DEFORMATION OF TOROIDAL SHELLS

Structural components having a form of toroidal shells are commonly used in
mechanical engineering. Housings of pumps, hydraulic clutches, tanks, bellows,
etc., are examples of such shape of a shell. The shape of a toroidal shell is character-
ized by the radii R and a and by the following parameters (Fig.16.14):

Fig. 16.13

Fig. 16.14
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	 ¼ a

R
; 
 ¼ a

h
: ð16:60Þ

For a toroidal shell, the principal radii of curvature are (Fig. 16.13)

O1A ¼ R1 ¼ a ¼ const; O2A ¼ R2 ¼ R
1þ 	 sin ’

sin ’
; ð16:61Þ

where ’ is the angular coordinate varying in the range �180
 < ’ < 180
. Toroidal
shells, except for shallow part near ’ ¼ 0, can be successfully analyzed by the meth-
ods of the theory of edge effect (see Sec. 16.4).

For shells including the shallow part near ’ ¼ 0, the problem becomes more
complicated. Considerable difficulties are associated with determining a particular
solution of the nonhomogeneous governing differential equations, because the mem-
brane solution near ’ ¼ 0 becomes invalid. Thus, toroidal shells must be analyzed by
using the governing equations of the general moment theory of axisymmetric shells
of revolution. Substituting for the principal radii of curvature from the relations
(16.61) into Eqs (16.30), we obtain the following governing differential equations of
the axisymmetric deformation of toroidal shells:

L2ðUÞ þ �L2ðUÞ ¼ Eha#1ð’Þ þ�ð’Þ;

L2ð#1Þ � �#1 ¼ � a

D
U;

ð16:62Þ

where

L2ð. . .Þ ¼
1þ 	 sin ’

sin ’

d2ð. . .Þ
d’2

þ cot ’
dð. . .Þ
d’

� 	 cot ’ cos ’
1þ 	 sin ’ ð. . .Þ;

�ð’Þ ¼ a2
d

d’
p3

1þ 	 sin ’ð Þ2
	2 sin2 ’

" #
þ p1a

2 ð1þ 	 sin ’Þ
	 sin ’

1þ 	 sin ’
	 sin ’

þ �
� �

þ Fð’Þ cos ’ð2þ 3	 sin ’Þ
	 sin4 ’ð1þ 	 sin ’Þ :

ð16:63Þ
The solution of Eqs (16.62) can be obtained by numerical methods introduced in
Chapter 6 – in particular, by the finite element method.

PROBLEMS

16.1 Derive Eqs (16.5).

16.2 Derive Eqs (16.9).

16.3 Show that the vertical displacement of a point in the middle surface of shell of revolu-

tion,  (see Fig. 16.1) are governed by the following equation

 ¼
ð’
’0

ð"1 sin �’’þ #1 cos �’’ÞR1d �’’:

16.4 Verify Eqs (16.50).

16.5 Consider a spherical dome supporting its own weight and described in Sec. 14.1.1.

Assume that the supports are as shown in Fig. 14.2a. (a) Determine the bending

stresses and (b) compare the bending and membrane stresses. Assume reasonable

values for any additional properties and parameters required.
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16.6 A dome in the form of a spherical segment is clamped around its base and is loaded by

an external pressure p ¼ 1:5 MPa. Determine the force and moment applied to the base

of the shell by support. Take ’1 (the meridional angle at the shell base)=55
, E ¼
200GPa; � ¼ 0:3; h ¼ 20 mm, and R ¼ 1500 mm.

16.7 A cylindrical tank is capped by a hemispherical shell, as shown in Fig. 16.6. The tank is

loaded by an internal pressure p ¼ 1:4 MPa. Determine the discontinuity stresses at the

junction. Take the allowable membrane stress �all ¼ 120 Mpa, E ¼ 200GPa � ¼ 0:3,
R ¼ 1000mm, hc ¼ hs ¼ 12mm, where hc and hs are the thicknesses of the cylindrical

tank and hemispherical shell, respectively.

16.8 A hemispherical cap of radius R and thickness h is loaded by uniformly applied to the

free edge of the cap moments M0. Determine the length L, measured along the mer-

idian from the loaded edge of the cap, where the internal momentM1 diminishes to 1%

of moment M0. How does this length compare with that in Example 15.1 for a cylind-

rical shell?

16.9 Redo Problem 16.8 replacing the moments M0 with uniformly applied horizontal

forces Q0 to the free edge of the cap.

16.10 What is the maximum stress at the junction of the flat circular plate and (a) hemi-

spherical shell (Fig. P.16.1a) and (b) conical shell with 	 ¼ 37
 (Fig. P.16.1b)? Both

shells are subject to an internal pressure of p ¼ 1:5 MPa. Let E ¼ 200GPa; and

� ¼ 0:27.
16.11 A conical frustum has a free edge at its top and it is built-in at the base. The shell is

subject to internal pressure p. Determine the internal forces and bending moments in

the shell. Let the radii of the parallel circles at the shell top and its base be 5.5 m and

8.5m, respectively, h ¼ 60mm; E ¼ 200GPa; and � ¼ 0:3. Employ the approximate

method of Sec. 16.4 to determine the bending stress resultants and couples.

16.12 Calculate the displacements of the edge of the hemispherical shell shown in Fig. 16.5a.

For your calculations use the numerical data in Example 16.1.

16.13 Compare the values of the normal stresses in the spherical shell segment for four

variants of boundary conditions at its base: (a) the shell is loaded by a normal mer-

idional force Ne applied to its free edge; (b) the shell is built-in; (c) the shell has roller

supports at its free edge; and (d) the shell is simply supported. The shell is subjected to

an external normal pressure p. Let R ¼ 30h and ’1 ¼ 35
(meridional angle at the shell

base) for all the above-mentioned shells. Employ the approximate method of Sec. 16.4

for the solution.

16.14 Consider the Intze-type water tank of Problem 14.18 (Fig. 14.14a). (a) Find the bend-

ing stress resultants and couples in the wall and the roof and plot their diagrams.

(b) Assume that there is no ring beam at B. Find the final value of N2 in the cone

at B using the moment theory. Neglect the effects of discontinuities at C on the stresses

Fig. P16.1
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at B. In your calculations assume that the modulus of elasticity of the wall and the roof

are the same and Poisson’s ratios are zero. Use the numerical data in Problem 14.18 for

the solution.

16.15 Find the bending field in the intersection of the cylindrical wall and its conical end caps

in the cylindrical pressure vessel shown in Fig. P.14.4. Take H ¼ 2R ¼ 2m, h1 ¼ 10

mm, h2 ¼ 12mm, E ¼ 200 GPa, � ¼ 0:3.
16.16 Consider the water tank shown in Fig. P.14.3. Perform a complete analysis of this tank.

Let R ¼ 500mm; H ¼ 2R; and h1 ¼ h2 ¼ 5mm. Assume reasonable values for any

additional properties required.

16.17 Consider a conical shell with a central angle 	, the base radius a, and thickness h. The

lower edge of this cone is fixed against rotation and translation. The shell is subjected

to its own weight with intensity p. Perform a complete analysis of this shell.

16.18 Verify Eqs 16.62.
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17

Approximate Theories of Shell
Analysis and Their Applications

17.1 INTRODUCTION

The complexity of the governing equations of the general linear theory of thin shells
motivated the development of a wide range of approximate theories associated with
simplifications of these equations.

There are two principal avenues in developing these approximate theories. The
first avenue is based on introducing some additional hypotheses (except for the
general Kirchhoff–Love assumptions) that follow from the mechanical analysis of
shell straining under applied loading, numerical results of solving various particular
shell problems, and from experimental investigations [1–4, etc.]. The second avenue
is based on the asymptotic analysis of the governing differential equations of the
general linear theory of thin shells having a small parameter a (see Sec. 15.2) [5].
Both avenues arrive at the same results. However, the second avenue provides a way
for an error estimation of the corresponding approximate equations. Note that the
possibility of introducing one or other simplification is determined by the character
of loading (its variation), boundary conditions, and the shell stiffness and its other
geometric parameters.

In this chapter we consider only the first avenue of simplifications and the
corresponding approximate theories.

17.2 THE SEMI-MEMBRANE THEORY OF CYLINDRICAL SHELLS

In the analysis of long closed and open cylindrical shells, the so-called semi-mem-
brane theory has enabled a wide range of applications. It enables one to analyze the
above-mentioned shells with the use of simple (and well-known for engineers) math-
ematical technique in situations when the membrane theory is not applicable.
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17.2.1 The governing differential equations of the semi-membrane
theory

It was mentioned previously that the membrane theory is inapplicable for the stress
analysis of long cylindrical shells. Another deficiency of the membrane theory is the
impossibility of satisfying the prescribed boundary conditions on the longitudinal
edges of an open cylindrical shell. Vlasov [1] proposed an approximate approach, the
so-called semi-membrane theory of cylindrical shells, which is free of those draw-
backs. Moreover, this theory is significantly simpler than the general theory of
cylindrical shells. As a result, Vlasov’s theory has been widely adapted in engineering
practice for the analysis of cylindrical shell structures.

The semi-membrane theory is based on the following assumptions (along with
the general Kirchhoff–Love hypotheses):

1. The bending, M1, and twisting, H, moments at sections normal to the shell
generator are insignificant and may be neglected. This means that the
normal stresses are assumed to be uniformly distributed across the shell
thickness at a section, perpendicular to the longitudinal axis of the shell.

2. The circumferential strain "2 and shear strain �12 in the middle surface are
neglected.

3. Poisson’s ratio is zero, i.e., � ¼ 0:

Introducing these assumptions implies that a real shell is replaced by the model
depicted in Fig. 17.1a. According to this model, a shell consists of innumerable
sets of transverse elementary curvilinear strips connected by hinged bonds. Each
such strip works in bending in the plane of the shell cross section. Forces are trans-
mitted from strip to strip by means of rods. The latter can transmit only in-plane
normal and shear forces, N1 and S, respectively. Non-zero stress resultants and
couples are shown in Fig. 17.1b.

The assumptions introduced above are justified by some physical considera-
tions. Gol’denveizer [5] and Novozhilov [2] showed that these assumptions are math-
ematically equivalent to the inequality

@2f

@x2

					
					� @2f

@�2

					
					; ð17:1Þ

Fig. 17.1
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which states that the second derivative of any function (displacement, strain, stress
resultant or couple) in the longitudinal direction is negligible compared with its
second derivative in the circumferential direction. As mentioned in Sec. 15.2, such
a state of stress and strain is referred to as the basic one.

The equations of equilibrium (Eqs (15.4)) with regard to the introduced assump-
tions (M1 ¼ Q1 ¼ H ¼ 0) are of the following form (for circular cylindrical shells):

R
@N1

@x
þ @S
@�

þ p1R ¼ 0;

@N2

@�
þ R

@S

@x
� 1

R

@M2

@�
þ p2R ¼ 0;

1

R

@2M2

@�2
þN2 þ p3R ¼ 0:

ð17:2Þ

Eliminating from the above equations the membrane forces S and N2 results in the
following equation that relates N1 to M2:

@2N1

@x2
þ 1

R3
�ðM2Þ ¼ � @p1

@x
þ 1

R

@p2
@�

� 1

R

@2p3
@�2

; ð17:3Þ

where the operator �, called Vlasov’s operator, is given as follows:

�ð. . .Þ � @4ð. . .Þ
@�4

þ @
2ð. . .Þ
@�2

: ð17:4Þ

We come now to the derivation of equations for strains and displacements. Taking
into account the assumptions of the semi-membrane theory ("2 ¼ �12 ¼ 0; �1 ¼ 0),
the kinematic relations (15.5) take the form

"1 ¼
@u

@x
; "2 ¼

1

R

@v

@�
� w

R
¼ 0; �12 ¼

@v

@x
þ 1

R

@u

@�
¼ 0; ð17:5aÞ

�1 ¼ 0; �2 ¼ � 1

R2

@v

@�
þ @

2w

@�2

 !
and �12 ¼ � 1

R

@v

@x
þ @2!

@x@�

" #
¼ 0 ð17:5bÞ

The angles of rotations of the normal to the middle surface in the circumferential and
meridional directions, #1 and #2 respectively, can be obtained from Eqs (12.2) by
setting 	 ¼ x; 
 ¼ �, A ¼ 1 and B ¼ R. We have

#1 ¼
@w

@x
; #2 ¼

v

R
þ 1

R

@w

@�
: ð17:5cÞ

Using the relations (17.5a) and (17.5b), express the displacements u; w; and curva-
ture �2 in terms of the circumferential displacement v. We obtain

w ¼ @v

@�
; u ¼ �

ð
�

@v

@x
Rd�; �2 ¼ � 1

R2

@v

@�
þ @

3v

@�3

 !
: ð17:6Þ

The constitutive equations (15.6), with regard to the adopted assumptions, can
be represented in the form

N1 ¼ Eh
@u

@x
; M2 ¼ D�2 ¼

Eh3

12
�2: ð17:7Þ
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Let us write the expressions for N1 and M2 in terms of the circumferential
displacement v. From Eqs. (17.6) it follows that

N1 ¼ �Eh

ð
�

@2v

@x2
Rd�; ð17:8aÞ

M2 ¼ � Eh3

12R2

@v

@�
þ @

3v

@�3

 !
: ð17:8bÞ

The remaining stress resultants and couples are not equal to zero, as this seemingly
follows from the adopted assumptions, and they can be also expressed in terms of v
using the equations of equilibrium (Eqs (17.2) and (15.3)). We have

Q2 ¼
1

R

@M2

@�
¼ � Eh3

12R3

@2v

@�2
þ @

4v

@�4

 !
¼ � Eh3

12R2
�ðvÞ; ð17:9Þ

S ¼ �
ð
�

@N1

@x
Rd� �

ð
�

p1Rd� ¼ Eh

ð
�

ð
�

@2v

@x2
R2d�

" #
d� �

ð
�

p1Rd�; ð17:10Þ

N2 ¼ � 1

R

@2M2

@�2
� p3R ¼ Eh3

12R3

@

@�

@2v

@�2
þ @

4v

@�4

 !
� p3R ¼ Eh3

12R3

@

@�
�ðvÞ � p3R:

ð17:11Þ
Indeterminate functions in � resulting in integrating over x were dropped because the
above functions must be periodical.

Now all the stress resultants and couples, as well as the displacements, have
been expressed in terms of the circumferential displacement v. To determine this
function, we can apply Eq. (17.3). Substituting for N1 and M2 from Eqs (17.8)
into Eq. (17.3) and, then, differentiating it with respect to �, we obtain the following
governing equation of the semi-membrane theory:

Eh
@4v

@x4
þ Eh3

12R6
��ðvÞ ¼ Pðx; �Þ; ð17:12Þ

where

Pðx; �Þ ¼ 1

R

@2p1
@x@�

� 1

R2

@2p2
@�2

þ 1

R2

@3p3
@�3

ð17:13Þ

is a function of a given surface loading. Equation (17.12) can be integrated in series;
the given loads are expanded into a Fourier series and the function v is sought in the
form of a Fourier series also. The constants of integration are evaluated from the
boundary conditions on the shell edges.

Having determined the function v, it is possible to calculate all the stress
resultants and couples from Eqs (17.8)–(17.11). The displacement components are
given by Eqs (17.6). The stress components can be determined by using the relations

�1 ¼
N1

h
; �2 ¼

N2

h
� 6M2

h2
; �12 ¼

S

h
:
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We can also present the governing differential equation of the semi-membrane
theory in terms of the displacement function F , introduced as follows:

u ¼ � @F
@x
; v ¼ 1

R

@F

@�
; w ¼ @2F

R@�2
: ð17:14Þ

Substituting the above into Eqs (17.5a), it is easily shown that the second assumption
of the semi-membrane theory ("2 ¼ �12 ¼ 0) will be automatically satisfied. Then,
inserting Eq. (17.14) into Eqs (15.6a) and (15.6e) and using the above-introduced
assumptions, leads to the following:

N1 ¼ �Eh
@2F

@x2
; M2 ¼ � Eh3

12R3

@2F

@�2
þ @

4F

@�4

 !
: ð17:15Þ

Finally, substituting the above into Eq. (17.3), one obtains the following alternative
governing equation of the semi-membrane theory of cylindrical shells:

B
@4F

@x4
þ D

R6

@8F

@�8
þ 2

@6F

@�6
þ @

4F

@�4

 !
¼ @p1
@x

� 1

R

@p2
@�

þ 1

R

@2p3
@�2

; ð17:16Þ

where B ¼ Eh is the shell stiffness in tension; D ¼ Eh3=12 is the flexural shell stiffness
(� ¼ 0 due to the third assumption of the semi-membrane theory).

17.2.2 Analysis of cylindrical shells by the semi-membrane theory

Assume that a surface load is symmetrical about the plane � ¼ 0. In this case, the
load components p1; p2; and p3 may be expended into a Fourier series, as follows:

p1 ¼ p10 þ
X1
k¼1

p1k cos k�; p2 ¼ p20 þ
X1
k¼1

p2k sin k�; p3 ¼ p30 þ
X1
k¼1

p3k cos k�:

ð17:17Þ
Substituting Eq. (17.17) into the expression (17.13), yields the load function Pðx; �Þ,
as follows:

Pðx; �Þ ¼
X1
k¼1

� k

R

dp1k
dx

þ k2

R2
p2k þ

k3

R2
p3k

" #
sin k� or

Pðx; �Þ ¼
X1
k¼1

Pk sin k�;

ð17:18aÞ

where

Pk ¼ � k

R

dp1k
dx

þ k2

R2
p2k þ

k3

R2
p3k: ð17:18bÞ

The circumferential displacement v is sought in the form of the series

v ¼
X1
k¼1

Vk sin k�; ð17:19Þ

where Vk ¼ VkðxÞ. Substituting for v and P from Eqs (17.18) and (17.19) into Eq.
(17.12), yields
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Eh
X1
k¼1

d4Vk

dx4
þ h2

12R6
Vkk

4ðk2 � 1Þ2
" #

sin k� ¼
X1
k¼1

Pk sin k�: ð17:20aÞ

The above results in the following system of ordinary differential equations of the
following type:

d4V1

dx4
¼ 1

Eh
P1;

d4V2

dx4
þ h2

12R6
24ð22 � 1Þ2V2 ¼

1

Eh
P2;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

d4Vk

dx4
þ h2

12R6
k4ðk2 � 1Þ2Vk ¼

1

Eh
Pk;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ð17:20bÞ

The first equation of the above system characterizes a bending deformation of the
shell with no distortion of the circumference shape. It can be easily shown that
stresses and displacements corresponding to the first equation completely coincide
with those obtained by the elementary beam bending theory. The second and sub-
sequent equations of the system (17.20b) represent deformation of the shell asso-
ciated with a distortion of the shape of its cross section.

Let us consider the kth equation of the system (17.20b). We represent this
equation in the form

d4Vk

dx4
þ 4
4kVk ¼

1

Eh
PkðxÞ; ð17:21Þ

where

4
4k ¼
h2k4ðk2 � 1Þ2

12R6
and 
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2k4ðk2 � 1Þ2

48R6

4

s
: ð17:22Þ

Equation (17.21) is analogous to that treated previously for the axisymmetric defor-
mation of a circular cylindrical shell (see Eq. (15.44)). Its integral is of the form

Vk ¼ Vkh þ Vkp; ð17:23Þ
where Vk0 is a solution of the homogeneous equation (17.21) and Vkp represents its
particular solution. As discussed in Sec. 15.3, Vkh may be represented in the form

Vkh ¼ A1k cosh 
kx sin 
kxþ A2k cosh
kx cos
kxþ A3k sinh 
kx cos 
kx

þ A4k sinh 
kx sin 
kx: ð17:24aÞ
The particular solution of the nonhomogeneous equation (17.21) depends upon the
type of surface loading. In the case when @4

@x4
PkðxÞ ¼ 0, the particular solution is of

the form

Vkp ¼ PkðxÞ
4Eh
4k

: ð17:24bÞ
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The constants of integration are evaluated from boundary conditions prescribed on
the edges of a shell for the total solution (Eq. (17.23)).

For a very long shell that satisfies the following condition


kL � 3 or L � 2:5R

ffiffiffiffi
R

h

r
ðk � 2Þ ð17:25Þ

it is advantageous to represent the total solution in the following form, analogous to
the expression (15.53):

Vk ¼ C1ke
�
kx sin 
kxþ C2ke

�
kx cos
kxþ Vkp: ð17:26Þ
The constants C1k and C2k are evaluated from boundary conditions prescribed at the
shell edge x ¼ 0:

Example 17.1

A simply supported thin-walled cylindrical tube with flat ends is filled by water up to
the level H, as shown in Fig. 17.2. Determine the deformations and stresses due to
the water pressure. Given L ¼ 40m; 2R ¼ 3:2m; and H ¼ 0:516m.

Solution

The water pressure on the cylindrical wall of the tube and on its ends is given by the
following:

for� �0 � � � �0 p3 ¼ ��lRðcos � � cos �0Þ; ðaÞ
for �0 � � � ð2�� �0Þ p3 ¼ 0; ðbÞ

where �l is the specific weight of water. The negative sign in Eq. (a) is taken because
p3 is assumed to be positive in the inward direction.

The pressure on the bottoms and on the cylindrical surface may be considered
independent from one another. Since the ends have a significant stiffness against
deformations in their own planes that excludes the possibility of distortion of the
shape of the circumference near the tube edge, the pressure on the bottom will cause
an eccentric tension of the tube.

Determine the deformation of the tube caused by the water pressure on the
cylindrical surface of the tube. Let us expend the pressure into the following series
in �:

Fig. 17.2
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p3 ¼ p30 þ
X1
k¼1

p3k cos k�: ðcÞ

Integrating the right- and left-hand sides of the expression (c) together with (a) from
0 to 2�, one finds p30 as follows:

��lR
ð�0
��0

ðcos � � cos �0Þd� ¼ 2�ðp30Þ;

from which

p30 ¼ � �lR
�

ðsin �0 � �0 cos �0Þ: ðdÞ

To determine the coefficient p3k, we multiply the left- and right-hand sides of the
expression (c) by cos k� and integrate from 0 to 2 �. We obtain

��lR
ð�0
��0

ðcos � � cos �0Þ cos k�d� ¼
ð2�
0

p3k cos
2 k�d�;

from which

p3k ¼ � 2�lR

�
fk: ðeÞ

where

fk ¼
sin ðkþ 1Þ�0½ �

2ðkþ 1Þ þ sin ðk� 1Þ�0½ �
2ðk� 1Þ � sin k�0 cos k�0

k
for k 6¼ 1 and

fk ¼
�0
2
� 1

4
sin �0 for k ¼ 1:

ðfÞ

The component of pressure p30, causing an axisymmetric deformation of the tube,
has no significant meaning and it will not be considered in what follows. Determine
the function of the surface load, P. According to Eq. (17.18), for p1 ¼ p2 ¼ 0 and
p3 ¼ p3k;

Pk ¼
k3

R2
p3k ¼ � 2�lk

3

�R
fk;

and one has the following:

P ¼ �
X1
k¼1

2�l fkk
3

�R
sin k�: ðgÞ

Hence, the kth equation (Eq. (17.20b)) takes the form

d4Vk

dx4
þ 4
4kVk ¼ � 2�lk

3fk
�EhR

; ðhÞ

where 
k is given by Eq. (17.22). The solution of this fourth-order differential equa-
tion can be obtained in the form of the sum of a complementary solution of the
homogeneous equation, and of a particular solution. However, there is a good
reason to choose another way for solving Eq. (h). The boundary conditions for
this problem are symmetrical, i.e.,
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v ¼ 0jx¼0;L and N1 ¼ 0
		
x¼0;L

: ðiÞ

(It is assumed that the shell ends offer no resistance to the displacements that are
perpendicular to the end planes. The water pressure is of no concern here; it may be
taken into account separately.) Using Eqs (17.8a) and (17.19), we can rewrite the
boundary conditions (k) in terms of the function Vk as follows:

V ¼ 0k
		
x¼0;L

and
d2Vk

dx2

 !
¼ 0

					
x¼0;L

: ðjÞ

Due to the symmetry of the boundary conditions, the general solution of the differ-
ential equation (h) can be conveniently represented in the form of the following
trigonometric series:

Vk ¼
X1

m¼1;3;5;...

Akm sin
m�x

L
: ðkÞ

It can be easily shown that Vk in the form of the series (k) satisfies all the boundary
conditions (i). Inserting the series (m) into the differential equation (h) results in the
equality

X1
m¼1;3;5;...

Akm

m�

L

� �4
sin

m�x

L
þ 4
4k

X1
m¼1;3;5;...

Akm sin
m�x

L
¼ � 2k3�l fk

�EhR
: ðlÞ

To determine the coefficients Akm, we multiply both sides of the above equation by
sinm�x=L and integrate from 0 to L. As a result, we obtain

Akm ¼ � 8k3�l fkL
4

m�2REhðm4�4 þ 4
4kL
4Þ : ðmÞ

Inserting the above into Eqs (k) and (17.19), yields the following trigonometric series
for v:

v ¼ �
X1

k¼1;2;...

X1
m¼1;3;5;...

8k3�l fkL
4

m�2REhðm4�4 þ 4
4kL
4Þ sin

m�x

L
sin k�: ðnÞ

These series converge very rapidly. Knowing v, we can calculate the remaining
displacement components u and w (see Eqs (17.6)) and the stress resultants and
couples (see Eqs (17.7)–(17.11)). For k ¼ 1, the parameter 
k ¼ 0 and the corre-
sponding solution will coincide with the elementary solution of the bending theory
of a beam.

Let us present the solution of the same problem assuming that the tube is
supported by a rigid collar at its midspan, as shown in Fig. 17.3. It is assumed
that the collar prevents completely a distortion of the circular cross section of the
tube.

In this case, the shell has two segments. Taking the origin of the coordinate
system at a middle point of the shell length, one can write the following boundary
conditions for function Vk ðk � 2Þ :
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u ¼ 0; v ¼ 0; Vk ¼ 0;
dVk

dx
¼ 0

				
x¼0

and

v ¼ 0; N1 ¼ 0; Vk ¼ 0;
d2Vk

dx2
¼ 0

					
x¼L=2

:

ðoÞ

Since these boundary conditions are asymmetric, the solution should be sought in
the form of Eq. (17.23), (17.24) i.e., as the sum of Vkc and Vkp. Evaluating the
constants of integration Aik ði ¼ 1; 2; 3; 4Þ in the above solution from the boundary
conditions (o), we can determine the circumferential displacement v from Eq. (17.19)
and then can calculate all the displacement and stress components. Figure 17.4
depicts the diagrams of the meridional normal stresses �1over the middle cross
section of the tube:

(a) according to the elementary beam bending theory (Fig. 17.4a);
(b) based on Vlasov’s theory, in the absence of the reinforcing collar (Fig.

17.4b); and
(c) based on Vlasov’s theory but with the rigid collar at the tube midspan

(Fig. 17.4c).

Figure 17.5 shows the diagrams of the meridional normal stresses �1 in the lower
stretched fiber along the tube length for the above-mentioned three cases.

Fig. 17.3

Fig. 17.4
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The last two solutions (for Cases b and c) were obtained by retaining four
terms in the expansion (m).

Comparing the bending stress diagrams depicted in Figs 17.4 and 17.5, one
concludes that:

(a) Stresses in the shell for the given loading differ significantly from those
calculated by the elementary beam bending theory.

(b) The bending stresses are noticeably reduced if a rigid collar, preventing a
distortion of the tube cross section, is present. The character of the stress
distribution is also changed.

This example was taken from Ref. [6].
If a large number of rigid collars were placed over the shell length in such a way

that all its cross sections remained circular and undistorted, the deformations and
stresses would not be different from those calculated by the beam bending theory.
Based on the above, one can conclude that the most efficient way of decreasing
stresses in shell structures is to attach rigid collars to the shells. If a shell is loaded
by a concentrated force, normal to the shell middle surface, then it is sufficient to set
up only one rigid collar at a place of the force application. In this case, the shell will
deform as a beam, i.e., without distortion of its cross section.

In conclusion, let us discuss some issues regarding accuracy and area of
application of the semi-membrane theory. It was indicated earlier (see Chapter 13)
that the accuracy of solutions given by the membrane theory depends on the smooth-
ness of a shell geometry, the smoothness of an applied loading, and on the formula-
tion of boundary conditions. However, for a cylindrical shell, in addition to these
requirements, one more requirement is added – namely, a shell length (see Sec. 13.6).
It was shown in that section that the accuracy of the membrane solution decreases
with an increase in the shell length, even if the other requirements of the existence of
the membrane state of stress are satisfied. From a physical point of view, this means
that for a long cylindrical shell the boundary conditions have little effect on the
stresses and deformations in its middle part and these boundary conditions cannot
prevent the appearance of significant bending stresses in this part of the shell (if an
external loading is capable of causing the bending stresses).

Thus, the semi-membrane theory holds an intermediate place between the
membrane theory and the general theory of thin shells (see Chapter 12). It can be
applied to relatively long open and closed cylindrical shells with an arbitrary shape
of the cross section if the variation of the displacement and stress components in the
direction of the shell generator is smoother than their variation in the circumferential

Fig. 17.5
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direction. It follows from the above that a simple criterion for an estimate of the
accuracy of solutions of the semi-membrane theory can be established. This criterion
lies in the comparison of @2f =@x2 and @2f =@�2 (where f is any displacement, strain,
internal force, or stress component), according to the inequality (17.1).

It should be noted, however, that for very long shells, subjected to smoothly
varying loads along their generator, distortions of the shell cross section can be
neglected. Such shells may be treated as thin-walled bars. On other hand, for
small values of L=R, the membrane theory is more accurate than the semi-membrane
theory because the former theory takes into account the in-plane cross-section defor-
mations "2 and �12. However, for very small values of L=R ðL=R < 3

ffiffiffiffiffiffiffiffiffi
h=R

p
) [7], both

the theories are inapplicable because, in this case, the deformations vary rapidly in
the shell longitudinal direction. Finally, the semi-membrane theory can be recom-
mended for medium-length cylindrical shells (L=2R ¼ 2� 8)

17.3 THE DONNELL–MUSHTARI–VLASOV THEORY OF THIN SHELLS

This section will continue the discussion about simplified theories of thin shells. We
introduce below the Donnell [3], Mushtari [4], and Vlasov [1] theory (abbreviated as
the DMV theory). Conceptually, the DMV theory represents a simplified variant of
the general linear theory of thin shells. Usually, this theory is based on the following
physical assumptions (along with the Kirchhoff–Love hypotheses):

(a) the effect of the transverse shear forces Q1 and Q2 in the in-plane equili-
brium equations is negligible (the static assumption);

(b) the influence of the deflections, w, will predominate over the influences of the
in-plane displacements u and v in the bending response of the shell (the
geometric assumption).

It should be noted that the static and geometric assumptions agree well with each
other as predicted by the static–geometric analogy established for thin shells by
Gol’denveizer [5]. Further, it was shown by Novozhilov [2] that the above physical
assumptions are well justified in the following two cases:

1. A shell is shallow ( see Sec. 11.8.4).
2. The state of stress is of such a type that displacements, and hence, stresses,

are rapidly varying functions at least in the direction of one of the coordi-
nates 	 and 
. As a result, the derivatives of these functions are signifi-
cantly greater than the functions themselves – the second derivatives are
greater than the first derivatives, etc.

The second case is more general than the first case because it is applied not only to
open but also to closed shells, i.e., to essentially non-shallow shells.

A variation of any function f ðsÞ can be characterized by the order of the value

1

f ðsÞ		 		 df ðsÞ
ds

				
				 � 1

b
; ð17:27Þ

where b is a typical linear dimension of the shell and the symbol � indicates the
identity of the values order. It is assumed that the state of stress and strain of a shell
is rapidly varying, say in the 	 direction, if for any functions f ð	; 
Þ (displacements,
stress resultants, and and couples) the following strong inequality holds [2,5]:

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Rj jmin

f
		 		 @f

A@	

				
				� 1: ð17:28Þ

Based on the physical assumptions of the DMV theory, the kinematic relations
(12.24) and the first two (the in-plane) equilibrium Eqs (12.41) are simplified to the
following form:

The kinematic relations

�1 ¼ � 1

A

@

@	

1

A

@w

@	

� �
þ 1

AB2

@A

@B

@w

@


� �
;

�2 ¼ � 1

B

@

@


1

B

@w

@


� �
þ 1

A2B

@B

@	

@w

@	

� �
;

�12 ¼ � 1

AB

@2w

@	@

� 1

B

@B

@	

@w

@

� 1

A

@A

@


@w

@	

" #
:

ð17:29Þ

(the terms containing the in-plane displacements u and v for the changes in the
curvature and twist of the middle surface were dropped in the above equations);

The in-plane equilibrium equations

@

@	
ðBN1Þ þ

@

@

ðASÞ þ @A

@

S � @B

@	
N2 þ ABp1 ¼ 0;

@

@

ðAN2Þ þ

@

@	
ðBSÞ þ @B

@	
S � @A

@

N1 þ ABp2 ¼ 0

ð17:30Þ

(the transverse shear forces Q1 and Q2 were neglected here, and N12 ¼ N21 ¼ S). The
third Eq. (12.41) and Eqs (12.42) remain unchanged. Taking into account the
approximate nature of the DMV theory, we also can set M12 ¼ M21 ¼ H. The con-
stitutive equations (12.45) and (12.46) will also remain unchanged.

Vlasov [1] introduced a scalar function of stresses �ð	; 
Þ as follows:

N1 ¼
1

B

@

@


1

B

@�

@


� �
þ 1

A2B

@B

@	

@�

@	
;

N2 ¼
1

A

@

@	

1

A

@�

@	

� �
þ 1

AB2

@A

@


@�

@

;

S ¼ � 1

AB

@2�

@	@

� 1

B

@B

@	

@�

@

� 1

A

@A

@


@�

@	

 !
:

ð17:31Þ

Substituting for N1;N2; and S from Eqs (17.31) into Eqs (17.30), taking into account
the Codazzi–Gauss relations (11.27), and setting p1 ¼ p2 ¼ 0, it can be established
that the latter equations will not be satisfied identically. The left-hand sides of these
equations do not turn out to equal zero; they are equal to

� @�

A@	

AB

R1R2

and � @�

B@


AB

R1R2

;

respectively. Thus, an exact realization of the homogeneous equations of equilibrium
(17.30) is reached only for shells of zero Gaussian curvature. However, these equa-
tions are satisfied approximately also in the case when the state of stress is rapidly
varying in the direction of the coordinate lines 	 and 
. It can be shown that in this
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case, the non-zero terms may be disregarded because of their smallness, even if the
Gaussian curvature differs from zero. Therefore, it can be concluded that for a
sufficiently rapid variability of the state of stress, the expressions (17.31) satisfy
approximately Eqs (17.30) (for p1 ¼ p2 ¼ 0Þ for an arbitrary shell geometry with
an accuracy comparable to neglecting the first derivatives of � compared with its
second and third derivatives.

Substituting for Q1 and Q2 from Eqs (12.42) into the third Eq. (12.41), and
using the relations (12.46) and (17.29), we obtain the following equation:

�Dr2r2wþN1

R1

þN2

R2

þ p3 ¼ 0: ð17:32Þ

Finally, substituting for N1 and N2 from the first two Eqs (17.31) into the above
equation, after some manipulations and taking into account the Codazzi–Gauss
relations (11.27), yields the following equation:

Dr2r2w� r2
k� ¼ p3; ð17:33aÞ

where

r2ð. . .Þ � 1

AB

@

@	

B

A

@ð. . .Þ
@	

� �
þ @

@


A

B

@ð. . .Þ
@


� �� �
ð17:34aÞ

is the Laplace elliptic operator and,

r2
kð. . .Þ ¼

1

AB

@

@	

B

A
�2
@ð. . .Þ
@	

� �
þ @

@


A

B
�1
@ð. . .Þ
@


� �� �
ð17:34bÞ

is the Vlasov’s operator [1]; �1 ¼ 1=R1; �2 ¼ 1=R2 are the principal curvatures in the
directions of the coordinate lines 	 and 
, respectively.

Equation (17.33a) involves two unknown functions, w and �. The second
differential equation, connecting the same two functions, can be obtained from
the compatibility equations (12.27). The parameters �1; �2; and �12 are expressed
in terms of w and the in-plane components of deformation. The latter components
are connected with in-plane forces, and hence, by Hooke’s law, with the function �.
However, the in-plane deformations appear in the first two Eqs (12.27) only as
secondary terms of the form "=R, but the terms of the same order compared with
� (changes in curvature and twist) have been already disregarded. Thus, according to
the DMV theory, the compatibility equations (12.27) can be also simplified to the
form

@

@	
ðB�2Þ �

@B

@	
�1 �

1

A

@

@

ðA2�12Þ ¼ 0;

@

@

ðA�1Þ �

@A

@

�2 �

1

B

@

@	
ðB2�12Þ ¼ 0;

1

AB

@

@	

1

A
� @

@	
ð"2BÞ þ

@B

@	
"1 þ

1

2A

@

@

ð�12A2Þ

� � �

þ 1

AB

@

@


1

B
� @

@

ð"1AÞ þ

@A

@

"2 þ

1

2B

@

@	
ð�12B2Þ

� � �
� �2

R1

þ �1
R2

� �
¼ 0:

ð17:35Þ
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It can be shown that the first two equations of the above system are automatically
satisfied if we substitute for �1; �2; and �12 from the kinematic relations (17.29).
The third equation of the system (17.35), after substituting for "1; "2; and �12 from
Eqs (12.45) together with Eqs (17.31), and for �1; �2; and �12 from Eqs (17.29),
and after some transformations with the use of the Codazzi–Gauss relations, takes
the form

r2r2�þ Ehr2
kw ¼ 0: ð17:33bÞ

Thus, the system of the governing differential equations of the approximate DMV
theory of thin shells have the following form:

�r2
k�þDr2r2w ¼ p3;

r2r2�þ Ehr2
kw ¼ 0:

ð17:36Þ

The first equation of the above system is the equilibrium equation, whereas the
second one represents the compatibility equation. For a flat plate, �1 ¼ 0 and
�2 ¼ 0, and therefore, r2

kð. . .Þ ¼ 0. Hence, for flat plates, the first and second Eqs
(17.36) are uncoupled. The second equation, r2r2� ¼ 0, determines the Airy stress
function of the plane stress problem, and the second one, Dr2r2w ¼ p3, describes
the plate bending problem, as discussed in Part I of the book. The operator r2

k,
depending upon the shell curvatures, characterizes in Eqs (17.36) the coupled effect
between the bending and membrane stress resultants.

In conclusion, let us briefly discuss a practical application of the DMV theory
of thin shells. As mentioned previously, it can be applied to closed or open shells of
any geometry if the state of stress is rapidly varying, at least, in one direction. It
should be noted that solutions of the membrane shell problem and problem of pure
bending are given by slowly varying functions. Therefore, the DMV theory can give
a serious error in the stress analysis of such shell problems only if a shell area under
consideration is not small compared with the radius Rj jmin. The DMV theory can be
applied successfully to the analysis of thin shells whose state of stress is described by
rapidly varying functions as, for instance, in the edge effect state of stress, discussed
in detail in Sec. 17.5 for thin shells of any geometry. The DMV theory can also be
correctly applied to the stress analysis of the shallow shells introduced in the next

section. Lur’e [8] showed that the analysis of not too long L
R
� 0:75

ffiffiffi
R
h

q� �
cylindrical

shells, based on the DMV theory, gives sufficiently accurate results even for slowly
varying loads.

17.4 THEORY OF SHALLOW SHELLS

Shallow shells are frequently used for roof structures of industrial and public build-
ings. They are also used in mechanical and aerospace engineering applications. The
theory of shallow shells can be also used to analyze shells that become locally
shallow when the original shell is divided into finite segments or elements (see, for
instance, Chapter 19).

Shallow shells were introduced in Sec. 11.8.4. Let us define a shallow shell in a
more rigorous manner. Take the Cartesian coordinates x and y of the projections of
points of the shell’s middle surface on the coordinate plane Oxy as curvilinear
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coordinates 	 and 
 of that surface, i.e., define the middle surface of the shell by the
following equation:

z ¼ zðx; yÞ: ð17:37Þ
This can be done because of the single-valued correspondence of points of the middle
surface and their rectangular projections on the plane Oxy.

A shell may be called shallow if at any point of its middle surface the inequalities
(11.58) hold.

If we confine our analysis to the accuracy of the theory of thin shells (see
inequality (10.1)), i.e., consider a shell as shallow for

@z

@x

� �2

< 0:05;
@z

@y

� �2

< 0:05; ð17:38Þ

then the angle of 0.224 rad or � 13
 may be taken as the limiting angle between the
tangent plane to the shell’s middle surface and the coordinate plane Oxy. Notice that
Vlasov [1] defined a shallow shell as a shell whose rise does not exceed 1/5 of the
smallest dimension of the shell in its plane (projection on the coordinate plane Oxy).
However, it can be shown [2] that this practical limitation of the applicability of the
shallow shell theory corresponds to the error noticeably exceeding the above-men-
tioned error of 5%.

Consider an element of the middle surface ABCD (Fig. 11.15a). Let its projec-
tion on the coordinate plane Oxy be the rectangle with sides dx and dy, as shown in
Fig. 11.15a. The sides of the element ABCD are the following:

ds1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@x

� �2
s

dx; ds2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@y

� �2
s

dy:

However, by virtue of the assumption (17.38), one can use the following approxima-
tions:

ds1 � dx; ds2 � dy; ð17:39Þ
i.e., one can identify the increments of arcs of the coordinate lines on the shell’s
middle surface with the increments of the corresponding rectangular coordinates.
The cosine of angle between the lines x and y is equal to

cosðds1^; ds2Þ ¼
@z
@x
@z
@yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @z
@x

� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @z

@y

� �2r :

It follows from the above that for shallow shells, again because of the inequalities
(17.38), one can assume that

cosðds1^; ds2Þ � 0; ð17:40Þ
i.e., it is possible to consider the curvilinear system x; y as approximately orthogonal.
The curvatures of the coordinate lines x and y, �1 and �2, and ‘‘twist,’’ �12, of the
undeformed middle surface at any point of the middle surface of the shallow shell
can be identified with the second derivatives of Eq. (17.37), i.e.,
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�1 ¼
1

R1

� @2z

@x2
; �2 ¼

1

R2

� @2z

@y2
; �12 �

@2z

@x@y
: ð17:41Þ

Taking Eqs (17.39) and (17.40) as exact equalities, we obtain that the following
Lamé parameters for a shallow shell of any geometry:

A ¼ 1; B ¼ 1; ð17:42Þ
i.e., the intrinsic geometry of a shallow shell is identical to the geometry of a plane of its
projection. This actually represents the first basic assumption of the theory of shallow
shells. It follows from the above that the shallow shell has the Gaussian curvature
� ¼ 1

R1R2
� 0 because the latter is an exact zero only for flat plates. In particular cases

the Gaussian curvature of shallow shells is also exactly equal to zero (for instance, if
a shallow shell is a cylindrical or conical shell).

As mentioned in Sec. 17.3, the DMV theory can be applied to the analysis of
shallow shells. Hence, the next, second basic assumption of the theory of shallow shells
is the basic assumption of the more general DMV theory of neglecting the tangential
(membrane) displacements u and v in the kinematic expressions for the changes in
curvature and twist, Eqs (12.24) and the transverse shear forces Q1 and Q2 in the two
first equations of equilibrium (12.41) (see Sec. 17.3).

The DMV theory, as the general theory of thin shells, was constructed in terms
of the lines of curvature as curvilinear coordinate lines. Therefore, from now on,
assume that the coordinate lines x and y coincide with the lines of curvature of the
shell’s middle surface. The error of this assumption is not beyond the limits of the
accuracy of the shallow shell theory.

The shallowness of shells makes it possible to make further simplifications to
the DMV theory. Making 	 ¼ x; 
 ¼ y; and A ¼ B ¼ 1, we obtain the following
relations for the strain components (Eqs (12.23)) and changes in curvature (Eqs
(12.24)):

"1 ¼
@u

@x
� w

R1

; "2 ¼
@v

@y
� w

R2

; �12 ¼
@v

@x
þ @u
@y
;

�1 ¼ � @
2w

@x2
; �2 ¼ � @

2w

@y2
; �12 ¼ � @2w

@x@y
:

ð17:43Þ

The Laplace operator (17.34a) is easily simplified to the form

r2ð. . .Þ � @2ð. . .Þ
@x2

þ @
2ð. . .Þ
@y2

: ð17:44aÞ

The Codazzi conditions (11.27a) for shallow shells, and taking into account Eqs
(17.42), are

@

@


1

R1

� �
¼ 0 and

@

@	

1

R2

� �
¼ 0:

Also, the Vlasov operator r2
k, introduced in Sec. 17.3 (see Eq.(17.34b)), taking into

account the above relations, can be simplified to the following form:

r2
kð. . .Þ �

1

R2

@2ð. . .Þ
@x2

þ 1

R1

@2ð. . .Þ
@y2

¼ �1
@2ð. . .Þ
@x2

þ �2
@2ð. . .Þ
@y2

: ð17:44bÞ
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Although the operators r2 and r2
k were notably simplified, the system of governing

equations for the theory of shallow shells will be of the same form as the system of
equations (17.36) derived in Sec. 17.3 for the general DMV approximate theory of
thin shells.

Solving the system of differential equations (17.36), gives � and w. Having
determined the above functions, we can then determine the internal forces and
moments using Eqs (17.31), (17.29) and (12.46). Let us present below all these
equations for shallow shells, as follows:

N1 ¼
@2�

@y2
; N2 ¼

@2�

@x2
; S ¼ � @2�

@x@y
; ð17:45aÞ

M1 ¼ �D
@2w

@x2
þ � @

2w

@y2

 !
; M2 ¼ �D

@2w

@y2
þ � @

2w

@x2

 !
;

H ¼ �ð1� �Þ @
2w

@x@y
; ð17:45bÞ

Q1 ¼ �D
@

@x
ðr2wÞ; Q2 ¼ �D

@

@y
ðr2wÞ:

The solution of Eqs (17.36) must satisfy the boundary conditions prescribed
on the shell edges. We present below some typical boundary conditions for a
shallow shell of an arbitrary geometry whose boundaries form a rectangular
plane. For the sake of simplicity, assume that the shell edges coincide with the
x- and y-coordinate lines and these lines are the lines of curvature. As mentioned
previously, Eqs (17.36) have the eighth order, so the four boundary conditions
must be prescribed on each edge of the shell (by two conditions on each of the
functions � and w). Let us consider the boundary conditions for the shell edge x ¼
const: Note that the boundary conditions, depending on the shell deflections, have
the same form as that for flat plates (see Eqs (2.48)). Therefore, we introduce
below some typical boundary conditions imposed on the function � (or on the
in-plane displacements in the directions of the x and y axes, u and v). We have (for
example, for the shell edge x ¼ const.)

(a) Points of the shell edge can freely displace in the direction of the x axis.
This means that

N1 ¼ 0 or
@2�

@y2
¼ 0: ð17:46aÞ

(b) Points of the shell edge can freely displace in the direction of the y axis.
Then, we have

�12 ¼ 0 or
@2�

@x@y
¼ 0: ð17:46bÞ

(c) No displacements of the shell edge are allowed in the x direction, i.e.,

u ¼ 0: ð17:47aÞ
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(d) No displacements of the shell edge are allowed in the y direction, i.e.,

v ¼ 0: ð17:47bÞ

In solving real design problems, various combinations of these boundary conditions
can be met. For example, for a clamped shell edge that is parallel to the y axis, the
boundary conditions are given by

u ¼ v ¼ w ¼ @w

@x
¼ 0: ð17:48Þ

If a shell edge rests on a diaphragm that is absolutely rigid in its own plane and
flexible out of the plane, the boundary conditions have the form

@2�

@y2
¼ 0; v ¼ w ¼ @2w

@x2
¼ 0: ð17:49aÞ

If a shell edge can displace freely along this diaphragm, then we have

@2�

@y2
¼ @2�

@x@y
¼ 0; w ¼ @2w

@x2
¼ 0: ð17:49bÞ

Similarly, the boundary conditions can be presented for the shell edge y ¼ const:
For the analysis of shallow shells it is necessary to solve the system of equations

(17.36), satisfying the above boundary conditions for the functions w and �. For a
solution of these equations, some analytical and numerical methods, introduced in
Chapter 6, may be applied. One of the most adapted analytical methods for solving
this system of linear differential equations for a shallow shell with constant curva-
tures whose edges form a rectangular plane is the Fourier method of double series,
which is similar to the Navier method discussed in Sec. 3.3 for bending of rectangular
plates. Variational methods are frequently used for analyses of shallow shells. In
order to apply the variational methods introduced in Chapter 6, let us set up the
expression for the strain energy of shallow shells. Substituting for N1;N2; and S
from Eqs (17.45a) and for M1;M2; and H from Eqs (17.45b) into Eq. (12.52) and
setting A ¼ B ¼ 1, we obtain the following expression for the strain energy of shal-
low shells:

U ¼ 1

2Eh

ð ð
A

@2�

@x2
þ @

2�

@y2

 !( 2

� 2ð1þ �Þ @2�

@x2
@2�

@y2
� @2�

@x@y

 !2
2
4

3
5
9=
;dA

þ
ð ð

A

D

2

@2w

@x2
þ @

2w

@y2

 !2

�2ð1� �Þ @2w

@x2
@2w

@y2
� @2w

@x@y

 !2
2
4

3
5

8<
:

9=
;dA;

ð17:50Þ
where A is the area of the middle surface of the shallow shell.

Writing the corresponding expressions for work done by external loads, We,
and the total potential energy, �, we can apply the Ritz method (see Sec. 6.6) for
solving various problems of shallow shell analysis.
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Example 17.2

A shallow, rectangular in a plane, shell of sides a and b, is subjected to a normal
uniform surface load p0 ¼ const directed downward. The middle surface of the shell
has the form of an elliptic paraboloid:

z ¼ f
f1
f

2
x

a
� 1

� �2
þ f2

f
2
y

b
� 1

� �2
�1

� �
; ðaÞ

where f ¼ f1 þ f2 is the rise of the shell (Fig. 17.6). The shell rests on the diaphragms
along its edges. These diaphragms are absolutely rigid in their planes and flexible out
of the planes. Determine the deflections, internal forces, and moments.

Solution

Determine the principal curvatures of the shell. It follows from Eqs (17.41) that we
have

�1 ¼ 8
f1
a2
; �2 ¼ 8

f2
b2
; �12 ¼ 0: ðaÞ

Substituting the above into the expressions (17.44), we can write the system of
equations (17.36), as follows (making p3 ¼ p0):

Dr2r2w� 8
f1
a2
@2�

@y2
� 8

f2
b2
@2�

@x2
¼ p0;

1

Eh
r2r2�þ 8

f1
a2
@2w

@y2
þ 8

f2
b2
@2w

@x2
¼ 0:

ðbÞ

The boundary conditions on the shell edges have a form of Eqs (17.49a). Taking into
account the expressions (17.45), these boundary conditions can be represented, as
follows:

w ¼0
		
x¼0;a

;
@2w

@x2
¼ 0

					
x¼0;a

;
@2�

@y2
¼ 0

					
x¼0;a

; v ¼ 0jx¼0:a; ðcÞ

w ¼ 0
		
y¼0;b

;
@2w

@y2
¼ 0

					
y¼0;b

;
@2�

@x2
¼ 0

					
y¼0;b

; u ¼ 0jy¼0;b: ðdÞ

Fig. 17.6
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A solution of Eqs (b) is sought in the following form of the Fourier series in two
variables:

w ¼
X1
m¼1

X1
n¼1

wmn sin
m�x

a
sin

n�y

b
; ðeÞ

� ¼
X1
m¼1

X1
n¼1

’mn sin
m�x

a
sin

n�y

b
: ðfÞ

It can be shown that the expressions (e) and (f) satisfy exactly the three first condi-
tions in (c) and (d). Let us check the fulfillment of the fourth conditions. Find the
strain, as follows:

"2 ¼
1

Eh
ðN2 � �N1Þ ¼

1

Eh

@2�

@x2
� � @

2�

@y2

 !
:

Substituting for � from Eq. (f) into the above, results in the following:

"2 ¼ � 1

Eh

X1
m¼1

X1
n¼1

’mn

m2�2

a2
� � n

2�2

b2

 !
sin

m�x

a
sin

n�y

b
:

It is evident, that "2 ¼ 0 for x ¼ 0 and x ¼ a. Taking into account the second rela-
tion (17.43), we can conclude that v is a constant along the shell edges x ¼ 0 and
x ¼ a. So, we can put it equal to zero. Similarly, it is possible to show that the
displacement u ¼ 0 along edges y ¼ 0 and y ¼ b:

Next, represent the given load p0 in the form of the Fourier series too, as
follows:

pðx; yÞ ¼
X1
m¼1

X1
n¼1

pmn sin
m�x

a
sin

n�y

b
;

where

pmn ¼
4

ab

ða
0

ðb
0

pðx; yÞ sinm�x
a

sin
n�y

b
dxdy:

Since

pðx; yÞ ¼ p0 ¼ const; then pmn ¼
16p0
�2mn

; m; n ¼ 1; 3; 5; . . . : ðgÞ

Inserting the expressions (e), (f), and (g) into Eqs (b), we obtain the following system
of linear algebraic equations:

1

Eh

m2�2

a2
þ n2�2

b2

 !2

’mn �
8�2

a2b2
ðn2f1 þm2f2Þwmn ¼ 0;

8�2

a2b2
ðn2f1 þm2f2Þ’mn þD

m2�2

a2
þ n2�2

b2

 !2

wmn ¼ pmn: ðhÞ
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Solving this system for unknown functions ’mn and wmn, gives

wmn ¼
�4n4h4

12ð1� �2Þb4 Amn þ
64f 2h2

Amna
4

f1
f
þm2

n2
f2
f

 !2
2
4

3
5

�1

pmnh

E
;

’mn ¼
8Eb2fh

�2Amna
2n2

f1
f
þm2f2

n2f

 !
wmn;

ðiÞ

where

Amn ¼
m2b2

n2a2
þ 1

 !2

; m; n ¼ 1; 3; 5; . . . : ðjÞ

Having determined the functions w and �, the internal forces and moments may be
found from Eqs (17.45). We have the following:

M1 ¼ D
X1

m¼1;3;...

X1
n¼1;3;...

wmn

m2�2

a2
þ � n

2�2

b2

 !
sin

m�x

a
sin

n�y

b
;

M2 ¼ D
X1

m¼1;3;...

X1
n¼1;3;...

wmn

n2�2

b2
þ �m

2�2

a2

 !
sin

m�x

a
sin

n�y

b
;

H ¼ �Dð1� �Þ
X1

m¼1;3;...

X1
n¼1;3;...

wmn

mn�2

ab
cos

m�x

a
cos

n�y

b
;

N1 ¼ �
X1

m¼1;3;...

X1
n¼1;3;...

’mn

n2�2

b2
sin

m�x

a
sin

n�y

b
;

N2 ¼ �
X1

m¼1;3;...

X1
n¼1;3;...

’mn

m2�2

a2
sin

m�x

a
sin

n�y

b
;

S ¼ �
X1

m¼1;3;...

X1
n¼1;3;...

’mn

mn�2

ab
cos

m�x

a
cos

n�y

b
:

ðkÞ

Setting in the relations (i) f1 ¼ f2 ¼ 0, we obtain the expressions for wmn, which are
valid for a rectangular simply supported plate, i.e.,

wmn ¼
pmn

D

m2�2

a2
þ n2�2

b2

 !2

: ðlÞ

Some numerical values of the deflections, internal forces and moments were calcu-
lated with the use of Eqs (k) for the given shallow shell. The values of dimensionless
coefficients �ww; �MM; �NN are given in Table 17.1 at the central point of the square shallow
shell (a ¼ bÞ for various dimensionless parameters � ¼ f =h (� characterizes the shal-
lowness of a shell). The values of the deflections, internal forces, and moments are
determined from the following relations:

w ¼ �ww
p0a

4

D104
; N1 ¼ N2 ¼ � �NN

p0a
2

h102
; M1 ¼ M2 ¼ �MM

p0a
2

102
: ðmÞ
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The given numerical data for the shallow shell are compared in the table with
the values of the deflections and bending moments in a rectangular simply sup-
ported plate having the same linear dimensions (a and bÞ as the shallow shell and
subjected to the same load p0. It follows from Table 17.1 that with an increase in
the parameter �, the load-carrying mechanism of the shallow shell changes: its
stiffness increases and bending moments are diminished, i.e., for large values of
� the shallow shell supports a given normal surface load p3 practically due to the
membrane action only. Of course, this qualitative conclusion is valid not only for
the considered shell but also for all of the classes of shallow shells. Comparison
of the ordinates of bending moments (and deflections) in shallow shells and flat
plates shows that the above-mentioned values are significantly greater (by one
order) in flat plates than in shallow shells for certain values of the parameter
� ¼ f =h ðf ¼ f1 þ f2Þ.

To analyze the load-carrying mechanism of shallow shells subjected to a nor-
mal surface load, Fig. 17.7 illustrates some numerical results of the analysis of the
shallow shell with the following geometrical and mechanical characteristics: a ¼ b ¼
10m; h ¼ 0:1m, f1 ¼ f2 ¼ 0:5 m, E ¼ 40GPa, � ¼ 0:17, and p3 ¼ p0 ¼ const. For

this shell D ¼ Eh3

12ð1��2Þ ¼ 3:4326	 106 N �m.

Figure 17.7 shows the diagrams of the deflection, w, membrane force, N1, and
bending moment, M1, along the central section (x ¼ a=2) of the shell. It should be
noted that the location of the maximum deflection in the shallow shell shifts from the
center (as it was in a flat plate) towards the supports. The bending moment distribu-
tions in the shell, both qualitatively and quantitatively, differ from those in flat
plates. The numerical results in Fig. 17.7 and in Table 17.1 were obtained by retain-
ing the six terms in the series (e), and eight and 10 terms in the series (k) for the
deflections, membrane forces, and bending moments, respectively. In conclusion, let
us make some comments.

1. When a shallow shell rise, f , increases, the shell geometry will differ notice-
ably from plane geometry, i.e., the first basic assumption of the shallow shell theory

Table 17.1

Parameter �

Values of the dimensionless coefficients at the central point of the shell

Shallow shell Plate (� ¼ 0)

�ww �NN �MM �ww �MM

0.5 36.2101 4.2401 3.7985 39.4215 4.250

1.0 27.2112 6.3618 2.7911 39.4215 4.250

1.5 19.200 6.7200 1.9396 39.4215 4.250

2.0 13.4115 6.2501 1.1988 39.4215 4.250

3.0 7.0851 4.9501 0.5066 39.4215 4.250

4.0 4.1200 3.8102 0.2106 39.4215 4.250

5.0 2.6100 3.0115 0.07086 39.4215 4.250

6.0 1.7511 2.4510 0.01398 39.4215 4.250

10.0 0.5601 1.3102 �0:02180 39.4215 4.250

20.0 0.1364 0.6201 �0:00021 39.4215 4.250
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will become more and more rough. The second basic assumption (the basic assump-
tion of the DMV theory) remains still to be justified up to some value of f ¼ f . The
latter is determined by peculiarities of the shell geometry and loading. Therefore, for
f > f  there is a good reason to analyze such shells by applying the more general
DMV theory.

2. As mentioned previously, a shallow shell is an open shell that differs
little from a plane. However, in some exceptional cases, non-shallow shells and
closed shells can also be analyzed by the shallow shell theory. Such a case may be
when a non–shallow shell is divided into parts some of which can be approxi-
mated by shallow shells. The most important such cases are (a) a non-shallow
shell reinforced by equally spaced stiffeners for which any shell part between the
stiffeners can be treated as a shallow shell and (b) buckling of shells of any
geometry when this buckling is accompanied by a large number of bulgings
whose dimensions are small compared with the minimum radius of the shell
curvature (see Chapter 19).

Fig. 17.7
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17.5 THE THEORY OF EDGE EFFECT

In this section we introduce one more approximate theory of thin shells. As men-
tioned in Sec. 17.3, a thin shell can be found in the basic state of stress that is
characterized by slowly varying deformations and stresses. The membrane (see
Chapters 13 and 14) and pure bending stress states fall into the category of the
basic state of stress. The pure bending state rarely occurs. It is possible for nonrigid
shells only whose constraints allow such a type of bending. In some cases, the state of
stress in thin shells can be separated into the following two components: the basic
(mainly, membrane) for the entire shell and the mixed, mostly, a moment state, called
edge effect, localizing near shell boundaries or near other sites at which the membrane
theory does not apply. The latter state of stress can be superimposed on the basic state
that essentially simplifies the obtaining of the general state of stress in a shell. It was
indicated in Chapters 13–16 that the membrane solution alone for some shell geome-
tries, loadings, and supports cannot satisfy the prescribed boundary conditions at the
shell edges, the known conditions of continuity, equilibrium and/or kinematic con-
straints at the edge effect zones. Gol’denveizer termed the sources of edge effects
‘‘lines of distortion.’’ To facilitate their identification, Gol’denveizer listed these as [5]:

(a) the physical edges of a shell;
(b) lines along which discontinuities of the components of external loads or

of certain their derivatives occur;
(c) lines along which the middle surface of a shell has a break or the curva-

ture of the middle surface changes abruptly; and
(d) lines along which the rigidity of a shell or its thickness undergoes sudden

changes.

The edge effect can be defined as such a state of stress and strain at which stresses and
displacements vary slightly along the lines of distortion, but decay rapidly in the normal
direction to those lines.

The edge effect concept was demonstrated in Chapters 15 and 16 for axisym-
metrically loaded circular cylindrical shells and shells of revolution, respectively.
This section is concerned with constructing the general theory of the edge effect
for shells of any geometry subjected to asymmetric loading.

In deriving the governing differential equations of the theory of edge effect, we
make the following assumptions:

1. The lines of distortion coincide with one of the lines of curvature (for
definiteness sake, with the 
-coordinate line).

Let us introduce the so-called asymptotic line as a line along which the
normal curvature of the surface, 1=Ri, is zero. For example, a generator
of a cylindrical surface can be considered as an asymptotic line. In the
theory of edge effect, it is assumed that the lines of distortion at any point
of the middle surface do not touch the asymptotic line. In this case, the
edge effect always takes place and it is called simple edge effect. If the
distortion line touches an asymptotic line, then such an edge effect is
referred to as a complex one. In this section we analyze only the simple
edge effect.

2. The normal component of displacement, w, in zones of the edge effect is
significantly greater than the in-plane components, u and v.
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3. Functions f that characterize the state of stress and strain (displacements,
internal forces, and moments) vary significantly more rapidly in the direc-
tion of the 	-coordinate line than in the direction of the 
-coordinate line,
i.e.,

@f

A@	

				
				� @f

B@


				
				: ð17:51Þ

(4) The Lamé parameters, A and B, as well as the radii of curvature, have a
small variation in the direction of the 	-coordinate line, i.e.,

@A

@	
� A;

@B

@	
� B;

@R1

@	
� R1;

@R2

@	
� R2:

ð17:52Þ

A rapid decay of the edge effect state of stress, as we move away along the normal to
the line of distortion is a very important characteristic of a shell. It is caused by the
shell thinness and by the curvilinearity of its surface. Let us explain this phenomenon
in more detail in the following simple example.

Figure 17.8 shows a flat cantilever plate and an open circular cylindrical shell
loaded by uniformly distributed bending moments, m ¼ const, applied to the free
edges of the plate and shell.

It is evident, that the cantilever plate will resist the external moment load by
means of bending only (producing the bending and twisting moments, and shear
forces); no membrane forces occur in its middle surface (Fig. 17.8a). The cantilever
shell will support the applied distributed moments m not only by means of the bend-
ing but also by straining the middle surface. The latter is accompanied by an appear-
ance of the circumferential membrane forces N2 in the longitudinal sections of the
shell ’ ¼ const, i.e., in the sections perpendicular to the edge x ¼ a (Fig. 17.8b). The
larger the shell curvature 1=R, the stiffer is the shell in its middle surface and the
greater is the role of the membrane forces N2 in resisting the applied bending load.
The availability of the circumferential forces N2 will cause the internal bending
moment to decrease rapidly as we move away from the loaded edge in the normal
direction to the edge. This phenomenon is quite understandable if we recall the

Fig. 17.8
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analogy between a shell and a flat plate resting on an elastic Winkler-type foundation.
The normal projections of the circumferential forces N2 are interpreted as the reac-
tions of the Winkler-type foundation (see Fig. 15.2 and the corresponding explana-
tions in Sec. 15.3). Thus, the cylindrical shell shown in Fig. 17.8b acts as a flat
cantilever plate resting on some elastic foundation. It is well known that stresses
and displacements in such a flat cantilever plate, loaded by the distributed moments
m applied along its free edge, decay rapidly as we move away from this loaded edge
due to the distributed character of the elastic foundation.

For a more complete insight into the physical nature of the edge effect phe-
nomenon, it is instructive to turn our attention to the general principles of
mechanics: in particular, to the principle of minimum potential energy (see Sec.
2.6.2). It is easy to verify that the potential energy caused by bending moments is
considerably larger than the potential energy due to the membrane forces. Hence, if
we move away from a loaded zone that causes bending (for example, from a fixed
shell edge) then, based on the principle of minimum potential energy, the process of
the moment and shear force damping should begin. This a reason for the occurrence
of rapidly decaying state of stress-edge effects.

Another situation occurs near the straight edges and other lines of disturbance
of the state of stress and strain of a shell (the asymptotic lines). Assume, for example,
that the edge ’ ¼ 0 is fixed and the other edges are free to displace. If the external
moment m is applied to the edge ’ ¼ ’1 then the circumferential forces N2 are not
needed for equilibrium. Therefore, the bending moments decrease slightly as we
move away from the line of disturbance (in this case ’ ¼ ’1Þ and a given state of
stress cannot be separated into the membrane type and edge effect. Thus, near
straight edges of open cylindrical shells, the simple edge effect concept cannot be
applicable. The possibilities of simplifying the governing differential equations are
more restricted here than in the case of the simple edge effect.

Now we derive the governing differential equation of the simple edge effect
assuming the 
-coordinate line is the distortion line. Due to the adopted assumptions
(see assumptions 3 and 4), the Laplace operator, r2f ; and the operator r2

kf can be
simplified to the form

r2f � @

A@	

@f

A@	

� �
; r2

kf � 1

R2

@

A@	

@f

A@	

� �
: ð17:53Þ

Since all functions describing the state of stress and strain in the zone of the simple
edge effect represent some rapidly varying functions, we can use the differential
equations of the DMV theory introduced in Sec. 17.3. These equations will be
homogeneous for the edge effect problems. Taking into account the relations
(17.53), the differential equations (17.36) for the edge effect analysis can be written
in the following form:

D
@

A@	

@

A@	

@

A@	

@w

A@	
� 1

R2

@

A@	

@�

A@	
¼ 0;

1

Eh

@

A@	

@

A@	

@

A@	

@�

A@	
þ 1

R2

@

A@	

@w

A@	
¼ 0:

ð17:54Þ

As mentioned previously, only the rapidly varying functions are of interest in the
theory of the edge effect. Therefore, in integrating Eqs (17.54), arbitrary functions
that depend linearly upon 	 should be dropped (these functions characterize the
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displacements and stresses that vary slowly and they are taken into account by the
membrane and pure moment solutions). Integrating twice the second equation of the
system (17.54) and discarding the arbitrary functions, one finds the following:

@

A@	

@�

A@	
¼ �Eh

R2

w: ð17:55Þ

Substituting the above into the first Eq. (17.54) and putting Ad	 ¼ ds1, we bring this
equation to the form

@4w

@s41
þ 12ð1� �2Þ

R2
2h

2
w ¼ 0: ð17:56Þ

This is the governing homogeneous differential equation of the simple edge effect. It
differs from the corresponding equation of the axisymmetric edge effect in a circular
cylindrical shell (see Eq. (15.43)) by the fact that the partial derivatives of w enter in
this equation, because w is a function of two variables (this function varies slowly
along the curvilinear coordinate 
 too).

A solution of Eq. (17.56), which decays, as we move away from the edge 	 ¼ 0,
is of the following form:

w ¼ e��s1 ½f1ðs2Þ cos �s1 þ f2ðs2Þ cos �s1�; ð17:57Þ
where f1 and f2 are some slowly varying functions, Bd
 ¼ ds2, and

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ4

q
1ffiffiffiffiffiffiffiffi
R2h

p : ð17:58Þ

The internal forces and moments, which occur in the edge effect state, can be
determined next. Using Eqs (17.29) and neglecting, due to the assumptions of the
edge effect theory, the variation of the shell geometry in the zone of the simple edge
effect, and also assuming that

@w

@s2
� @w

@s1
;

one finds that

�1 � � @
2w

@s21
; �2 � 0; �12 � 0:

Then, inserting the above into Eqs (12.46), we obtain

M1 ¼ �D
@2w

@s21
; M2 ¼ �M1; H ¼ 0: ð17:59Þ

The stress function � can be determined by integrating twice the first Eq. (17.54). We
have

� ¼ R2D
@2w

@s21
: ð17:60Þ

The membrane forces N1;N2; and S are related to the function � by Eqs (17.31),
which due to the adopted assumptions of the edge effect theory, result in the expres-
sions

N1 � 0; N2 �
@2�

@s21
¼ R2D

@4w

@s41
¼ �Eh

R2

w; S � 0: ð17:61Þ
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The transverse shear forces may be found from the corresponding equilibrium equa-
tions of the DMV theory, i.e.,

Q1 ¼ �D
@

A@	
ðr2wÞ; Q2 ¼ �D

@

B@

ðr2wÞ:

Using the relations (17.53), the above relations appear, as follows:

Q1 ¼ �D
@3w

@s31
; Q2 � 0: ð17:62Þ

The above relations and equations of the general edge effect theory were introduced
for the case when the distortion line coincides with the 
-coordinate line. Similarly,
the corresponding equations can be presented for the 	-coordinate line as a distor-
tion line and, generally, for the case when the shell edge does not coincide with the
line of curvature [5].

In conclusion, one notes the following:

1. The edge effect theory introduced above cannot be applied to the case
when the shell boundary or another distortion line coincides with the
asymptotic line.

2. If a considered state of stress and strain varies rapidly not only in the
direction of the normal to the shell boundary but also along the boundary
itself, the stress analysis of such a shell can be carried out by the DMV
theory introduced in Sec. 17.3.

3. The governing differential equation of the edge effect, Eq. (17.56), is only
approximate. The exact solution of the shell problems by the edge effect
theory requires an integration of the system of the partial differential
equations of the general theory of thin shells and therefore has no advan-
tages from separation of a given state of stress into the membrane state
and edge effect. Thus, the latter is taken into account only approximately.

4. The solution (17.57) makes it possible to satisfy the two boundary con-
ditions on the corresponding shell edge. It is evident that these boundary
conditions must be formulated for the sum of the membrane solution and
the solution given by Eq. (17.56).

PROBLEMS

17.1 Verify Eqs (17.12) and (17.16).

17.2 Specify the area of application of the semi-membrane theory to the analysis of open

and closed cylindrical shells.

17.3 A simply supported, at x ¼ 0 and x ¼ L, cylindrical tube is filled by water up to the

level H (Fig. 17.2). The tube is reinforced by two equally spaced, rigid along the tube

length, collars in such a way that they prevent a distortion of the tube cross sections.

Applying the semi-membrane theory, determine the axial normal stress, �1, distribution
over the shell cross section where the collar is attached to the tube. Let L ¼ 30m; R ¼
5:5m; h ¼ 5:0 cm; H ¼ 1:2m; E ¼ 210GPa, and � ¼ 0:3.

17.4 A simply supported, at x ¼ 0 and x ¼ L, closed circular cylindrical shell is subjected to

a uniform vertical line load q, as shown in Fig. P.17.1. Determine the axial normal

stress, �1, distribution in the lower stretched fiber along the shell length. Compare this
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stress with that obtained by the elementary beam bending theory. Take L ¼ 15:0m;
R ¼ 2:0m; h ¼ 1:5 cm; E ¼ 200GPa; and � ¼ 0:3.

17.5 Derive Eqs (17.36).

17.6 Substitute for N1;N2; and S from Eqs (17.31) into Eqs (17.30). Setting p1 ¼ p2 ¼ 0 and

taking into account the Codazzi–Gauss relations (11.27), specify the accuracy of satis-

fying Eqs (17.30) in the framework of the assumptions of the DMV theory.

17.7 Show that the system of the governing equations (17.36) can be reduced to a single,

eight-order differential equation, as follows:

ar2
kr2

k�þ r2r2r2r2� ¼ p3
D

ðP17:1Þ

where � is some solving function introduced, as follows:

w ¼ r2r2�; � ¼ �Ehr2
k� ðP:17:2Þ

and

a ¼ 12ð1� �2Þ=h2: ðP:17:3Þ
17.8 Show that for a spherical shallow shell (R1 ¼ R2 ¼ R), the system of equations (17.36)

can be broken down into the following equations:

ðaÞ Dr2r2w þ Eh

R2
w ¼ p3 ðP:17:3aÞ

ðbÞ r2w0 ¼ 0 ðP:17:3bÞ

ðcÞ r2� ¼ Eh

R
w ðP:17:3cÞ

where

r2�þ Eh

R
w ¼ Eh

R
w0 and w ¼ w0 þ w ðP:17:3dÞ

Hint: use the spherical coordinates ’ and �.
17.9 Give a physical interpretation of Eqs (P.17.3) of the previous problem.

17.10 Verify Eq. (17.50).

17.11 Consider a shallow shell in polar coordinates 	 ¼ r and 
; where r is the polar radius

and 
 is the polar angle of a point of the middle surface on the horizontal plane. For

this case, the Lamé parameters are A ¼ 1 and B ¼ r. Show that the shallow shell in this

coordinate system is governed by the same equations (17.36) and the differential

operators (17.34) are given by

Fig. P.17.1
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ðP:17:4Þ

17.12 Show that the membrane forces N1;N2; and S in the shallow shell theory are expressed

in terms of the displacements, as follows:

N1 ¼ B
@u

@x
þ � @v

@y
� ð�1 þ ��2Þw

� �
; N2 ¼ B

@v

@y
þ � @u

@x
� ð�1 þ ��2Þw

� �
;

S ¼ Bð1� �Þ
2

@v

@x
þ @u
@y

� � ðP:17:5Þ

where

B ¼ Eh

1� �2 :

17.13 Using the equations of equilibrium (12.44), Eqs (17.45b), (P.17.5), and the relations

(17.42), show that the governing equations of the shallow shell of double curvature in

Cartesian coordinates are of the following form:

@2u

@x2
þ 1� �

2

@2u

@y2
þ 1þ �

2

@2v

@x@y
� ð�1 þ ��2Þ

@w

@x
¼ � p1

B
;

1� �
2

@2u

@x@y
þ @2

@y2
þ 1� �

2

@2

@x2

 !
v� ð�2 þ ��1Þw ¼ � p2

B
;

@u

@x
ð�1 þ ��2Þ þ

@v

@y
ð�2 þ ��1Þ � ð�21 þ �22 þ 2��1�2Þw� h2

12
r2r2w ¼ � p3

B
:

ðP:17:6Þ

17.14 The governing equations (17.36) for the shallow shell theory were derived assuming

that p1 ¼ p2 ¼ 0; and p3 6¼ 0. Show that if all the load components are nonzero, the

relations (17.45a) should be replaced with

N1 ¼
@2�

@y2
�
ð
p1dx; N2 ¼

@2�

@x2
�
ð
p2dy; S ¼ � @2�

@x@y
; ðP:17:7Þ

and Eqs. (17.36) for this case appear as follows:

�r2
k�þDr2r2w ¼ p3 � �1

ð
p1dx� �2

Z
p2dy;

r2r2�þ Ehr2
kw ¼

ð
@2p1
@y2

dxþ
ð
@2p2
@x2

dy� � @p1
@x

þ @p2
@y

� �
:

ðP:17:8Þ

17.15 Consider a square in a plan shallow shell of double curvature. Let the equation of its

middle surface be given by (the origin of the Cartesian coordinate system is taken at the

center of the projection of the shell on the horizontal plane)

z ¼ f 1� x2 þ y2

2a2

 !
;

where f ¼ f1 þ f2 is the total rise. The shell edges, x ¼ �a and y ¼ �a, have the same

supports as described in Example 17.1. The shell is subjected to a uniformly distributed

load p. Determine the deflection w, the membrane forces N1;N2; and S, the bending

moments M1 and M2; and the twisting moment H. Take four terms (m ¼ 1; n ¼ 1; m

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



¼ 1; n ¼ 3; m ¼ 3; n ¼ 1; m ¼ 3; n ¼ 3Þ in the expansions (e) and (f) in Example 17.1.

Let a ¼ 2:0m; h ¼ 20mm; f1 ¼ f2 ¼ 250mm; p ¼ 2 kPa; G ¼ 30GPa; and � ¼ 0.

17.16 A shallow shell of double curvature, shown in Fig. 17.6, is supported by diaphragms at

its edges (the boundary conditions are given by Eqs (c) and (d) in Example 17.1). The

shell is subjected to a uniformly distributed load of intensity p: Determine the deflec-

tions, in-plane forces, and bending moments in the shell. Take four terms in the

expansions (e) and (f) (see problem 17.15). Take a ¼ 10m; b ¼ 12m; �1 ¼ 0:04=l;m;
�2 ¼ 0:02781=m, h ¼ 30mm; E ¼ 22GPa; and � ¼ 0:

17.17 Show that if deflection w is a rapidly varying function, at least in one of the coordinate

directions, then the following estimate takes place:

r2w
		 		
w

R1R2

			 			 � C2

where C � 1.

17.18 Based on the results of Problem 17.7, derive Eqs (17.62).

17.19 Specify the area of application of the edge effect theory for open and closed cylindrical

shells loaded asymmetrically.
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18

Advanced Topics

18.1 THERMAL STRESSES IN THIN SHELLS

18.1.1 General

This section is concerned with the influence of high temperature on the state of stress
and strain in thin shells. This issue has been studied in Sec. 7.1, as applied to thin
plates. It should be noted that the thermal stresses and deformations in thin shells are
a major factor in the design of structures such as boilers, heat exchangers, pressure
vessels, nuclear piping, and supersonic aircraft skin. The basic concepts of the ther-
moelastic stress analysis of thin shells are quite similar to those introduced in Sec. 7.1
for thin plates. Similarly, the thermoelastic problems require modifying the consti-
tutive equations of the general shell theory.

Let a shell be subjected to a nonuniform temperature field Tð	; 
; zÞ measured
from some specified reference value. The temperature distribution T can be obtained
from a solution of the equation of heat conduction [1], represented in terms of the
shell coordinates. Taking into account the relations (7.1), we can modify the con-
stitutive equations (12.28) by taking into account the temperature effects, as follows:

"z1 ¼
1

E
�z1 � ��z2ð Þ þ 	T; "z2 ¼

1

E
�z2 � ��z1ð Þ þ 	T; �z12 ¼

1

G
�z12; ð18:1Þ

where 	 is the coefficient of thermal expansion (see Sec. 7.1). It is assumed that E; �,
and d are constant for a given temperature field. Solving Eqs (18.1) for the stress
components yields

�z1 ¼
E

1� �2 "
z
1 þ �"z2 � ð1þ �Þ	T½ �; �z2 ¼

E

1� �2 "
z
2 þ �"z1 � ð1þ �Þ	T½ �;

�z12 ¼ G�z12:

18:2
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Substituting Eqs (18.2) into Eqs (12.35) and (12.36) with the use of the relations
(12.22), and integrating over z from �h=2 to h=2, one obtains

N1 ¼ Bð"1 þ �"2Þ �
NT

1� � ; N2 ¼ Bð"2 þ �"1Þ �
NT

1� � ;

N12 ¼ N21 ¼ S ¼ B
1� �
2

�12; ð18:3Þ

M1 ¼ Dð�1 þ ��2Þ �
MT

1� � ; M2 ¼ Dð�2 þ ��1Þ �
MT

1� � ;

M12 ¼ M21 ¼ H ¼ Dð1� �Þ�12; ð18:4Þ
where

B ¼ Eh=ð1� �2Þ ð18:5Þ
is the shell stiffness in tension and NT and MT are the thermal stress resultants, as
given by Eqs (7.8). The equations of static equilibrium, Eqs (12.41) and (12.42), and
kinematic equations, Eqs (12.23) and (12.24), of the general shell theory remain
unchanged. Thus, a set of thermoelastic governing differential equations within
the framework of the Kirchhoff–Love postulates consists of Eqs (12.23), (12.24),
(12.41), (12.42), and (18.3)–(18.5). As mentioned in Chapter 12, these equations in
some cases must be complemented with the equations of compatibility. The solutions
of the above equations must satisfy the prescribed boundary conditions on shell
edges.

As for thin plates, the thermal stresses in a shell can occur in the following
cases: in a nonuniform heating; if thermal deformations are restricted by imposed
constraints; in heating of multilayered shells composed of heterogeneous materials,
etc. However, not any nonuniform heating causes the thermal stresses. For instance,
if the temperature varies linearly over the length of a cylindrical shell and is constant
over its circumference and thickness, then the shell’s middle surface becomes a
conical surface, but no stresses occur.

The isothermal analogy, introduced in Sec. 7.1 for the thermoelastic plate
bending problems, can be applied also for solving the thermoelastic governing
shell equations together with appropriate boundary conditions. According to this
analogy, the thermoelastic terms entering on the right-hand side of the governing
equations may be treated as some fictitious and known surface loading. In the next
sections, the thermoelastic shell equations will be applied for stress analysis of some
particular shell forms and loadings.

18.1.2 Circular cylindrical shells under axisymmetric nonuniform
heating

Assume that the heating of a circular cylindrical shell is axisymmetric and varies
linearly across its thickness according to the following law:

T ¼ T0 þ�T
z

h
; ð18:6Þ

where T0 ¼ ðT1 þ T2Þ=2 is an average temperature of the shell wall; �T ¼ T1 � T2 is
a temperature change; and T1 and T2 are the temperatures of the lower and upper
surfaces of the shell, respectively.
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Derivation of the governing differential equation of the thermoelastic axisym-
metric shell analysis is analogous to the derivation described in Sec. 15.3 for the
static analysis. A distinction lies in the fact that constitutive equations of this
problem must be complemented with thermal terms, as indicated in Sec. 18.1.1.
Taking into account Eqs (12.22) and (15.38), we can rewrite the constitutive
equations (18.2) in terms of the displacement components, as follows:

�z1 ¼
E

1� �2
du

dx
� z

d2w

dx2
� �w

R
� ð1þ �Þ	T

" #
;

�z2 ¼
E

1� �2 �w

R
þ � du

dx
� z

d2w

dx2

 !
� ð1þ �Þ	T

" #
:

ð18:7Þ

Then, using Eqs (12.35) and (12.36), and Eqs (15.38), we can rewrite the constitutive
equations (Eqs (18.3)–(18.5)) in terms of the displacement components:

N1 ¼ B
du

dx
� �w

R
� ð1þ �Þ	T0

� �
; ð18:8aÞ

N2 ¼ B �
du

dx
� w

R
� ð1þ �Þ	T0

� �
¼ �N1 � w

Eh

R
� Eh	T0; ð18:8bÞ

M1 ¼ �D
d2w

dx2
þ ð1þ �Þ	�T

h

" #
; M2 ¼ �D �

d2w

dx2
þ ð1þ �Þ	�T

h

" #
: ð18:9Þ

Accordingly, the expressions of the shear force, Eq. (15.46), and the governing
differential equation (15.44) are

Q1 ¼
dM1

dx
¼ �D

d3w

dx3
þ ð1þ �Þ	

h

dð�TÞ
dx

" #
; ð18:10Þ

d4w

dx4
þ 4
4w ¼ p3

D
þ �N1

DR
� ð1þ �Þ	

h

d2ð�TÞ
dx2

� Eh

DR
	T0; ð18:11Þ

where 
 is given by Eq. (15.45). A solution of Eq. (18.11) is given by the expression
(15.53) for long shells and by (15.74) for short shells. The particular solution, wp,
depends upon an assigned thermal field and given loading. If the thermal field and
loading are such that

d4T0

dx4
¼ 0;

d2ð�TÞ
dx2

¼ 0;

d4p3
dx4

¼ 0;
d4N1

dx4
¼ 0;

then the particular solution is of the following type:

wp ¼
R2

Eh
p3 þ �

N1

R

� �
� 	RT0: ð18:12Þ
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The technique of integrating Eq. (18.11) is not different from that discussed in Sec.
15.3.

As mentioned previously, the thermal terms on the right-hand side of Eq.
(18.11) can be interpreted as some fictitious surface load, qT . So, we can rewrite
Eq. (18.11), as follows:

d4w

dx4
þ 4
4w ¼ 1

D
p3 � qT þ �N1

R

� �
; ð18:13Þ

where

qT ¼ Dð1þ �Þ	
h

d2ð�TÞ
dx2

þ Eh

R
	T0: ð18:14Þ

Using the principle of superposition, the given thermoelastic problem for a circular
cylindrical shell can be broken down into two independent problems. The first
problem involves only thermal effects produced by qT . In this case, only the parti-
cular solution is of interest (all constants of integration are assumed to be zero). The
second problem deals with external forces, p3 and N1. Its solution was presented in
Sec. 15.3. The constants of integration are evaluated in such a way that the sum of
the solutions of these two problems satisfies the prescribed boundary conditions.

Example 18.1

An infinitely long circular cylindrical shell is heated according to Eq. (18.6). The
temperature is a constant along the shell length. Determine the thermal stresses.

Solution

A given thermal field can be represented as a superposition of a uniform heating
T0 ¼ ðT1 þ T2Þ=2, which produces no stresses, and of the thermal change�T ¼ T1 �
T2 (Fig. 18.1).

Let us consider the state of stress corresponding to the thermal jump men-
tioned above. Since the temperature does not vary along the shell length, then all
values are constant over the length, and, hence, a general solution of the thermal
homogeneous equation is nonexistent. The particular solution (Eq. (18.12)) for
p3 ¼ 0, N1 ¼ 0, and T0 ¼ 0 is also zero. Thus, the deflections of points of the middle
surface w and the circumferential force N2, according to Eq. (18.8b), are also equal

Fig. 18.1
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to zero. However, the bending moments in this case are not equal to zero; it follows
from Eqs. (18.9) that they are

M1 ¼ M2 ¼ �ð1þ �Þ	D
h

�T : ð18:15Þ

A special feature of this thermal problem is that, in spite of the presence of the
bending moments, the curvature of the middle surface does not change. It can be
explained as follows: change in curvature caused by a nonuniform heating is com-
pensated by a curvature change produced by the bending moments given by Eq.
(18.15). The values of the bending stresses at the upper and lower points of the shell
surfaces are found to be the following:

�1max ¼ � 6M1

h2
¼ � 	E

2ð1� �Þ�T; �2max ¼ � 6M2

h2
¼ � 	E

2ð1� �Þ�T :

The bending stress diagrams across the shell thickness are shown in Fig. 18.1. They
also illustrate the above statement about the lack of a change in curvature for the
given thermal field.

Example 18.2

A cylindrical stepped shell is shown in Fig. 18.2a. The shell is heated over its lower
surface up to the temperature T1 ¼ 120
C and over the upper surface to the tem-
perature T2 ¼ 50
C. The temperatures are constant over the shell length. Given
R ¼ 0:5m, h1 ¼ 2	 10�2 m, h2 ¼ 1	 10�2 m; the shell material is a structural steel
with � ¼ 0:3; E ¼ 200GPa, and 	 ¼ 12	 10�6=
C. Determine the thermal stresses.
Assume that the shell is sufficiently long.

Solution

The given thermal field can again be broken down into a uniform heating T0 ¼ ðT1 þ
T2Þ=2 ¼ 85
C and temperature jump �T ¼ T1 � T2 ¼ 70
C. Since the uniform heat-
ing produces no thermal stresses, it will not be taken into further account. Assume
that the given shell is cut into two parts: the first of constant thickness h1 and the
second of constant thickness h2: If they were really separated then they would be
subjected to the thermal jump �T and, consequently, were additionally loaded by

Fig. 18.2
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the bending moments at shell edges, as shown in Fig. 18.2b. These moments can be
calculated from Eqs. (18.15):

– for the first part of the shell ðh ¼ h1Þ,

M
ð1Þ
1ð�TÞ ¼ �	�Tð1þ �ÞD1

h1
¼ � 	�TEh21

12ð1� �Þ ¼ �8000 N �m=m;

– for the second part of the shell ðh ¼ h2Þ,

M
ð2Þ
1ð�TÞ ¼ �	�Tð1þ �ÞD2

h2
¼ � 	�TEh22

12ð1� �Þ ¼ �2000 N �m=m:

At a state shown in Fig. 18.2c, the shell is loaded by the interface moments, M0 and
shear forces, Q0 at the junction of the two shell parts only, where M0 and Q0 are the
interface bending moment and shear force that actually act at the junction of the
stepped shell and M

ð1Þ
1ð�TÞ and M

ð2Þ
1ð�TÞ have been added to compensate the moments

applied to the shell in the state shown in Fig. 18.2b. To determine the interface
moment M0 and shear force Q0, it is sufficient to consider only the state shown in
Fig. 18.2c and set up the conditions of compatibility for deformations at the junction
of the two shell parts. The latter are of the following form:

wð1Þ ¼ wð2Þ; #ð1Þ1 ¼ �#ð2Þ1 ; ðaÞ
i.e., the deflections and slopes of the normals for the two shell parts at the junction
should be the same. The negative sign in Eq. (a) is taken because the direction of the
x axis for the first and second parts of the shell is opposite. The deflections, wð1Þ and
wð2Þ, and slopes, #ð1Þ1 and #ð2Þ1 , may be determined from Eqs (15.57). For the first (left)
shell part, setting x ¼ 0 and wp ¼ 0, we obtain

wð1Þ ¼ �M0 þM
ð1Þ
1ð�TÞ

2D1

2
1

þ Q0

2D1

3
1

; #ð1Þ1 ¼ M0 þM
ð1Þ
1ð�TÞ

D1
1
� Q0

2D1

2
1

: ðbÞ

Similarly, for the second shell part, again setting x ¼ 0 and wp ¼ 0, we have the
following:

wð2Þ ¼ �M0 þM
ð2Þ
1ð�TÞ

2D2

2
2

� Q0

2D2

3
2

; #ð2Þ1 ¼ M0 þM
ð2Þ
1ð�TÞ

D2
2
þ Q0

2D2

2
2

: ðcÞ

Computing the geometric properties of the stepped shell, we have

D1 ¼
Eh31

12ð1� �2Þ ¼ 146:8 kN �m; D2 ¼
Eh32

12ð1� �2Þ ¼ 18:33 kN �m

or D2 ¼
D1

8
;


1 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2
R2h21

s
¼ 12:85

1

m
; 
2 ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ
R2h22

s
¼ 18:13

1

m
¼ 
1

ffiffiffi
2

p
;

M
ð1Þ
1ð�TÞ ¼ 8000N �m=m; M

ð2Þ
1ð�TÞ ¼ 2000N �m=m ¼ 1

4
M

ð1Þ
1ð�TÞ:

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



Substituting Eqs (b) and (c) into the compatibility equations (a), we obtain the
following system of two equations:

3M0 þ 0:298Q0 ¼ 0 and 10�3ð3:539M0 þ 0:0623Q0Þ ¼ �10:258:

Solving these equations for M0 and Q0, yields

M0 ¼ �3523 N �m=m; Q0 ¼ 35480 N=m:

Having determined M0 and Q0, we can calculate the deflections, internal forces, and
bending moments from Eqs (15.57). Summing them with the corresponding values of
the state shown in Fig. 18.2b, we obtain the final expressions of the thermoelastic
deflections and stress resultants and couples for the given problem (Fig. 18.2a). The
most stressed point is located at the outside surface of the thinner part of the shell,
near the stepped transition. The internal forces, bending moments, and normal
stresses in this place are

M1 ¼ �3523 N �m=m; M2 ¼ �2460 N �m=m; N1 ¼ 0;

N2 ¼ 142656 N=m; w ¼ 0:413	 10�3 m ¼ 0:413mm;

�1 ¼
6M1

h22
¼ 211:4MPa; �2 ¼

N2

h2
þ 6M2

h22
¼ 161:9MPa:

As we move away from the stepped transition, the bending moments, M1ð�TÞ and
M2ð�TÞ, occur in the shell wall. These moments induce the normal stresses, which are
found to be

�1 ¼ �2 ¼ 120MPa:

18.1.3 Thermoelastic stress analysis of shallow shells

The general assumptions and governing equations of the shallow shell theory were
developed in Sec. 17.4. As mentioned in Sec. 18.1, the equilibrium and kinematic
equations of the shell theory remain unchanged, whereas the constitutive relations
should be changed in the thermoelastic stress analysis.

Solving the first two equations (18.3) for the strain components "1 and "2 yields
the following:

"1 ¼
1

Eh
ðN1 � �N2 þNT Þ; "2 ¼

1

Eh
ðN2 � �N1 þNT Þ: ð18:16Þ

Now repeating the procedure of deriving the governing differential equations of the
shallow shell described in Secs 17.3 and 17.4, with the use of the constitutive equa-
tions (18.3), (18.4), and (18.16), yields the following equations:

Dr2r2w� r2
k� ¼ p3 �

1

1� �r
2MT ;

1

Eh
r2r2�þ r2

kw ¼ � 1

Eh
r2NT ;

ð18:17Þ

where the stress function � and operator r2
k were introduced in Sec. 17.4, and the

quantities NT andMT are given by Eqs (7.8). This system of equations represents the
thermoelastic governing differential equations of the shallow shell.Hence, if the values of
NT and MT remain constant or vary linearly along the coordinate lines x and y, then
the governing differential equations of the thermoelastic shallow shell stress analysis
remain of the same type as for a non-thermally affected shell. However, a thermal
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effect can influence the stress state of the shallow shell through the boundary condi-
tions. Such a case is typical for stiffened shells. If a shell wall is heated faster than its
stiffening ribs, then the thermal deformation of the shell itself will be restrained and
significant compressive stresses may occur in the shell, causing buckling.

18.2 THE GEOMETRICALLY NONLINEAR SHELL THEORY

18.2.1 Introduction

The general shell theories presented previously were based on linear elasticity con-
cepts. Linear shell theories predict adequately stresses and displacements for shells
exhibiting small elastic deformations. The governing differential equations of these
theories were based on Hooke’s law, and the omission of rotations in the expressions
for strains and equilibrium. As a result, the above governing equations were linear-
ized. A theory of shells in which the small-displacement assumption is abandoned
and the remaining assumptions are retained is called the geometrically nonlinear
theory. This theory is based on the analysis of large, or finite displacements.
Therefore, the geometrically nonlinear theory is also referred to as a large- or
finite-displacement theory. In developing the governing equations of the geometri-
cally nonlinear theory of thin shells, rotations are taken into account in both the
strain–displacement and equilibrium equations. Additionally a shell may be a phy-
sically nonlinear with respect to constitutive relations. This type of nonlinearity
forms the basis of inelastic shell theory and is not discussed in this book.

The large-displacement shell theory is often required when dealing with shal-
low shells, highly elastic membranes, and with buckling problems. The reason for
that lies in the following. Shallow shells are less stiff than rising shells: the same
transverse load produces larger displacements in shallow shells than in rising shells
having the same planar dimensions. Hence, the displacements of the shallow shell
can be beyond the limits of the applicability of the small-displacement theory (the
commonly used criterion of an applicability of the linear shell theory is formulated as
follows: the above theory is applicable if jDj=h � ð0:2� 0:5Þ where D ¼ ½u; v;w�T is
the displacement vector. However, such a classification may be considered as arbi-
trary only since here too the decisive influence is that of the preassigned error limits
in the solution of the boundary conditions of the theory of shells. Another approach
to the criteria of applicability of the linear shell theory was given in Ref. [5]). The
small-displacement theory determines a unique configuration of equilibrium for
every shell with a prescribed load and assigned constraints. However, in reality, a
solution of a physical shell problem is not always unique. A shell under identical
conditions of loading and constraints may have several possible equilibrium config-
urations. Analyses of possible equilibrium configurations under prescribed loads
provides a basis for studies of shell buckling problems that will be discussed in the
next chapter. Membranes or flexible thin shells may be defined as shells whose
bending stiffness is negligible compared with their in-plane stiffness. Such shells
may resist applied loads in tension only. Displacements of the membranes, as a
rule, exceed their thickness. Therefore, the geometrically nonlinear theory must be
applied to characterize adequately the state of stress and strain of membranes.

We present in this section the geometrically nonlinear theory of shallow shells
for which the displacements by modulus are equal or exceed the shell thickness but are
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considerably less than the other linear dimensions of the shell (from now on, the term
‘‘geometrically’’ will be dropped because only this type of nonlinearity is discussed
herein). The large-displacement theory of thin plates and shells originates from von
Karman’s work [2]. E. Reissner developed the geometrically nonlinear theory of thin
shells [3]. Considerable contributions in the nonlinear shell theory were made by
Saunders [4], Mushtari [5], etc. We will present here Vlasov’s approach for deriving
the governing differential equations of the nonlinear shallow shell theory [6].

A geometric nonlinearity manifests to the theory in twoways. At first, because of
moderately large displacements, the strain components are related to these displace-
ments by means of nonlinear equations. Secondly, a shell element undergoes so much
changes in its shape after deformation, i.e., it moves and rotates in space through such
finite distances and angles, that it is impossible to set up its equilibrium equations based
on an undeformed shell configuration as has been done in the linear shell theory.

18.2.2 Nonlinear theory of shallow shells

As in the classical shell theory, assume that the coordinate lines coincide with the
lines of principal curvatures. We start the nonlinear shallow shell analysis with the
strain–displacement relations. In the classical, linear shell theory, it was assumed that
strains were small and that the rotations were of the same order of magnitude as the
strains. As mentioned earlier, the above rotations should be taken into account in
developing the kinematic relations of the nonlinear theory of shallow shells.
However, it will be assumed that the nonlinear strains of the middle surface remain
still small compared with unity and they are of the order of the rotations squared.

It follows from the above that the nonlinear theory deals with the more compli-
cated strain–displacement equations. However, for shallow shells, these equations can
be simplified. Indeed, since the geometry of a shallow shell is close to a flat plate, the
stiffness of the shell in the tangent plane is significantly greater than the flexural stiff-
ness (see Sec. 7.4.1). Therefore, say, the angle of rotation !1 of the element ds1 in the
tangential plane (about the unit vector e3) is much smaller than the angle of rotation #1
of the same element in the normal plane (about the unit vector e2). However, although
the angles #1 and #2 are larger inmodulus than the angles!1 and !2, the former angles
themselves remain still small because of the following limitation for the deflections
adopted in the nonlinear theory of shallow shells: wj j � 5h. Therefore, the squares of
the angles #1 and #2 can be neglected in comparison with unity.

Thus, the basic assumption of the linear shell theory about the smallness of the
squares of all the angles of rotation compared with unity and about the equivalence
of orders of their values is now reduced and it is postulated that

!2
1 � #21 � 1;!2

2 � #22 � 1: ð18:18Þ
As a result of the above assumption, the strain–displacement relations of the linear
theory of shallow shells, Eqs (17.43), are complemented by the same nonlinear terms
as in the theory of flexible plates (see Eqs (7.82)):

"1 ¼
@u

@x
� w

R1

þ 1

2

@w

@x

� �2

; "2 ¼
@v

@y
� w

R2

þ 1

2

@w

@y

� �2

;

�12 ¼
@u

@y
þ @v

@x
þ @w
@x

@w

@y
:

ð18:19Þ
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Notice that the shear strain expression for shallow shells is absolutely identical to
that obtained in the large-deflection theory of thin plates (see the third Eq. (7.82)).
Hence, the shell curvature does not affect the shear deformation of the middle sur-
face, if the coordinate lines x and y are the lines of the principal curvatures in the
framework of the theory of shallow shells.

The expressions for changes in curvature and for twist of the middle surface
also coincide with those obtained in the small-deflection theory of shallow shells, i.e.,

�1 ¼ � @
2w

@x2
; �2 ¼ � @

2w

@y2
; �12 ¼ � @2w

@x@y
: ð18:20Þ

The tangential strain components, "z1; "
z
2; and �

z
12, at points in an equidistant surface

of the shell from the z coordinate, are determined, as previously, by Eqs (12.22).
The expressions for the stress resultants and stress couples, as well as the

constitutive equations of the nonlinear shallow shell theory remain identical to
those introduced in Sec. 12.3 for the linear shell theory. Introducing the relations
(18.19) into the constitutive equations (12.45) and letting N12 ¼ N21 ¼ S, we obtain
the following relations between the membrane forces and displacements at points of
the middle surface:

N1 ¼
Eh

1� �2
@u

@x
þ � @v

@y
þ 1

2

@w

@x

� �2

þ �
2

@w

@y

� �2

� w

R1

� � w

R2

" #
;

N2 ¼
Eh

1� �2
@v

@y
þ � @u

@x
þ 1

2

@w

@y

� �2

þ �
2

@w

@x

� �2

� w

R2

� � w

R1

" #
;

S ¼ Eh

2ð1þ �Þ
@u

@y
þ @v

@x
þ @w
@x

@w

@y

� �
:

ð18:21Þ

Let us eliminate the tangential displacements u and v from Eqs (18.21), and express
the forces N1;N2; and S in terms of the deflections w. For this purpose, first, trans-
form the two first relations (18.21), as follows:

N1 � �N2 ¼ Eh
@u

@x
þ 1

2

@w

@x

� �2

� w

R1

" #
; N2 � �N1 ¼ Eh

@v

@y
þ 1

2

@w

@y

� �2

� w

R2

" #
:

ð18:22Þ
Using the above relations, set up the following equation:

@2

@y2
ðN1 � �N2Þ þ

@2

@x2
ðN2 � �N1Þ � 2ð1þ �Þ @

2S

@x@y

¼ Eh
@2

@y2
1

2

@w

@x

� �2
" #

þ @2

@x2
1

2

@w

@y

� �2
" #

� @2

@x@y

@w

@x

@w

@y

� �(

� 1

R1

@2w

@y2
� 1

R2

@2w

@x2

�
:
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According to the general rules of differentiating, the following equalities hold:

@2

@y2
1

2

@w

@x

� �2
" #

¼ @2w

@x@y

 !2

þ @w
@x

@3w

@x@y2
;
@2

@x2
1

2

@w

@y

� �2
" #

¼ @2w

@x@y

 !2

þ @w
@y

@3w

@x2@y
;

@2

@x@y

@w

@x

@w

@y

� �
¼ @3w

@x2@y

@w

@y
þ @2w

@x@y

 !2

þ @
2w

@x2
@2w

@y2
þ @w
@x

@3w

@x@y2
:

Inserting these equalities in the above equation yields the following:

@2

@y2
ðN1 � �N2Þ þ

@2

@x2
ðN2 � �N1Þ � 2ð1þ �Þ @

2S

@x@y

¼ Eh
@2w

@x@y

 !2

� @
2w

@x2
@2w

@y2
� 1

R1

@2w

@y2
� 1

R2

@2w

@x2

2
4

3
5:

ð18:23Þ

Equation (18.23) represents the equation of compatibility of deformations of the non-
linear shallow shell theory in terms of the membrane forces and deflections.

Let us introduce the stress function � according to the relations (17.45a).
Substituting for � from the above relations into Eqs (18.23), results in

r2r2� ¼ Eh
@2w

@x@y

 !2

� @
2w

@x2
@2w

@y2
� r2

kw

2
4

3
5; ð18:24Þ

where the operators r2 and r2
k are given by Eqs (17.44).

Now we are coming to constructing the equations of equilibrium for a
shallow shell element subjected to a transverse surface load p3. The positive
directions of the internal forces and moments acting on the element are shown
in Fig. 12.5. The derivation of the equations of equilibrium in the nonlinear
theory of shallow shells has some peculiarities. The force summations in the x
and y directions, as well as the moment summations about the above axes, are set
up as for the linear shell theory. This involves neglecting the changes in transition
of the shell element from its initial (undeformed) to the deflected state, and the
initial curvatures of the above element are also neglected. However, the force
summation into the z direction is set up by taking into account both the initial
curvatures of the element and its consequent distortion acquired as a result of
shell straining under action of applied loads. It can be shown that the above
equation of equilibrium will have the form of the third Eq. (12.41), derived for
the linear shell theory, but complemented by the same terms as for the corre-
sponding equilibrium equation of the nonlinear theory of flat plates (see Eq.
(3.91). The system of simplifications adopted in the nonlinear shallow shell theory
results in the following equations of equilibrium:

@N1

@x
þ @S
@y

¼ 0;

@N2

@y
þ @S
@x

¼ 0; ð18:25Þ
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@Q1

@x
þ @Q2

@y
¼ �p3 �

N1

R1

�N2

R2

�N1

@2w

@x2
�N2

@2w

@y2
� 2S

@2w

@x@y
; ð18:26Þ

Q1 ¼
@M1

@x
þ @H
@y

; ð18:27aÞ

Q2 ¼
@M2

@y
þ @H
@x
: ð18:27bÞ

Using the relations (18.27), it is possible to eliminate the shear forces Q1 and
Q2 from Eq. (18.26). As a result, the equations of static equilibrium of the
element of a shallow shell in the nonlinear theory are reduced to the following
equations:

@N1

@x
þ @S
@y

¼ 0;

@N2

@y
þ @S
@x

¼ 0;

@2M1

@x2
þ 2

@2H

@x@y
þ @

2M2

@y2
þN1

1

R1

þ @
2w

@x2

 !
þN2

1

R2

þ @
2w

@y2

 !
þ 2S

@2w

@x@y
þ p3 ¼ 0:

ð18:28Þ
Substituting for the bending and twisting moments from Eqs (17.45b) into the third
Eq. (18.28) and introducing again the stress function � from Eq. (17.45a), we obtain
that the first two equations of (18.28) will be identically satisfied and the third
equation becomes

Dr2r2w� r2
k�þ @2�

@y2
@2w

@x2
þ @

2�

@x2
@2w

@y2
� 2

@2�

@x@y

@2w

@x@y

 !" #
¼ p3: ð18:29Þ

Eqsuations (18.24) and (18.29) are the governing differential equations of the non-
linear theory of shallow shells. By introducing the operator

LðU;VÞ � @2U

@x2
@2V

@y2
� 2

@2U

@x@y

@2V

@x@y
þ @

2U

@y2
@2V

@x2
; ð18:30Þ

we can rewrite the governing equations (18.24) and (18.29), as follows:

r2r2� ¼ �Eh
1

2
Lðw;wÞ þ r2

kw

� �
;

Dr2r2w� r2
k�þ Lð�;wÞ� � ¼ p3:

ð18:31Þ

Letting in Eqs (18.31) �1 ¼ 1=R1 ¼ 0 and �2 ¼ 1=R2 ¼ 0, we obtain Eqs (7.87) for
the large-deflection theory of plates. Boundary conditions on edges of the large-
deflection shallow shell are formulated in a similar manner to those of the small-
deflection shallow shell or of the large-deflection plate (see Secs 17.4 and 7.4, respec-
tively).
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In conclusion, let us formulate some qualitative considerations about the
mechanical behavior of a geometrically nonlinear shell under applied loading. For
simplicity, consider a flexible spherical shallow shell. Such a shell is governed by Eqs
(18.31), if we let R1 ¼ R2 ¼ R. We obtain the following system of equations:

1

Eh
r2r2�þ 1

2
Lðw;wÞ þ 1

R
r2w

� �
¼ 0;

Dr2r2w� 1

R
r2�þ Lð�;wÞ

� �
¼ p3:

ðaÞ

Assume that the stress function � is assigned in the first approximation, as follows:

� ¼ Aðp3Þ � w; ðbÞ
where Aðp3Þ is a function of loading only. Substituting for � from Eq. (b) into Eq.
(a), one obtains

A

Eh
r2r2wþ 1

R
r2wþ 1

2
Lðw;wÞ ¼ 0;

Dr2r2w� A

R
r2w� ALðw;wÞ ¼ p3:

Eliminating the nonlinear term Lðw;wÞ from the above equations, we obtain the
following equation:

Dr2r2wþ 1

R
r2w ¼ p3; ðcÞ

where

Dðp3Þ ¼
2A

Eh
þD

A
; p3 ¼

p3
A
: ðdÞ

The quantity Dðp3Þ is made up of the extensional stiffness Eh and the flexural
stiffness D. Therefore, it can be called the composite stiffness of the shell.
Obviously, the latter depends on the loading p3.

For a flexible plate, R ¼ 1, and Eq. (c) becomes

Dr2r2w ¼ p3: ðeÞ
Equations (c) and (e) are linear equations. Thus, a geometrically nonlinear shell or
plate can be considered as a linear system whose flexural and extensional stiffnesses
are replaced with some variable composite stiffness, D, given by the first Eq (d) and
depending on the applied loading. The above consideration can be used for an
approximate shell or plate analysis.

Example 18.3

Analyze the state of stress and strain in a cylindrical shallow shell of radius R having
a rectangular configuration in a plan (see Fig. 18.3a). Assume that the shell is
lengthened in the y direction (b � a) and is subjected to a uniform transverse surface
load of intensity p. The straight edges of the shell are hinged and the displacement
along the x axis is eliminated.
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Solution

Let us confine our study to the analysis of the middle part of the shell that is
sufficiently remote from the short curvilinear edges. A curved surface of this part
of the shell can be considered as a cylindrical surface. Just as has been done for the
cylindrical bending of flat plates (see Sec. 3.2.1), the bending of the given part of the
shell will be identical to the bending of a unit curvilinear, simply supported at x ¼ 0
and x ¼ a, shallow strip, isolated from the shell. For such a strip, w ¼ wðxÞ. Since the
deformations in the y direction of such a strip are restrained because of an interac-
tion of neighboring strips, then it can be assumed that the relative deformation in the
y direction is zero, i.e., "2 ¼ 0. It can also be shown that the membrane force N1 ¼
const over the shell width. The latter can be checked by considering the equilibrium
of a shell element detached from the transverse shell strip, which is subjected to the
membrane forces and given loading p, as shown in Fig. 18.3b. For a shallow shell
and assumptions adopted in the nonlinear theory, the tangent to the curved axis of
the shell strip can be neglected, i.e., it is possible to assume that N1 is a constant over
the shell width.

Thus, the equation of equilibrium (18.29) of the nonlinear shallow shell theory
acquires, in this particular case, the following form (taking into account that
N1 ¼ @2�=@y2Þ:

D
d4w

dx4
�N1

d2w

dx2
�N1

R
¼ p: ð18:32Þ

The solution of this equation is sought in the form of the following series:

wðxÞ ¼
X1
m¼1

fm sin
m�x

a
: ð18:33Þ

It is evident that wðxÞ in the form of Eq. (18.33) satisfies the prescribed boundary
conditions for the deflections.

We solve the above problem in the first approximation, retaining the first term
in the expansion (18.33) only. We apply the Galerkin method (see Sec. 6.5) for the
solution of Eq. (18.32). Let us introduce

(a) (b)

Fig. 18.3
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E � D
d4w

dx4
�N1

d2w

dx2
þ 1

R

 !
� p ¼ 0: ð18:34Þ

Write the Galerkin equation (6.38) in the formða
0

E sin
�x

a
dx ¼ 0: ð18:35Þ

Substituting for w from Eq. (18.33) into the above and retaining only one term in the
expansion, one finds the following after integration:

Df1
�5

4a4
þN1 f1

�3

a3
� 1

R

 !
� p ¼ 0: ð18:36Þ

Determine the expression for the constant membrane force N1. From the first Eq.
(18.19), one obtains

@u

@x
¼ "1 þ

w

R
� 1

2

@w

@x

� �2

: ð18:37Þ

Integrating the above over the width of the shell, yields the following:

uðaÞ � uð0Þ ¼
ða
0

"1 þ
w

R
� 1

2

@w

@x

� �2
" #

dx: ð18:38Þ

The given boundary conditions prescribed along the straight edges of the shell are of
the form

w ¼ 0jx¼0;a;
@2w

@x2
¼ 0

					
x¼0;a

; u ¼ 0jx¼0;a:

Taking into account that "2 ¼ 0, we can obtain from the constitutive equations
(12.45):

"1 ¼
1� �2
Eh

N1:

Substituting for "1 from the above relation into Eq. (18.38) and taking into account
the boundary conditions, we can express the membrane force N1, as follows:

N1 ¼ � Eh

ð1� �2Þa
ða
0

w

R
� 1

2

@w

@x

� �2
" #

dx:

Substituting for w from Eq. (18.33) into the above and integrating, we obtain (for
m ¼ 1Þ

N1 ¼
Eh

1� �2
f 21 �

2

4a2
� 2f1
�R

 !
: ð18:39Þ

Substituting the above expression into Eq. (18.36), we obtain the following cubic
equation for the amplitude of deflections:
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�5

16

f 31
h3

� 3�2

4

f 21
Rh3

þ �5

48
þ 2a4

4R2h2

 !
f1
h
¼ ð1� �2Þ pa

4

Eh4
: ð18:40Þ

The relationship between the dimensionless parameters p ¼ ð1� �2Þpa4=Eh4 and
f1=h is illustrated in Fig. 18.4 (taken from Ref. [7]). The curves of this figure are
given for various values of k ¼ a2=Rh. Figure 18.4 shows the four different plots;
the straight line 1 indicates the relationship p of f1=h due to the linear theory of
shallow shells, whereas the three other curves describe the relationship in the large-
deflection theory for various values of the parameter k.

It is seen that for a relatively small parameter k, the relationship p of f1=h is
single-valued (curve 2 refers to a flexible flat plate with k ¼ 0; and curve 3 stands for
k ¼ 4:475). However, for larger values of this parameter (curve 4 stands for
k ¼ 40) the above relationship is not uniquely defined, i.e., the three real roots of
Eq. (18.40) correspond to one and the same value of p. This is a consequence of
some peculiarities of straining the large-deflection shallow shell in the process of
increasing the applied loading. As long as the parameter p increases from zero to
the value of 1025 (the ordinate of point A on the curve), the deflection amplitude
grows continuously up to the value � 2:2h, as is indicated by the branch OA of the
curve. However, as soon as the load parameter p becomes larger than a certain
value (about 1025), the given cylindrical shallow shell undergoes the so-called snap
through, i.e., the deflection changes its value by jumping from approximately 2:2h
(the abscissa of point A on the curve) to approximately 11:1h (the abscissa of point D
on the curve). Upon unloading after this snap through, the shell does not return to
its initial configuration of equilibrium. The permanent deflection measured by the
abscissa of point E remains in the shell. To return the panel to its initial configura-
tion it is necessary to apply to it a load of another sign whose dimensional parameter
p ¼ �959:7 (the ordinate of point B on the curve 4). At this load, an inverse snap
through of the panel occurs. This snap through corresponds to the transition from
point B to point F on curve 4.

Fig. 18.4
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It is clear that the linear relationship between p and f1=h presented by the
straight line 1 leads to incorrect quantitative and qualitative results of the stress and
strain analysis of the given shell.

18.3 ORTHOTROPIC AND STIFFENED SHELLS

18.3.1 Introduction

In the previous chapters of Part II, only homogeneous and isotropic shells were
considered. This permitted the study of the effects of different types of a shell
geometry, edge constraints, loading, etc., upon stress and strain components using
various shell theories. In this section, the complicated effects associated with material
anisotropy and geometric nonhomogeneity, e.g., shell reinforcement, are considered.
Obviously, each such effect causes complications in the governing differential equa-
tions of the general shell theory. We present below the general equations and rela-
tions for orthotropic and stiffened (structurally orthotropic) shells in the framework
of the linear (classical) shell theory. It should be noted that the governing differential
equations of the theory of orthotropic and stiffened shells may be derived in much
the same way as was done for the theory of isotropic and homogeneous shells in
Chapter 12. In fact, as mentioned in Sec. 12.5, the general linear theory of thin
isotropic shells consists of the three sets of equations: the strain–displacement rela-
tions, Eqs (12.22)–(12.24); equations of equilibrium (or motion for dynamic pro-
blems), Eqs (12.41) and (12.42); and the constitutive equations (12.32) or (12.45) and
(12.46). These three sets of equations are to be completed by appropriate boundary
conditions. The first two sets of equations, without changes, are carried over into the
theory of the orthotropic shells, whereas the constitutive equations (12.32) or (12.45)
and (12.46), used for isotropic shells, are not valid for the above orthotropic shells
and must be modified. First, we consider the stress–strain relations for orthotropic
shells and then generalize them for stiffened shells.

18.3.2 Orthotropic shells

A material is orthotropic if its mechanical characteristics are specified along two
mutually orthogonal directions (for a two-dimensional space). Such a material has
different values for E;G; and � for each direction (see Sec. 7.2). For instance, shells
made of delta wood, plywood, fiberglass, metallic composites, and other composite
materials fall into the category of orthotropic shells. We assume that the orthotropic
material of the shell is so arranged that at each point of the shell its mutually
orthogonal directions of elastic symmetry coincide with the principal lines of curva-
ture on the shell’s middle surface. For such orthotropic material of a shell, the stress
components are related to strain components at any point located at a distance z
from the middle surface, as follows:

�z1 ¼
E1

1� �1�2
ð"z1 þ �2"z2Þ; "z2 ¼

E2

1� �1�2
ð"z2 þ �1"z1Þ; �z12 ¼ G�z12; ð18:41Þ

where E1 and E2 are the moduli of elasticity in the directions of the 	- and 
-
coordinate axes, respectively; �1 and �2 are the Poisson’s ratios corresponding to
the above axes; and G is the shear modulus. It should be noted that the moduli of

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



elasticity and Poisson’s ratios are not independent and are related by the following
expression (see Eq. (7.24)):

�1E2 ¼ �2E1:

Substituting for the strain components from Eqs (12.22) into Eqs (18.41), one
obtains

�z1 ¼
E1

1� �1�2
"1 þ �2"2 þ zð�1 þ �2�2Þ½ �;

�z2 ¼
E2

1� �1�2
"2 þ �1"1 þ zð�2 þ �1�1Þ½ �;

�z12 ¼ Gð�12 þ 2z�12Þ:

ð18:42Þ

These are the general constitutive relations of the linear theory of orthotropic shells
based on the Kirchhoff–Love postulates. They relate the stress components at a point
of the shell located at a distance z from the middle surface to the in-plane strain
components and changes in curvature and twist of the middle surface.

Substituting Eqs (18.41) into the stress and couple resultants’ expressions
(12.35) and (12.36), integrating over the shell thickness, and neglecting the terms
of order z=Ri compared with unity, yields the following:

N1 ¼ B1ð"1 þ �2"2Þ; N2 ¼ B2ð"2 þ �1"1Þ; N12 ¼ N21 ¼ S ¼ BG�12; ð18:43Þ
M1 ¼ D1ð�1 þ �2�2Þ; M2 ¼ D2ð�2 þ �1�1Þ; M12 ¼ M21 ¼ H ¼ DG�12;

ð18:44Þ
where B1;B2; and BG are the extensional and shear stiffnesses, respectively, defined
as

B1 ¼
E1h

1� �1�2
; B2 ¼

E2h

1� �1�2
; BG ¼ Gh; ð18:45aÞ

and D1;D2; and DG are the flexural and torsional stiffnesses, respectively, defined as

D1 ¼
E1h

3

12ð1� �1�2Þ
; D2 ¼

E2h
3

12ð1� �1�2Þ
; DG ¼ Gh3

6
: ð18:45bÞ

Equations (18.43) and (18.44) represent the stress resultant–in-plane strain and stress
couple–curvature relations for the orthotropic linear shell theory based on the
Kirchhoff–Love postulates.

18.3.3 Stiffened shells

Stiffened shells are commonly used in the aerospace and civil engineering fields. For
example, a stiffened circular cylindrical shell is a widely used structural configuration
for an aircraft fuselage or a launch vehicle fuel tank. Being suitably designed, the
stiffened shells are more efficient and economical configurations than the corre-
sponding unstiffened shells. They correspond, to a great extent, to specifications
for low-weight structural configurations that are very important for aerospace
structures.
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Basically, two approaches are possible for the analysis of stiffened shells. If the
distance between the stiffeners is too large, then the shell structure must be presented
as a combination of shell and stiffener elements, each having its own governing
equations and coupled to one another by equations of continuity. However, if the
stiffening elements are relatively closely spaced, then a shell structure can be con-
sidered as orthotropic, the structurally orthotropic shell (see Sec. 7.2). In the latter
case, the rigidities of the stiffeners can be ‘‘smeared’’ along the shell middle surface to
yield an equivalent homogeneous orthotropic shell. Only the second approach is
considered in this book.

Consider a thin shell, reinforced by closely spaced stiffeners, in two mutually
perpendicular directions, attached to the inside of the shell skin, as illustrated in Fig.
18.5. Assume that the depth of the stiffeners is small compared with the principal
radii of curvature of the shell middle surface and that the stiffeners, unlike the shell
skin, undergo a uniaxial state of stress. For the sake of simplicity, assume that the
stiffeners and skin are made of the same isotropic material. As mentioned previously,
such a gird-stiffened shell is replaced by a structurally orthotropic unstiffened
(homogeneous) shell. Let us set up the constitutive equations for the above shell
by modifying the expressions (12.45) and (12.46). For the shell wall construction that
is not symmetrical relative to the shell middle surface (see Fig. 18.5b), there is
coupling between extensional forces and curvature change and between bending
moments and extensional strain. Taking into account the above considerations
and neglecting the terms of order z=Ri with respect to unity in Eqs (12.35) and
substituting for the stress components from Eqs. (12.33), one can write the above
expressions for the stress resultants for the structurally orthotropic shells. The mem-
brane force N1 is given by

N1d
 ¼ d


ðh=2
�h=2

�z1dzþ
ð
A	

�z1dA	 ¼ d

Eh

1� �2 ð"1 þ �"2Þ þ "1EA	 þ �1EF	:

ð18:46Þ
Dividing both sides of the above equation by d	, one obtains the following expres-
sion for N1:

N1 ¼ "1B11 þ "2B12 þ �1K11: ð18:47aÞ
In a similar manner, the expressions for the membrane force N2 and S are given by

Fig. 18.5
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N2 ¼ "2B22 þ "1B21 þ �2K22: ð18:47bÞ
S ¼ B33�12: ð18:47cÞ

In Eqs (18.47)

B11 ¼ Bþ EA	
d


; B12 ¼ B21 ¼ B�; K11 ¼
EF	
d


;

B22 ¼ Bþ EA


d	
; K22 ¼

EF


d	
; B33 ¼

1� �
2

B; B ¼ Eh

1� �2 ;
ð18:48Þ

A	 and A
 are the cross-sectional areas of the stiffeners in the 	- and 
-directions,
respectively; F	 ¼

Ð
A	

zdA	 and F
 ¼
Ð
A


zdA
 are the first moments of area of the
stiffeners about the tangents to the middle surface.

Note that K11 > 0;K22 > 0 for internally spaced stiffeners and K11 < 0,
K22 < 0 for externally spaced stiffeners; K11 ¼ K22 ¼ 0 if the stiffeners are located
symmetrically with respect to the shell middle surface.

Analogously, we can introduce the expressions for the bending moments in the
structurally orthotropic shells. We have the following:

M1d
 ¼ d


ðh=2
�h=2

�z1zdzþ
ð
A	

�z1zdA	;

or

M1 ¼ "1K11 þ �1D11 þ �2D12: ð18:49aÞ
Similarly, the bending moment M2 is given by

M2 ¼ D22�2 þD21�1 þ K22"2 ð18:49bÞ
and

H ¼ �12D33; ð18:49cÞ
where

D11 ¼ Dþ EI	
d


; D12 ¼ D21 ¼ �D;D22 ¼ Dþ EI


d	
;

D33 ¼ Dð1� �Þ þ 1

2

GJ	
d


þ GJ


d	

� �
; D ¼ Eh3

12ð1� �2Þ ;
ð18:50Þ

where I	 ¼
Ð
A	

z2dA	 and I
 ¼
Ð
A


z2dA
 are the moments of inertia of the stiffeners
about the tangents to the middle surface; J	 and J
 are the torsional constants for the
	- and 
-directed stiffeners. For thin-walled open cross sections, the torsional con-
stant is given approximately by the following relation [8]:

J ¼ 1

3

X
lih

3
i ;

where
P

li is the developed length of the middle line of the cross section of the
stiffener and hi is its wall thickness. Note that the twisting rigidity of stiffened shells
reinforced by thin-walled members with open cross sections differs little from the
correponding rigidity of unstiffened shells. Therefore, in the analysis of the above
stiffened shells, one can take
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D33 � Dð1� �Þ: ð18:51Þ
By way of illustration of the above theory of orthotropic and stiffened shells,

let us now derive the governing differential equation for some shell problems.

1. Axisymmetrically loaded stiffened circular cylindrical shell subjected to
internal pressure p

Assume that the shell is stiffened by closely spaced circular circumferential rings.
According to the above theory, first replace the given naturally orthotropic and
stiffened circular shell by a structurally orthotropic shell having the extensional
and flexural rigidities given by Eqs (18.48) and (18.50). Inserting the expressions
(15.38) into Eqs (18.47a and b) and (18.49a) yields the following stress resultants–
displacement relations:

N1 ¼ B11

du

dx
� B12

w

R
� K11

d2w

dx2
; N2 ¼ �B22

w

R
þ B21

du

dx
;

M1 ¼ �D11

d2w

dx2
þ K11

du

dx
:

ð18:52Þ

Using the first Eq. (18.52), express du=dx in terms of N1 and w, and then substitute
the result into the second and third Eq. (18.52). We obtain the following:

N2 ¼
1

B11

B21N1 þ
w

R
B2
21 � B22B11

� �þ B21K11

d2w

dx2

" #
;

M1 ¼
1

B11

K11N1 þ
w

R
K11B12 þ K2

11 � B11D11

� � d2w
dx2

" #
:

ð18:53Þ

Inserting the above equations into the equilibrium equation (15.41) results in the
following governing differential equation for an axisymmetrically loaded, structu-
rally orthotropic circular cylindrical shell (stiffened by circumferential rings):

d4w

dx4
� 2�2

d2w

dx2
þ 4
4sw ¼ f ðp3;N1Þ; ð18:54Þ

where

�2 ¼ K11B12

2RDs

; 
4s ¼
Bs

4DsR
2
; Ds ¼ B11D11 � K2

11; Bs ¼ B11B22 � B2
12;

f ðp3;N1Þ ¼
1

Ds

B11p3 þ K11

d2N1

dx2
þ B21

R
N1

 !
:

ð18:55Þ
The membrane meridional force N1 may be found from Eq. (15.36), i.e.,

N1 ¼ �
ð
p1dxþN

ð0Þ
1 ; ð18:56Þ

where N
ð0Þ
1 is the meridional force in a reference section of the shell, x ¼ 0.

For an unstiffened, isotropic, circular cylindrical shell, axisymmetrically loaded
by a pressure p3, one obtains the following:
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K11 ¼ 0; B11 ¼ B22 ¼ B; B21 ¼ �B; Bs ¼ B2ð1� �2Þ;

D11 ¼ D ¼ Eh3

12ð1� �2Þ ; � ¼ 0; 
4s ¼ 
4

Ds ¼ BD; f ðp3;N1Þ ¼
1

BD
p3 þ

�B

R
N1

� �
;

and Eqs (18.55) will be reduced to Eq. (15.43) derived in Sec. 15.3 for an isotropic
circular cylindrical shell loaded axisymmetrically by a pressure p3 (if p1 ¼ 0 then
N1 ¼ const, and d2N1=dx

2 ¼ 0).

2. Shallow structurally orthotropic shells with unsymmetrical over-the-shell
thickness composition

Assume that all the assumptions adopted for the theory of shallow shells and intro-
duced in Sec. 17.4 hold. Thus, the equations of equilibrium of a differential shell
element of the middle surface and compatibility equations presented in Sec. 17.4
remain unchanged. Only the constitutive equations will be changed, which results in
new governing differential equations.

The equations of static equilibrium of the linear shallow shell theory can be
obtained either from the equilibrium equations of the general linear shell theory, Eqs
(12.41) and (12.42), using the assumptions adopted in the shallow shell theory (see
Sec. 17.4), or from Eqs (18.28) by making all the nonlinear terms equal to zero. In
any case, the equations of equilibrium of the linear shallow shell theory, using the
Cartesian coordinates as the lines of curvature of the shallow shell middle surface,
are of the following form (assuming that p1 ¼ p2 ¼ 0Þ:

@N1

@x
þ @S
@y

¼ 0;

@S

@x
þ @N2

@y
¼ 0; ð18:57Þ

@2M1

@x2
þ 2

@2H

@x@y
þ @

2M2

@y2
þN1

R1

þN2

R2

¼ �p3 ð18:58Þ

The compatibility equations for the linear shallow shell theory are given by Eqs
(17.35). In particular, the third equation of this system can be represented in the
following form for the shallow shell (making 	 ¼ x; 
 ¼ y; and A ¼ B ¼ 1):

@2"1
@y2

þ @
2"2
@x2

� @
2�12
@x@y

¼ � @
2w

@y2
1

R1

� @
2w

@x2
1

R2

: ð18:59Þ

The constitutive equations for shallow shells, reinforced in both directions by stiffen-
ers, may be presented in the form of Eqs (18.47) and (18.49). The strain–displace-
ment relations and the curvature changes–displacement expressions for the shallow
composite shells are given by Eqs (17.43).

Solving Eq. (18.47) for the strain components yields the following:
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"1 ¼
1

Bs

ðN1B22 �N2B12 � �1K11B22 þ �2K22B12Þ;

"2 ¼
1

Bs

ðN2B11 �N1B12 þ �1K11B12 � �2K22B11Þ;

�12 ¼
S

B33

:

ð18:60Þ

Substituting the above expressions into Eqs (18.49), one obtains

M1 ¼
K11B22

Bs

N1 �
K11B12

Bs

N2 þ D11 �
K2

11B22

Bs

 !
�1 þ D12

K11K22B12

Bc

� �
�2;

M2 ¼
K22B11

Bs

N2 �
K22B21

Bs

N1 þ D21 þ
K11K22B21

Bs

� �
�1 þ D22 �

K2
22B11

Bs

 !
�2;

H ¼ D33�12: ð18:61Þ
Inserting the above expressions into Eq. (18.58) yields

K11B22

Bs

@2N1

@x2
� K11B12

Bs

@2N2

@x2
þ D11 �

K2
11B22

Bs

 !
@2�1
@x2

þ D12 þ
K11K22B12

Bs

� �
@2�2
@x2

þ 2D33

@2�12
@x@y

þ K22B11

Bs

@2N2

@y2
� K22B12

Bs

@2N1

@y2

þ D21 þ
K11K22B21

Bs

� �
@2�1
@y2

þ D22 �
K2

22B11

Bs

 !
@2�2
@y2

¼ �p3 �
N1

R1

þN2

R2

� �
:

ð18:62Þ
Introduce again the stress function � by Eqs (17.45a). Substituting for the changes in
curvature and twist from Eqs (17.43) and for the membrane forces from Eqs (17.45a)
into Eq. (18.62), we obtain the following:

LK�þ r4
1sw ¼ p3; ð18:63Þ

where

LK ð. . .Þ �
@4

@x4
ð. . .ÞK11B12

Bs

þ @4

@y4
ð. . .ÞK22B12

Bs

� @4

@x2@y2
ð. . .Þ ðK11B22 þ K22B11Þ

Bs

� r2
kð. . .Þ;

r4
1s �

@4

@x4
ð. . .Þ D11 �

K2
11B22

Bs

 !
þ 2

@4

@x2@y2
ð. . .Þ D21 þD33 þ

K11B12K22

Bs

� �

þ @4

@y4
ð. . .Þ D22 �

K2
22B11

Bs

 !
; r2

kð. . .Þ �
1

R1

@2

@y2
ð. . .Þ þ 1

R2

@2

@x2
ð. . .Þ:

ð18:64Þ
Then, let us use the compatibility equations (17.35). As mentioned in Sec. 17.3, the
first two equations of the above system (17.35) will be automatically satisfied if one
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substitutes for �1; �2; and �3 from the kinematic relations (17.29). Substituting for
the in-plane strain components from Eqs (18.60) into the third compatibility equa-
tion (18.59) yields

1

Bs

B22

@2N1

@y2
� B12

@2N2

@y2
� K11B22

@2�1
@y2

þ K22B12

@2�2
@y2

þ B11

@2N2

@x2
� B12

@2N1

@x2

"

þK11B12

@2�1
@x2

� K22B11

@2�2
@x2

#
� 1

B33

@2S

@x@y
¼ r2

kw ð18:65Þ

or, using the strain–displacement relations (17.43) and Eqs (17.45), we obtain

r4
2s�� LKw ¼ 0; ð18:66Þ

where

r4
2sð. . .Þ �

B11

Bs

@4

@x4
ð. . .Þ þ 2

1

2B33

� B12

Bs

� �
@4

@x2@y2
þ B22

Bs

@4

@y4
ð. . .Þ: ð18:67Þ

Equations (18.63) and (18.66) form the system of governing differential equations for
the shallow structurally orthotropic shells.

It can be shown that for shallow unstiffened and isotropic shells, the operators
(18.64) and (18.67) become

LK ð. . .Þ ¼ �r2
kð. . .Þ; r4

1sð. . .Þ ¼ Dr4ð. . .Þ; r4
2sð. . .Þ ¼

1

Eh
r4ð. . .Þ; ð18:68Þ

where r4ð. . .Þ is the biharmonic operator given by Eq. (2.26). Equations (18.63) and
(18.66) will be reduced to the system of equations (17.36) introduced in Secs 17.3 and
17.4.

18.4 MULTILAYERED SHELLS

Consider a thin multilayered shell of revolution of a constant thickness, composed of
n isotropic and orthotropic layers of variable thickness, whose mechanical parameters
vary along the meridian only (see Fig. 18.6). Many of structures made of composite
materials can be presented as multilayered orthotropic shells of revolution.

It is supposed that the above layers deform without slipping and separation.
The stress components on planes, that are tangent to the contact surface, have no
discontinuities and the material of the shell layers obeys Hooke’s law.

The coordinate surface does not necessarily coincide with the contact surface of
two adjacent layers. If a shell is composed of layers of identical thickness, then the
coordinate surface is chosen to be parallel to the contact surfaces. It is also assumed
that the deformations are small, the Kirchhoff–Love hypotheses are valid for the
entire shell packet, and the mechanical parameters of each layer are not too different
from one another, i.e., the shell is not significantly nonhomogeneous across its
thickness. The axes of orthotropy in all layers of the shell packet are assumed to
be parallel to the coordinate lines. Let the coordinate surface of the multilayered
shell, chosen from some considerations, be referred to the curvilinear orthogonal
coordinate system 	 ¼ s and 
¼�, where s is the length of the meridian arc, measured
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from some reference shell cross section and � is the circumferential angle measured
from some reference meridian. For this coordinate system, the Lamé parameters are

A ¼ 1 and B ¼ r; ð18:69Þ
where r is the radius of the parallel circle.

There exists an obvious relationship between the spherical coordinates adopted
in Sec. 11.8 and the coordinates mentioned above, i.e.,

cos �ds ¼ dr: ð18:70Þ
The entire shell is referred to the coordinate system z; �; s. Then, the equations zi ¼
ziðs; �Þ ði ¼ 1; 2; . . . ; n� 1Þ assign the contact surfaces for the i and i þ 1 layers, and
bounding (lower and upper ) surfaces are given by the equations z0 ¼ z0ðs; �Þ and zn
¼ znðs; �Þ (Fig. 18.6). Due to the above-mentioned assumptions adopted in the multi-
layered shell theory, it is possible to replace the usual consideration of stresses over
the entire shell packet by a consideration of statically equivalent stress resultants and
stress couples, just as has been done for isotropic shells in Sec. 12.3.2. So, by analogy
with Eqs (12.35) and (12.36), we obtain the following expressions for the internal
forces and moments:

N1 ¼
Xn
i¼1

ðzi
zi�1

�i1 1� z

R2

� �
dz; N2 ¼

Xn
i¼1

ðzi
zi�1

�i2 1� z

R1

� �
dz;

N12 ¼
Xn
i¼1

ðzi
zi�1

�i12 1� z

R1

� �
dz; N21 ¼

Xn
i¼1

ðzi
zi�1

�i21 1� z

R2

� �
dz;

Q1 ¼
Xi¼n

i¼1

ðzi
zi�1

�i1z 1� z

R2

� �
dz; Q2 ¼

Xn
i¼1

ðzi
zi�1

�i2z 1� z

R1

� �
dz;

M1 ¼
Xn
i¼1

ðzi
zi�1

�i1 1� z

R2

� �
zdz; M2 ¼

Xn
i¼1

ðzi
zi�1

�i2 1� z

R1

� �
zdz;

M12 ¼
Xn
i¼1

ðzi
zi�1

�i12 1� z

R1

� �
zdz; M21 ¼

Xn
i¼1

ðzi
zi�1

�i21 1� z

R2

� �
zdz:

ð18:71Þ

Fig. 18.6
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It should be noted that these stress resultants and stress couples are referred to the
coordinate surface, unlike a single-layered isotropic shell, when they were referred to
the middle surface. It is assumed that the stress resultants, N12 and N21, and stress
couples, M12 and M21, can be reduced by using Novozhilov’s suggestion (Eq.
(12.43)).

Equations of static equilibrium and kinematic relations for the multilayered
shells of revolution are coincident with those obtained in Sec. 16.2 for isotropic shells
of revolution, taking into account that the internal forces and moments are given by
the relations (18.71). Following a procedure similar to the one described in Sec.
12.3.4, we can obtain the constitutive equations for the multilayered orthotropic
shells of revolution under axisymmetrical loading. We have

N1 ¼ C11"1 þ C12"2 þ K11�1 þ K12�2;

N2 ¼ C12"1 þ C22"2 þ K12�1 þ K22�2;

S ¼ C66�12 þ 2K66�12; ð18:72Þ
M1 ¼ K11"1 þ K12"2 þD11�1 þD12�2;

M2 ¼ K12"1 þ K22"2 þD12�1 þD22�2;

H ¼ K66�12 þ 2D66�12; ð18:73Þ
where S andH are given by Eqs (12.43) and the constants Cmp;Kmp; and Dmp depend
upon the mechanical characteristics of layers and are of the following form:

Cmp ¼
Xn
i¼1

ðzi
zi�1

Bi
mpdz; Kmp ¼

Xn
i¼1

ðzi
zi�1

Bi
mpzdz; Dmp ¼

Xn
i¼1

ðzi
zi�1

Bi
mpz

2dz:

ð18:74Þ
The expressions of Bi

mp for the ith ayer have the following form:

– for orthotropic shells

B11 ¼
E1

1� �1�2
; B12 ¼

�1E2

1� �1�2
¼ �2E1

1� �1�2
; B22 ¼

E2

1� �1�2
; B66 ¼ G;

ð18:75Þ
– for homogeneous isotropic shells

C11 ¼ C22 ¼
Eh

1� �2 ; C12 ¼ �C11; C66 ¼
Eh

2ð1þ �Þ ;

D11 ¼ D22 ¼
Eh3

12ð1� �2Þ ; D12 ¼ �D11; D66 ¼
Eh3

24ð1þ �Þ ;

K11 ¼ K22 ¼ K12 ¼ K66 ¼ 0:

ð18:76Þ

In Eqs (18.75), E1 and E2 are the moduli of elasticity in the direction of the meridian
and parallel, respectively; �1 and �2 are Poisson’s ratios in those directions, respec-
tively; and G is the shear modulus in a plane that is parallel to the coordinate surface.
In Eqs (18.76), E and � are the modulus of elasticity and Poisson’s ratio for the
isotropic shell material.
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The equations of equilibrium, kinematic relations, and constitutive equations
(18.73) can be reduced to the eight-order system of 12 governing differential equa-
tions involving 12 unknown functions of the displacements, internal forces, and
moments for the multilayered orthotropic shells of revolution. The higher order of
this system and large number of equations and unknown functions present major
problems for its solving. So, only numerical and approximate methods discussed in
Chapter 6 can be employed for the analysis of the state of stress and strain of
multilayered orthotropic shells.

18.5 SANDWICH SHELLS

Sandwich shells are commonly used in aircraft construction, shipbuilding, industrial
building, etc., because they are quite efficient constructions: high strength is success-
fully combined with low weight. In this section we present a small-deflection elastic
theory of orthotropic sandwich shallow shells that takes into account deformations
due to the transverse shear. This theory represents a natural extension of the small-
deflection theory of orthotropic sandwich plates introduced in Sec. 7.6.

The sandwich shell construction is quite similar to the sandwich plate intro-
duced in Sec. 7.6 (see Fig. 7.8). The load-carrying flexural mechanism of a sandwich
shell is also analogous to that of a sandwich plate. Assume that all the sandwich
construction notations introduced in the plate sandwich theory in Sec. 7.6 are also
adopted in the shell sandwich.

The basic theory of orthotropic sandwich cylindrical shells was developed by
Stein and Mayers [9]. We present this theory as applied to shallow sandwich shells. It
is assumed that a sandwich shell – just as discussed previously for a sandwich plate –
behaves elastically as a homogeneous orthotropic shell with some mechanical prop-
erties, which characterize its mechanical behavior and peculiarities of its load-carry-
ing mechanism under applied loads. The seven physical constants that characterize
the flexural mechanism of flat plates have been presented in Sec. 7.6 (the subscripts x
and y adopted in the sandwich plate theory are replaced by the subscripts 1 and 2 for
the sandwich shell). These constants were the flexural stiffnesses D1 and D2, the
flexural Poisson’s ratios �1 and �2, the twisting stiffness D12, and the shear stiffnesses
DQ1

and DQ2
. Four of constants are related to each other by the following equality

(see Sec. 7.6):

�1D2 ¼ �2D1:

As mentioned previously, the behavior of a shell under applied loading differs essen-
tially from the behavior of a flat plate. The applied loading is resisted predominantly
by the in-plane stressing of the shell (see Chapter 10). Thus, the seven physical con-
stants characterizing the flexural mechanism must be complemented by some physical
constants that represent the membrane actions of a sandwich shell. The five addi-
tional constants appearing in the sandwich shell theory were introduced in Ref. [9]
and are the extensional stiffnesses,
1 and
2, the extensional Poisson’s ratios, �

0
1 and

� 02, and the in-plane shear stiffness 
12. They can be introduced as follows:


1 ¼
N1

"1
; 
2 ¼

N2

"2
; � 01 ¼ � "2

"1
; � 02 ¼ � "1

"2
; 
12 ¼

N12

�12
¼ N21

�21
¼ S

�12
:

ð18:77Þ
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These physical constants can be determined either theoretically in some simple cases
or experimentally [9,10].

The equilibrium and strain–displacement relations for the small-deflection
orthotropic shallow shell theory will coincide with the corresponding equations
derived in Sec. 17.3 and 17.4 for the homogeneous isotropic shallow shells. The
equilibrium equations of the small-deflection theory of shallow shells can be
obtained from Eqs (12.41) and (12.42), letting 	 ¼ x; 
 ¼ y; and A ¼ B ¼ 1. The
above equations have the following form (for p1 ¼ p2 ¼ 0):

@N1

@x
þ @S
@y

¼ 0;
@N2

@y
þ @S
@x

¼ 0;

@Q1

@x
þ @Q2

@y
þN1

R1

þN2

R2

þ p3 ¼ 0;

Q1 �
@M1

@x
� @H
@y

¼ 0; Q2 �
@M2

@y
� @H
@x

¼ 0

ð18:78a-eÞ

where all the stress resultants and stress couples are referred to the middle surface of
the sandwich shell. The sign convention for the internal forces and moments coin-
cides with that adopted for the general shell theory of a homogeneous shell. It is also
assumed that, due to the assumptions adopted in the general shallow shell theory,
N12 ¼ N21 ¼ S and M12 ¼ M21 ¼ H.

Now, we can turn our attention to the constitutive relations. The bending and
twisting moments, changes in curvature, and twist relations remain analogous to
those derived in the sandwich plate theory (see Eqs (7.129)). The relations between
the elastic membrane strains and the membrane forces, taking into account Eqs
(18.77), can be represented in the form

"1 ¼
N1


1

� � 02
N2


2

; "2 ¼
N2


2

� � 01
N1


1

; �12 ¼
S


12

: ð18:79Þ

Solving these equations for the membrane forces yields the following:

N1 ¼

1

1� � 01� 02
ð"1 þ � 02"2Þ; N2 ¼


2

1� � 01� 02
ð"2 þ � 01Þ; S ¼ 
12�12: ð18:80Þ

Substituting the expressions for the middle surface strains from Eqs (17.43) into the
above equations, one obtains

N1 ¼

1

1� � 01� 02
@u

@x
� w

R1

þ � 02
@v

@Y
� w

R2

� �� �
;

N2 ¼

2

1� � 01� 02
@v

@y
� w

R2

þ � 01
@u

@x
� w

R1

� �� �
;

S ¼ 
12

@v

@x
þ @u
@y

� �
:

ð18:81Þ

Equations (18.78), (7.129), and (18.81) represent the 11 basic equations that are
necessary for determining the internal forces, moments, and displacements acting
in the sandwich shallow shell. The number of the governing equations can be
reduced to five by substituting Eqs (7.129) and (18.81) into Eqs (18.78). As a result,
the five differential equations with five unknowns – the shear forces Q1 and Q2 and
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displacements u; v; and w – are obtained. Because of the awkwardness of these five
differential equations for the orthotropic sandwich shallow shell, they are not given
here. The interested reader is referred to Refs [9–11], where these equations are
presented.

For a special case of an isotropic sandwich shallow shell with non-direct-stress-
carrying core, the physical constants are simplified to the following form:

DQ1
¼ DQ2

¼ DQ ¼ d2

c
Gc; �1 ¼ �2 ¼ � 01 ¼ � 02 ¼ �;

D
1 ¼ D

2 ¼ Ds ¼
Ef td

2

2ð1� �2f Þ
; D12 ¼ Dsð1� �Þ;


1 ¼ 
2 ¼ 2Ef t; 
12 ¼
Ef t

1þ � ; d ¼ cþ t;

ð18:82Þ

where all the above notations are explained in Sec.7.6. For this special case, the
system of the five governing differential equations for an orthotropic sandwich
shallow shell can be reduced to a single eight-order differential equation in w.
Dropping the intermediate and lengthy mathematical manipulations associated
with deriving this equation, we present below only the final result:

Dsr4r4wþ 1� Ds

DQ

r2

� �
2Ef t

1

R2

@2

@x2
þ 1

R1

@2

@y2

 !2

w� r4p3

2
4

3
5 ¼ 0; ð18:83Þ

where

r4ð. . .Þ � @4ð. . .Þ
@x4

þ 2
@4ð. . .Þ
@x2@y2

þ @
4ð. . .Þ
@y4

is a biharmonic operator.
It can be easily shown that if R1 ! 1 and R2 ! 1, this equation is equivalent

to Eq. (7.135) derived in Sec. 7.5.1 for isotropic sandwich flat plates. Note that in the
limiting case when the shear modulus approaches infinity, Eq. (18.83) is reduced to
the governing differential equation of the homogeneous isotropic shallow shell the-
ory with the flexural stiffness Df , i.e., with the stiffness of a composite section
composed from two facings separated by a distance which is equal to the depth of
the core.

18.6 THE FINITE ELEMENT REPRESENTATIONS OF SHELLS

18.6.1 Introduction

We have seen in previous chapters of Part II that the shell problems associated with
determining displacements, internal forces, and moments are described by high-
order partial differential equations with variable coefficients. Only in very special
cases of shell geometry, boundary conditions, and loadings is it possible to obtain
reasonably accurate closed-form solutions and to develop relatively general analy-
tical expressions for deformations and stresses (see Chapters 14–17). Such closed-
form expressions, obtained in terms of arbitrary parameters defining a shell geome-
try, boundary conditions, and loading, are of considerable interest for a designer. In
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fact, the analytical solutions permit any desired parametric studies to be conducted,
rapid calculation of actual stresses and deformations in shell structures, and they
provide a basis for error estimates of numerical solutions obtained by approximate
methods.

However, available analytical solutions of shell structural problems are, never-
theless, limited in scope and, in general, do not apply to arbitrary shapes, loading,
irregular stiffening, cutouts, support conditions, and many other aspects of practical
design. Therefore, not surprisingly, the development of numerical formulations over
the past 50 years, notably the finite element method (FEM), has enabled one to
analyze thin shell structures. As mentioned in Sec. 6.7, the FEM is a general numer-
ical procedure that can be used to tackle any problem of structural stress analysis,
including shell problems, to any desired degree of accuracy. However, initially, one
needs to understand the response of the basic individual elements making up a shell
structure, and then to assemble such elements by enforcing compatibility of defor-
mations between elements at their common nodes, and equilibrium of forces and
moments at all nodes, as well as constraint conditions at the boundary nodes of the
structure. Then, the overall response of the complete shell structure can be predicted.

The general procedure of an application of the FEM to thin shell structures is
quite similar to that discussed in Sec. 6.7 for plate bending problems. We discuss in
this section some issues regarding the peculiarities of the FEM representation and
formulation for thin shell structural analysis.

There are three distinct approaches to the finite element representation of thin
shell structures [12]:

(a) in ‘‘faceted’’ form with flat elements;
(b) via curved elements formulated on the basis of thin shell theory; and
(c) by means of the three-dimensional (solid) elements.

This section is concerned with the flat and curved shell elements only. Various appli-
cations of the solid finite elements to the stress analysis are given in Refs [12,13,14,
etc.]. We consider below several applications of the FEM to some shell geometries.

18.6.2 The finite element solutions of axisymmetrically loaded shells
of revolution

The axisymmetric bending of shells of revolution was studied in Sec. 16.3. It was
shown in the above section that the state of stress and strain of such shells is
governed by the ordinary differential equations: i.e., the displacements, internal
forces, moments, and stresses are functions of one variable (meridional coordinate)
only. Let us take the length of the meridian arc, s, measured from some reference
point of the shell, as the meridional coordinate of a point in the middle surface.

If we apply the FEM to the bending analysis of axisymmetrically loaded shells
of revolution, then the finite element should be one dimensional. Such an element
may be represented in the form of a frustum: i.e., as a ring, generated by the straight
line segment between two parallel circles or ‘‘nodes’’, say, i and j, as shown in Fig.
18.7. The thickness may vary from element to element. To increase the accuracy of a
solution, finite elements with curved generators are employed in some cases.

The displacement vector of a point in the midsurface is specified by two com-
ponents u and w in the meridional and normal directions, respectively (see Sec. 16.3).
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Using the relationships r ¼ R2 sin ’ and ds ¼ R1d’, we can rewrite the strain–dis-
placement equations (16.11) in terms of variable s, as follows:

"1 ¼
du

ds
� w

R1

; "2 ¼
1

r
u cos ’� w sin ’ð Þ;

�1 ¼ � d#1
ds

; �2 ¼ � cos ’

r
#1;

#1 ¼
u

R1

þ dw

ds

ð18:84Þ

(for simplicity from hereon the subscript 1 in the notation for the angle of rotation #
is omitted).

The Codazzi–Gauss condition for shells of revolution is

dr

ds
¼ cos ’: ð18:85Þ

Introduce the displacement f
� �

and strain "f g vectors, respectively, as follows:
f
� �T ¼ u;w½ �; ð18:86aÞ
"f gT ¼ "1; "2; �1; �2½ �: ð18:86bÞ

Using the above notations, we can rewrite the kinematic relationships (18.84) for the
finite element shown in Fig. 18.7 in the following matrix form:

"f g ¼ R½ � f
� �

; ð18:87Þ
where

R½ � ¼

d

ds
� 1

R1
cos ’

r
� sin ’

r

� d

ds

1

r1

� �
� d2

ds2

� cos ’

rR1

� cos ’

r

d

ds

2
66666666664

3
77777777775

ð18:88Þ

Fig. 18.7
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The stress resultant and couples–strain relations, Eqs. (16.13), can also be
presented in the matrix form, as follows:

�f g ¼ D½ � "f g; ð18:89Þ
where

�f gT¼ N1;N2;M1;M2½ � ð18:90Þ
is the stress resultants and couples vector and

D½ � ¼ Eh

1� �2

1 � 0 0
� 1 0 0
0 0 h2=12 �h2=12
0 0 �h2=12 h2=12

2
664

3
775 ð18:91Þ

is the elasticity matrix.
The strain energy, stored by an axisymmetrically loaded shell of revolution in

bending, can be obtained from Eq. (12.53) by letting S ¼ H ¼ 0 and replacing
ABd	d
 with dA. We have

U ¼ 1

2

ð ð
A

N1"1 þN2"2 þM1�1 þM2�2ð ÞdA: ð18:92Þ

Using the vector notations introduced above for the strains and stress resultants and
couples, and noting that the area of the element dA ¼ rdsd� and integrating (18.92)
over � from 0 to 2�, we can represent Eq. (18.92) for the one-dimensional finite
element in Fig. 18.7, as follows:

U ¼ 2�

ðs1
s0

"f gT Tf grds; ð18:93Þ

where s0 and s1 are the end points of the s arc.
The vector of external forces can be represented in the form

Pf gT¼ px; pz½ �; ð18:94Þ
where px and pz are the horizontal (or radial) and vertical (or axial) components of
an applied loading, respectively. If a shell is subjected to an external normal pressure
q, then

pz ¼ q cos ’; px ¼ q sin ’: ð18:95Þ
The work done by external loads applied along the displacements given by the vector
f
� �

can be represented as follows:

We ¼ 2�

ðs1
s0

f
� �T

Pf grds: ð18:96Þ

Next, let us introduce the two nodal displacement vectors that characterize the
degrees of freedom of the finite element in the form of a frustum with a straight
generator (see Fig. 18.7) and designated by e, as follows:
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fgge ¼
fgig
fgjg

( )
; fgigT ¼ ui;wi; #i½ �; ði ! jÞ; ð18:97Þ

f�ge ¼
f�if
f�jg

( )
; f�igT ¼ �i; i; #i½ �; ði ! jÞ; ð18:98Þ

where #i ¼ ðdw=dsÞi and �iðjÞ and iðjÞ are the horizontal (or radial) and vertical (or
axial) displacements at the nodal point iðjÞ. The nodal displacement vectors intro-
duced above are related to one another, as follows (see Eq. (16.37)):

gi
� � ¼ �½ � �i

� �
; ði ! jÞ ð18:99Þ

where

�½ � ¼
� cos ’ sin ’ 0
sin ’ cos ’ 0
0 0 1

2
4

3
5: ð18:100Þ

Let us approximate the displacement field across the given finite element by the
following polynomials:

u ¼ 	1 þ 	2s;
w ¼ 	3 þ 	4sþ 	5s2 þ 	6s3:

ð18:101Þ

To determine the values of the coefficients 	k ðk ¼ 1; 2; . . . ; 6Þ, the coordinate s of the
nodal points is substituted in the displacement functions (18.101). This will generate
six equations in which the only unknowns are the above coefficients. By so doing, we
can solve for 	k in terms of the nodal displacements ui;wi; . . . ; #j and finally obtain
the following:

f
� � ¼ N̂N

h i
g
� �

e
ð18:102Þ

where {f} is given by Eq. (18.86a)
and

N̂N
h i

¼ 1� l 0 0 l 0 0
0 1� 3l2 þ 2l3 Lðl � 2l þ l2Þ 0 3l2 � 2l3 Lð�l þ l2Þ

� �
;

ð18:103Þ
here l ¼ s=L, where L is the length of the frustum meridian for the given finite
element (see Fig. 18.7).

Substituting for the vector g
� �

from Eq. (18.99) into Eq. (18.102), yields

f
� � ¼ N̂N

h i ��½ 0

0 �½ �

" #
�f ge ¼ N̂Ni

h i
�½ �; N̂Nj

h i
�½ �

h i
�f ge¼ N½ � �f ge: ð18:104Þ

Equation (18.87) then leads to

"f g ¼ R½ � N½ � �f ge ¼ B½ � �f ge; ð18:105Þ
where

B½ � ¼ Bi� �½ �; Bj

� �
�½ �� �� � ð18:106Þ
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and

Bi½ � ¼ R½ � N̂Ni

h i
ði ! jÞ: ð18:107Þ

Substituting for �f g from Eq. (18.89) into Eq. (18.93) and taking into account
Eq. (18.105), we obtain the expression of the strain energy stored by the finite
element designated by e in the following form

U ¼ �f gTe ð�
ðs1
s0

B½ �T D½ � B½ �rds
� �

�f ge: ð18:108Þ

Using the notations adopted in Sec. 6.7, and letting dA ¼ rdsd� ¼ rd�ðLdlÞ integrat-
ing over � from 0 to 2�, we obtain from Eq. (6.63) the stiffness matrix for the finite
element e, as follows:

k½ �e¼ 2�L

ð1
0

B½ �T D½ � B½ �rdl: ð18:109Þ

The explicit expressions for the matrices B½ � and k½ �e are given in Ref. [14–16].
Prior to integration of the above expression, the radius of the parallel circle r must be
expressed as a function of s.

Steps 1 to 5 of the general FEM procedure, described in Sec. 6.7, may now be
applied to obtain the solution of the shell nodal displacements. Then, the strains,
stress resultants and couples, and finally, the stress components can be determined
from Eqs (18.87), (18.89), and (16.17).

In conclusion, note that the finite elements in the form of the frustum can be
also applied to the analysis of asymmetrically loaded shells of revolution. If only the
membrane solution is required, the quantities �1; �2;M1; and M2 are ignored and
the expressions developed in this section are considerably reduced in complexity.

18.6.3 Analysis of shallow shells of double curvature by the FEM

The theory of thin shallow shells was presented in Sec. 17.4. Let us introduce the
strain vector "f g and the vector of stress resultants and couples �f g for shallow shells,
as follows:

"f gT ¼ "1; "2; �12; �1; �2; �12½ �;
�f gT ¼ N1;N2;S;M1;M2;H½ �;

ð18:110Þ

where the strain components, internal forces, and moments are given by Eqs (17.43),
(12.45), and (12.46), respectively.

The total potential energy of a shallow shell in bending, �, can be defined as a
sum of the strain energy U (Eq. 12.53) and the potential energy of the applied loads.
Letting dA ¼ ABd	d
, we obtain:

� ¼ 1

2

ð ð
A

N1"1 þN2"2 þ S�12 þM1�1 þM2�2 þ 2H�12ð ÞdA

�
ð ð

A

p1uþ p2vþ p3wð ÞdA:
ð18:111Þ
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As mentioned previously, a midsurface of a shallow shell can be approximated by
flat or by curved finite elements when applying the FEM technique. We consider
below both two approximations of the shell geometry.

1. A curved finite element in the form of a shallow shell of double curvature

Let us consider a finite element in the form of a shallow shell of double curvature
having a rectangular projection on the Oxy coordinate plane, as shown in Fig. 18.8.
At each nodal (corner) point of this finite element, designated by 1, 2, 3, and 4, we
consider the possible three displacement components u; v; and w in the directions of
the coordinate axes x; y; and z, respectively; two angles of rotations, 	 � #1 and

 � #2, about the y and x axes, respectively; and the value ! modeling a twist at a
nodal point of interest. Thus, the curved finite element of the shallow shell shown in
Fig. 18.8, has 24 degrees of freedom.

To approximate the displacement fields in the above finite element, we make
the following assumptions:

(a) The displacements uðx; yÞ and vðx; yÞ depend only on the in-plane displa-
cements of the nodal points and they are distributed linearly across the
finite element area. So, for example, all points of the finite element will
receive only the horizontal (in the coordinate plane Oxy) displacements
due to a unit displacement of the nodal point 4 along the x axis (i.e.,
u4 ¼ 1). The above horizontal displacements will be distributed along line
2–4, according to the relationship y=b, along line 3–4, according to x=a,
and over the entire area of the finite element, according to the relationship
uðx; yÞ ¼ x

a
; y
b
.

(b) The deflections wðx; yÞ do not depend on the in-plane (horizontal) dis-
placements of the nodal points, and they can be approximated by a
polynomial with 16 degrees of freedom.

These assumptions provide a way of presenting an approximation of displacements
in the explicit form that avoids a very cumbersome operation of inverting the matrix
C½ � (see Sec. 6.7.2):

The approximation of the displacements across the finite element can be given
in the following compact form:

Fig. 18.8
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uðx; yÞ ¼ X1Y1u1 þ X2Y1u2 þ X1Y2u3 þ X2Y2u4;

vðx; yÞ ¼ X1Y1v1 þ X2Y1v2 þ X1Y2v3 þ X2Y2v4;

wðx; yÞ ¼ X3Y3w1 þ X4Y3	1 � X3Y4
1 þ X4Y4!1

þ X5Y3w2 þ X6Y3	2 � X5Y4
2 þ X6Y4!2 þ X3Y5w3

þ X4Y5	3 þ X3Y6
3 þ X4Y6!3 þ X5Y5w4 þ X6Y5	4

� X5Y6
4 þ X6Y6!4;

ð18:112Þ

where ui ¼ uðxi; yiÞ; vi ¼ vðxi; yiÞ;wi ¼ wðxi; yiÞ; 	i ¼ 	ðxi; yiÞ; and 
i ¼ 
ðxi; yiÞ;
i ¼ 1; 2; 3; 4; and

X1 ¼
a� x

a
; X2 ¼

x

a
; X3 ¼

1

a3
ð2x3 � 3ax2 þ a3Þ; X4 ¼

1

a2
ðx3 � 2ax2 þ a2xÞ;

X5 ¼ � 1

a3
ð2x3 � 3ax2Þ; X6 ¼

1

a2
ðx3 � ax2Þ:

ð18:113Þ
The polynomials of the Y type are analogous to the X-type polynomials if one
replaces x with y and a with b.

One can use other types of displacement approximations. For example, the
deflections wðx; yÞ can be approximated similar to the deflections for a rectangular
bending finite element of a flat plate, introduced in Sec. 6.7 (see the polynomial
(6.46)).

Applying the general procedure of the FEM described in Sec. 6.7, one can
construct the stiffness matrix for the shallow shell element and then write the gov-
erning equations of the type (6.74) for the entire shell. Solving these equations, yields
the nodal displacements in the shell field. Having determined these displacements, we
can determine the in-plane strains, changes in curvature and in twist, the stress
resultants and couples, and finally, the stress components.

The governing equation of the type (6.70) for the shell finite element relates the
nodal displacements to the nodal forces. Recall that this equation was derived from
the minimum potential energy principle. However, it may also be considered as a
result of the direct application of the principle of virtual work. Since the degrees of
freedom has a physical sense of displacements, the components of the stiffness
matrix, ðkijÞe, can be treated as the nodal forces occurring in the direction of the
ith degree of freedom due to the jth unit displacement if all other (i 6¼ j) degrees of
freedom �i ¼ 0 for a given finite element. Then, using the above, the coefficients of
the stiffness matrix for the given shallow shell finite element can be represented in the
following form:

ðkijÞe ¼
ða
0

ðb
0

N1i"1i þN2i"2i þ Si�12i þM1i�1i þM2i�2i þ 2H�12ið Þdxdy:
ð18:114Þ

As an example, determine the horizontal reaction of the node 1 in the y direc-
tion due to the deflection (w1) of this node. We denote this component of the stiffness
matrix by kv1w1

. First, determine the components of the deformation vector across
the area of the finite element due to the deflection w1. We have
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"ð1Þ1w1
¼ � 1

R1

X3Y3w1; "ð1Þ2w1
¼ 1

R2

X3Y3w1; �ð1Þ12w1
¼ 0;

�ð1Þ1w1
¼ �X3;XXY3w1; �ð1Þ2w1

¼ �X3Y3;YYw1; �ð1Þ12w1
¼ �X3;XY3;Yw1;

ð18:115Þ
where the superscript 1 denotes the number of the nodal point of interest. Then, we
can find the components of the stress resultant vector due to v1. We have

N
ð1Þ
1v1

¼ Eh�

1� �2 X1Y1;Yv1; N
ð1Þ
2v1

¼ Eh

1� �2 X1Y1;Yv1; Sð1Þ
v1

¼ Eh

2ð1þ �ÞX1;XY1v1:

ð18:116Þ
In Eqs (18.115) and (18.116), the comma notation denotes a partial differentiation of
the polynomials Xi and Yi, i.e.,

X3;XX ¼ @2X3

@x2
¼ 12x� 6a

a3
; Y3;YY ¼ @2Y3

dy2
¼ 12y� 6b

b3
;

X3;X ¼ @X3

@x
¼ 6x2 � 6ax

a3
; Y3;Y ¼ @Y3

@y
¼ 6y2 � 6yb

b3
;

X1;X ¼ @X1

@x
¼ � 1

a
; Y1;Y ¼ @Y1

@y
¼ � 1

b
:

Substituting the components of vectors �f gv1 and "f gw1
into Eqs (18.115), (18.116),

and (18.114) yields the following:

kv1w1
¼
ða
0

ðb
0

N
ð1Þ
1v1
"ð1Þ1w1

þN
ð1Þ
2v1
"ð1Þ2w1

þ Sð1Þ
v1
�ð1Þ12w1

� �
dxdy;

¼
ða
0

ðb
0

Eh�

1� �2 X1Y1;Y � 1

R1

� �
X3Y3 þ

Eh

1� �2 X1Y1;Y � 1

R2

� �
X3Y3

� �
dxdy;

¼ 7

40

Eh

1� �2 a
�

R1

þ 1

R2

� �� �
:

ð18:117Þ
Similarly, the rest of the components of the stiffness matrix ðkijÞe can be obtained. In
this example, it was assumed that �1 ¼ const and �2 ¼ const:

2. A flat finite element for the analysis of shallow shells

We considered above a curved shallow shell finite element whose surface is consistent
to the surface of the entire shallow shell. However, the stiffness matrix constructed
above has a serious drawback associated with the presence of rigid body motions.
This means that if such a finite element is subjected to some displacement modeling its
transfer in a space without straining (for example, w1 ¼ w2 ¼ w3 ¼ w4 ¼ t while all
the rest of the degrees of freedom are equal to zero), then some stresses occur in that
element, resulting in an obvious contradiction. An appearance of such a phenomenon
essentially decreases the accuracy of the analysis and sometimes can result in diver-
gence of a solution. An elimination of this phenomenon can be carried out at the
expense of a special treatment of the obtained stiffness matrix. However, this treat-
ment may result in violation of the matrix symmetry, compatibility of its components,
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and completeness of approximating functions. Therefore, the problem of the devel-
opment of finite elements for shallow shells of double curvature is very complicated.

From a physical point of view, it is advantageous to employ flat finite elements
for the analysis of shallow shells of double curvature. In this case, a shell element can
be obtained as a simple combination of the corresponding elements for plane stress
and for plate bending by satisfying all the necessary requirements. Geometric fea-
tures of the shell are taken into account by the geometry of an inscribed polyhedron.
Since the approximation accuracy of the shell surface is increased with a finer ele-
ment mesh, it is possible to state that the FEM convergence will be achieved in this
case.

When assigning an assemblage of flat finite elements for a shallow shell, one
must inscribe the elements into the shell geometry. Therefore, one can use rectan-
gular elements for developable surfaces on a plane (e.g., cylindrical surfaces) and
triangular elements for undevelopable surfaces (e.g., spherical shells). The stiffness
matrix of a rectangular (or triangular) flat shell finite element can be obtained as a
simple superposition of the stiffness matrices of that element for plane stress and for
plate bending. The stiffness matrix for a flat plate bending finite element was intro-
duced in Sec. 6.7.

Consider the derivation of the stiffness matrix for the rectangular plane stress
finite element 1–2–3–4 shown in Fig. 18.8 (the projection of a shallow shell curved
element on the Oxy coordinate plane). Assume that the in-plane displacement pat-
tern is defined by the following polynomials:

uðx; yÞ ¼ 	1 þ 	2xþ 	3yþ 	4xy;
vðx; yÞ ¼ 	5 þ 	6xþ 	7yþ 	8xy:

ð18:118Þ

Thus, the generalized displacements of a node of the flat rectangular finite element in
a matrix form are the following

u
v

 �
¼ 1 x y xy 0 0 0 0

0 0 0 0 1 x y xy

� � 	1
	2
. . .
	8

8>><
>>:

9>>=
>>; ¼ N½ � 	f g: ð18:119Þ

Let us introduce the nodal displacement vector of the above-mentioned element, as
follows:

�f gTe ¼ u1; v1; u2; v2; . . . ; u4; v4½ �: ð18:120Þ
It is seen that the displacement functions (18.118) contain the same number of
unknown parameters 	k ðk ¼ 1; 2; . . . ; 8Þ as the number of the nodal displacements
ui and viði ¼ 1; . . . ; 4Þ and yield the linear displacements along the element sides. If
we express the above coefficients 	k via nodal displacements, i.e., via the components
of the element displacement vector �f ge, we obtain

�f ge¼ C½ � 	f g; ð18:121Þ
where C½ � is an 8	8 matrix whose terms depend on the x and y coordinates of the
nodal points of the given finite element. From Eq. (18.121), the vector 	f g can be
expressed as a function of the finite element nodal displacement vector, as follows:

	f g ¼ C½ ��1 �f ge: ð18:122Þ
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Since the displacement functions are now expressed in terms of the nodal displace-
ments in the explicit form, we can follow the same procedure as described in Sec. 6.7
for evaluating the components of the stiffness matrix of the plane stress finite ele-
ment.

Here, only the general information about the FEM analysis and its application
to shell structures has been presented. It should be noted that many books have
appeared during the last four decades and they contain extensive discussions of FEM
approaches and the related numerical procedures, for example [Refs 12–17].

18.7 APPROXIMATE AND NUMERICAL METHODS FOR SOLUTION
OF NONLINEAR EQUATIONS

Analysis of flexible plates and shells is reduced to a solution of nonlinear differential
equations for the stress function and deflection, Eqs (7.87) and (18.31), respectively.
The solution of these equations via the classical analytical route can be obtained in
exceptional cases only. Therefore, approximate and numerical methods acquire a
great importance for the nonlinear plate and shell analysis. These methods, based on
some iterative procedures, are usually combined with other well-known variational
and numerical methods, introduced in Chapter 6 and Sec. 18.6, to obtain the solu-
tion of Eqs (7.87) and (18.31) with a reasonable accuracy.

We introduce below some approximate methods specially adapted to the ana-
lysis of flexible plates and shells under external loads.

18.7.1 The method of successive approximations

Let us use the flexible plate problem to illustrate the method of successive approx-
imations. We rewrite Eqs (7.87), as follows

1

Eh
r2r2� ¼ � 1

2
Lðw;wÞ;

Dr2r2w ¼ Lð�;wÞ þ p;

ð18:123Þ

where the operator Lð. . .Þ is given by Eq. (18.30).
In the first approximation, the above system of equations is taken in the form

r2r2�1 ¼ 0;

Dr2r2w1 ¼ p:
ð18:124aÞ

In the second approximation, the functions �1 and w1 are substituted into the right-
hand sides of Eqs (18.122). We obtain

1

Eh
r2r2�2 ¼ � 1

2
Lðw1;w1Þ;

Dr2r2w21 ¼ Lð�1;w1Þ þ p;

ð18:124bÞ

and equations of the ðnþ 1Þth approximation will have the form

1

Eh
r2r2�nþ1 ¼ � 1

2
L wn;wnð Þ;

Dr2r2wnþ1 ¼ L wn;�nð Þ þ p;

ð18:124cÞ
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The solutions of Eqs (18.124) must satisfy the prescribed boundary conditions. The
above iterative procedure is continued as long as a difference between two successive
approximations is in the limits of the required accuracy. Thus, the above method
reduces the solution of the nonlinear system of equations to a successive solution of
the system of linear equations. In doing so, a new total, more precise, solution is
obtained on each step of the above approximations.

Investigations show that the method of successive approximations provides a
slow convergence, especially in the field of critical values of load. However, for loads
causing large deflections lying in the range h � w � 2h, the given method possesses a
satisfactory convergence.

18.7.2 The small-parameter method

The small-parameter method was introduced in Sec. 3.8 for the linear analysis of stiff
plates with a variable thickness. In this section, we employ this method for the
nonlinear analysis of flexible plates and shells. As an example, let us consider a
flexible plate under a transverse uniform load p.

Let w0 be the deflection at some reference point of the middle surface with
coordinates x0 and y0. The ratio of w0 to the plate thickness (or to its span) can be
chosen as a small parameter, f . The latter should be less than unity.

The unknown functions w;�; and load p are sought in the form of the follow-
ing series in powers of the parameter f :

� ¼
X1
i¼1

’iviðx; yÞ; w ¼
X1
i¼1

f iviðx; yÞ; p ¼
X1
i¼1

pif
i; ð18:125Þ

where ’iðx; yÞ and viðx; yÞ are unknown functions to be determined, and pi are some
constant coefficients. Let us insert the expressions (18.125) into Eqs (7.87) and select
the terms containing equal powers of f . We obtain new differential equations invol-
ving the functions vi and ’i with sequentially increasing indexes. So, the following
system of equations will correspond to index i ¼ 1:

1

Eh
r2r2’1 ¼ 0;

Dr2r2v1 ¼ p1:

ð18:126aÞ

For i ¼ 2, the system of equations is of the form

1

Eh
r2r2’2 ¼ � 1

2
Lðv1; v1Þ;

Dr2r2v2 ¼ Lðv1; ’1Þ þ p2:

ð18:126bÞ

For i ¼ 3;we obtain the following system of equations:

1

Eh
r2r2’3 ¼ � 1

2
Lðv1; v2Þ �

1

2
Lðv2; v1Þ ¼ �Lðv1; v2Þ;

Dr2r2v3 ¼ Lðv2; ’1Þ þ Lðv1; ’2Þ þ p3:

ð18:126cÞ

The boundary conditions must be added to Eqs (18.126). Furthermore, some addi-
tional conditions for determining the constants p1; p2; . . ., can be introduced. For
example, one can use the relationship wð Þx0;y0 ¼ f . Then, we obtain
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ðv1Þx0;y0 ¼ 1; ð18:127aÞ
ðv2Þx0;y0 ¼ ðv3Þx0;y0: ¼ . . . ¼ 0: ð18:127bÞ

Equations (18.126a) are linear equations describing the bending problem of stiff
plates. If there are no in-plane forces in the middle surface, then the stress function
’1 can be taken identically equal to zero, i.e., ’1 � 0. From the second Eq. (18.126a)
and the relations (18.127a), taking into account the boundary conditions, the con-
stant p1 and function v1ðx; yÞ are determined. Further, the function v1ðx; yÞ is sub-
stituted into the right-hand side of Eqs (18.126b); in this case, Lðv1; ’1Þ ¼ 0, so that
the second Eq. (18.126b) will repeat the second Eq. (18.126a). The first Eq. (18.126b)
will provide a way of determining ’2ðx; yÞ: At the third step, let us substitute v1, v2,
and ’2 into the right-hand sides of Eqs (18.126c). As a result, the constant p3 and
function v3ðx; yÞ will be found. Once, the constants p1; p2; p3; . . . have been found,
the value of f is approximately determined from the last relation (18.125) for the
given load p.

This method, like the method of successive approximations, allows one to
reduce the given nonlinear problem to a subsequent solution of the system of linear
equations. In so doing, one obtains on each step of approximations, a more precise –
but not a new, more correct, as in the method of successive approximations –
solution.

Apparently, the small-parameter method will converge rapidly for reasonably
small deviations from linear solutions. However, confidence limits of the application
of the method so far have not been defined.

18.7.3 The method of successive loadings [18]

According to this method, a given load p is applied to a shell (or plate) by small
portions. It is assumed that each such a portion of loading causes insignificant
changes in the state of stress and strain (in order to neglect the nonlinear terms in
the corresponding governing equations), so that a flexible plate or shell, subjected to
the above-mentioned portion loading, can be analyzed with the use of linear differ-
ential equations.

Following the outline of Ref. [19], let us illustrate the use of this method for the
solution of the nonlinear equations of a flexible shallow shell. After application of
the first portion of loading p0, the shell deflections are assumed to be small, so they
can be determined from the linear equations (17.36). The latter have the following
form (in the zero approximation):

1

Eh
r2r2�0 þ r2

�0w0 ¼ 0;

Dr2r2w0 � r2
�0�0 ¼ p0;

ð18:128Þ

where

r2
�0w0 ¼ �1

@2w0

@y2
þ �2

@2w0

@x2
;

r2
�0�0 ¼ �1

@2�0

@y2
þ �2

@2�0

@x2
:

ð18:129Þ
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Then, the next small portion of loading, �p1, is applied to the shell. The deflection
and stress function will take the increments �w1 and ��1, respectively; therefore,
they can be represented in the form

w1 ¼ w0 þ�w1; �1 ¼ �0 þ��1: ð18:130Þ
Substituting the expressions (18.130) into Eqs (17.36), one obtains

1

Eh
r2r2 �0 þ��1ð Þ þ r2

�0 w0 þ�w1ð Þ ¼ �L1 w0 þ�w1ð Þ; w0 þ�w1ð Þ½ �;

Dr2r2 w0 þ�w1ð Þ � r2
�0 �0 þ��1ð Þ ¼ L2 �0 þ��1ð Þ; w0 þ�w1ð Þ½ �

þ p0 þ�p1:

ð18:131Þ
where the operators L1ð. . .Þ and L2ð. . .Þ are given by Eq. (18.30).

Subtracting Eqs (18.131) and (18.128) member by member, we obtain

1

Eh
r2r2��1 þ r2

�1�w1 ¼ �L1 �w1;�w1ð Þ;

Dr2r2�w1 � r2
�1 ��1ð Þ � r2

1 �w1ð Þ ¼ L2 ��1;�w1ð Þ þ�p1;

ð18:132Þ

where

r2
�1 �w1ð Þ ¼ �1 þ

@2w0

@x2

 !
@2 �w1ð Þ
@y2

� 2
@2w0

@x@y

@2 �w1ð Þ
@x@y

þ �2 þ
@2w0

@y2

 !
@2 �w1ð Þ
@x2

;

r2
�1 ��1ð Þ ¼ �1 þ

@2w0

@x2

 !
@2 ��1ð Þ
@y2

� 2
@2w0

@x@y

@2 ��1ð Þ
@x@y

þ �2 þ
@2w0

@y2

 !
@2ð��1Þ
@x2

;

r2
1 �w1ð Þ ¼ @2�0

@y2
@2 �w1ð Þ
@x2

� 2
@2�0

@x@y

@2 �w1ð Þ
@x@y

þ @
2�0

@x2
@2 �w1ð Þ
@y2

:

ð18:133Þ
Since the load portions are assumed to be small, it can be expected that the incre-
ments of the deflection and stress function will also be sufficiently small. Then, all the
nonlinear terms, L1 �w1;�w1ð Þ and L2 ��1;�w1ð Þ can be omitted on the right-hand
sides of Eqs (18.132). As a result, �w1 and ��1 can be found from the following
system of linear differential equations:

1

Eh
r2r2 ��1ð Þ þ r2

�1 �w1ð Þ ¼ 0;

Dr2r2 �w1ð Þ � r2
�1 ��1ð Þ � r2

1 �w1ð Þ ¼ �p1:

ð18:134Þ

Repeating this procedure for the consequent small load portions, �pi, one
obtains the equations for the increments �w2;��2;�w3;��3; . . .. For an arbi-
trary load portion �pi, one can write the following system of linear differential
equations:
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1

Eh
r2r2 ��ið Þ þ r2

�i �wið Þ ¼ 0;

Dr2r2 �wið Þ � r2
�i ��ið Þ � r2

i ð�wiÞ ¼ �pi;

ð18:135Þ

where

r2
�i �wnð Þ ¼ �1 þ

@2wi�1

@x2

 !
@2 �wið Þ
@y2

� 2
@2wi�1

@x@y

@2 �wið Þ
@x@y

þ �2 þ
@2wi�1

@y2

 !
@2 �wið Þ
@x2

;

r2
�i ��ið Þ ¼ �1 þ

@2 �wi�1ð Þ
@x2

 !
@2 ��ið Þ
@y2

� 2
@2wi�1

@x@y

@2 ��ið Þ
@x@y

þ �2 þ
@2wi�1

@y2

 !
@2 ��ið Þ
@x2

;

r2
i �wið Þ ¼ @2�i�1

@y2
@2 �wið Þ
@x2

� 2
@2�i�1

@x@y

@2 �wið Þ
@x@y

þ @
2�i�1

@x2
@2 �wið Þ
@y2

:

ð18:136Þ

The total values of the deflection and stress function are determined, after the ith
iterative step, as follows:

wn ¼ w0 þ
Xn
i¼1

�wi; �n ¼ �0 þ
X1
i¼1

��i: ð18:137Þ

Note that the above iterative process assumes that some transformations that had
been done with the differential equations (18.128), (18.132), and (18.135) should be
performed with the corresponding boundary conditions, if that is necessary.

It should be noted that in the multiple repetition of the successive approxima-
tions, the error of determining the functions w and �, caused by omitting the non-
linear terms, can be accumulated. To increase the accuracy of determining the
deflections and stress function, the method of successive loading can be combined
with the Newton method, which is introduced next. The latter can correct a given
solution obtained at each step of loading.

18.7.4 The Newton method

Using the variational methods, finite element or finite difference methods, etc., the
nonlinear differential equations (7.87) and (18.31) are reduced to a system of non-
linear algebraic equations. An exact solution of these equations is practically impos-
sible. We introduce below one more approximate method, the Newton method,
which is highly efficient for the solution of nonlinear algebraic equations.

Consider the following system of nonlinear equations
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F1ðx1; x2; . . . ; xnÞ ¼ 0;

F2ðx1; x2; . . . ; xnÞ ¼ 0;

. . . . . . . . . . . . . . . . . . . . .

Fnðx1; x2; . . . ; xnÞ ¼ 0:

ð18:138Þ

Assume that the functions FiðxÞði ¼ 1; 2; . . . ; nÞ have continuous derivatives with
respect to all variables x1; x2; . . . ; xk. Let us represent the system of equations
(18.138) in the following matrix form:

FðxÞ ¼ 0; ð18:139Þ
where

F ¼ F1;F2; . . . ;Fn½ �T ; x ¼ x1; x2; . . . ; xn½ �T ð18:140Þ
are the n-dimensional vectors of functions Fi and independent variables xi.

Assume that the kth approximation of the solution of Eqs (18.139) has been
found in the form

x
ðkÞ ¼ x

ðkÞ
1 ; x

ðkÞ
2 ; . . . ; x

ðkÞ
n

h i
:

Then, the exact solution of Eqs (18.139) can be represented in the following form:

x ¼ x
ðxÞ þ e

ðkÞ; ð18:141Þ
where e

ðkÞ ¼ ½eðkÞ1 ; e
ðkÞ
2 ; . . . ; e

ðkÞ
n � are some corrections (the solution errors). Let us

introduce the Jacobi matrix of the functions F1;F2; . . . ;Fn with respect to the
independent variables x1; x2; . . . ; xn, as follows:

WðxÞ ¼

@F1
@x1

@F1
@x2

. . .
@F1
@xn

@F2
@x1

@F2
@x2

. . .
@F2
@xn

. . . . . . . . . . . .
@Fn
@x1

@Fn
@x2

. . .
@Fn
@xn

2
6666664

3
7777775
: ð18:142Þ

If this matrix is nonsingular, i.e., if detWðxÞ 6¼ 0, then the correction e
ðkÞ can be

expressed as follows:

e
ðkÞ ¼ �W

�1ðxðkÞÞ � FðxðkÞÞ; ð18:143Þ
where W�1ðxðkÞÞ is the inverse Jacobi matrix. Thus, the successive approximations of
the solution of Eqs (18.139) are obtained according to the following numerical
procedure:

x
ðkþ1Þ ¼ x

ðkÞ �W
�1ðxðkÞÞ � FðxðkÞÞ ðk ¼ 0; 1; 2; . . .Þ: ð18:144Þ

As zero approximation of the solution, xð0Þ, any rough approximation (for example,
a graphical approximation) may be taken. The numerical procedure, described by
Eq. (18.144), will stop when the following inequality is satisfied:

x
ðkþ1Þ � x

ðkÞ
			 			 � ";
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where " is the required level of a permissible level of calculations.

Example 18.4

Find an approximate positive solution of the system of equations by the Newton
method.

x2 þ y2 þ z2 � 1 ¼ 0; 2x2 þ y2 � 4z ¼ 0; 3x2 � 4yþ z2 ¼ 0: ðaÞ

Solution

We have

FðxÞ ¼
x2 þ y2 þ z2 � 1

2x2 þ y2 � 4z

3x2 � 4yþ z2

8><
>:

9>=
>;: ðbÞ

Take the zero approximation of the solution as x0 ¼ y0 ¼ z0 ¼ 0:5. Then,

Fðxð0ÞÞ ¼
0:25þ 0:25þ 0:25� 1

0:50þ 0:25� 2:0

0:75� 2:0þ 0:25

8><
>:

9>=
>; ¼

�0:25

�1:25

�1:0

8><
>:

9>=
>;: ðcÞ

Let us make up the Jacobi matrix:

WðxÞ ¼
2x 2y 2z

4x 2y �4

6x �4 2z

2
64

3
75: ðdÞ

Substituting for x the zero approximation solution into the above, gives

Wðxð0ÞÞ ¼
1 1 1

2 1 �4

3 �4 1

2
64

3
75:

Calculate the determinant of the zero approximation Jacobi matrix. We obtain

det Wðxð0ÞÞ ¼
1 1 1

2 1 �4

3 �4 1

							
							 ¼ �40:

Compute the inverse Jacobi matrix in the zero approximation. We obtain

W
�1ðxð0ÞÞ ¼ � 1

40

�15 �5 �5

�14 �2 6

�11 7 �1

2
64

3
75 ¼

0:375 0:125 0:125

0:35 0:05 �0:15

0:275 �0:175 0:025

2
64

3
75:

Applying Eq. (18.144), we obtain the first approximation of the solution of Eqs (a),
as follows:
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x
ð1Þ ¼ x

ð0Þ �W
�1ðxð0ÞÞ � Fðxð0ÞÞ

¼
0:5

0:5

0:5

8>><
>>:

9>>=
>>;�

0:375 0:125 0:125

0:35 0:05 �0:15

0:275 �0:175 0:025

2
664

3
775

�0:25

�1:25

�1:00

8>><
>>:

9>>=
>>; ¼

0:875

0:500

0:375

8>><
>>:

9>>=
>>;:

Then, the second approximation, xð2Þ can be calculated. We have

Fðxð1ÞÞ ¼

ð0:875Þ2 þ ð0:500Þ2 þ ð0:375Þ2 � 1

2 � ð0:875Þ2 þ ð0:500Þ2 � 4 � 0:375
3 � ð0:875Þ2 � 4 � 0:500þ 0:375

3 � ð0:875Þ2 � 4 � 0:500þ ð0:375Þ2

8>>><
>>>:

9>>>=
>>>;

¼
0:15625

0:28125

0:43750

8><
>:

9>=
>;:

Find the first approximation Jacobi matrix. We have

Wðxð1ÞÞ ¼
2 � 0:875 2 � 0:500 2 � 0:375
4 � 0:875 2 � 0:500 �4

6 � 0:875 � 4 2 � 0:375

2
664

3
775 ¼

1:750 1 0:750

3:500 1 �4

5:250 �4 0:750

2
664

3
775:

Computing the determinant of the above matrix gives

det Wðxð1ÞÞ ¼
1:750 1 0:750

3:500 1 �4

5:250 �4 0:750

							
							 ¼ �64:750;

and the corresponding inverse matrix is given by

W
�1ðxð1ÞÞ ¼ � 1

64:75

�15:25 �3:75 �4:75

�23:625 �2:625 9:625

�19:25 12:25 �1:75

2
64

3
75:

The second approximation of the solution is obtained from Eq. (18.144), as follows:

x
ð2Þ ¼ x

ð1Þ �W
�1ðxð1ÞÞ � Fðxð1ÞÞz

¼
0:875

0:500

0:375

8>><
>>:

9>>=
>>;þ 1

64:75

�15:25 �3:75 �4:75

�23:625 �2:625 9:625

�19:25 12:25 �1:75

2
664

3
775

0:15625

0:28125

0:43750

8>><
>>:

9>>=
>>;

¼
0:78981

0:49662

0:36993

8>><
>>:

9>>=
>>;:

Similarly, the consequent approximations can be found. In the third approximation
we have

x
ð3Þ ¼

0:78521
0:49662
0:36992

8<
:

9=
;; Fðxð3ÞÞ ¼

0:00001
0:00004
0:00005

8<
:

9=
;:
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If we confine ourselves to the third approximation, then the solution of Eqs (a) is of
the form

x ¼ 0:7852; y ¼ 0:4966; z ¼ 0:3699:

Example 18.5

Find a solution of the differential equation

dy

dx
¼ x2 þ y2 for xj j � 1ffiffiffi

2
p ; ðaÞ

with the boundary conditions

y ¼ 0
		
x¼0
: ðbÞ

Use the method of successive approximations.

Solution

Equation (a) with the boundary conditions (b) represent the Cauchy problem. It is
evident that the solution of the above problem is also in the interval jyj � 1ffiffi

2
p .

Applying the method of successive approximations, let us take y0 ¼ yð0Þ ¼ 0 as
the zero approximation. Then, the iterative procedure of the method (See Sec.
18.7.1) can be represented, as follows

y1ðxÞ ¼
ðx
0

t2dt ¼ 1

3
x3;

y2ðxÞ ¼
ðx
0

t2 þ 1

9
t6

� �
dt ¼ 1

3
x3 þ 1

63
x7;

y3ðxÞ ¼
ðx
0

t2 þ 1

9
t6 þ 2

189
t10 þ 1

3969
t14

� �
dt

¼ 1

3
x3 þ 1

63
x7 þ 2

2079
x11 þ 1

59535
x15:

For jxj � 1ffiffi
2

p the difference between y2ðxÞ and y3ðxÞ does not exceed the value of

2

2079

1ffiffiffi
2

p
� �11

þ 1

59535

1ffiffiffi
2

p
� �15

� 0:000022;

and one can approximately put

yðxÞ � y2ðxÞ ¼
1

3
x3 þ 1

63
x7:

This example was taken from Ref. [20].

PROBLEMS

18.1 A long thin-walled steel tube is heated to 250
C above the room temperature 22
C.
Assume that the ends of the tube are simply supported. Let the mean radius of the tube

R ¼ 1:2m and its thickness h ¼ 10mm. Determine the maximum thermal stresses in

the tube if Es ¼ 200GPa, �s ¼ 0:3, and 	s ¼ 25:2	 10�6=
C.
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18.2 A long thin-walled aluminum tube has free ends and is subjected to uniform tempera-

tures T1 ¼ 150
C and T2 ¼ 350
C at the inner and outer surfaces, respectively. Let the

mean radius of the tube be 0.8 m and its thickness h ¼ 10mm. Calculate the maximum

thermal stresses in the tube if Ea ¼ 70GPa; 	a ¼ 23	 10�6=
C; and �a ¼ 0:3.
18.3 Compute the discontinuity stresses at the junction of the cylindrical shell and hemi-

spherical head, as shown in Fig. 16.6, for the uniform temperature change

�T ¼ 120
C. Use the geometric and mechanical parameters of the compound shell

structure given in Example 16.2 and 	s ¼ 25	 10�6=
C. Apply the approximate

method of Sec. 16.4 for the problem solution.

18.4 Compute the stresses in the hemispherical shell stiffened on its edge by a flange, as

shown in Fig. 16.5. Assume that the shell and flange are made of steel with

Es ¼ 210GPa, �s ¼ 0:3; and 	s ¼ 25	 10�6=
C. Take the geometric parameters of

the shell and flange from Example 16.1. Apply the approximate method of Sec. 16.4

for the problem solution.

18.5 Derive Eqs (18.17).

18.6 Verify Eqs (18.24) and (18.29).

18.7 Derive Eq. (18.54).

18.8 A closed, circular cylindrical shell of length L and radius R is stiffened by equally

spaced collars, at a distance L=10, located inside the shell. The shell is simply supported

at x ¼ 0 and x ¼ L and is subjected to a uniform internal pressure p. Calculate the

normal stresses in the stiffened shell in terms of p if the shell and collars are made of

steel with Es ¼ 210GPa and �s ¼ 0:3. Assume also that the collars have a form of the

equal angle section 25	 25	 5 mm and R ¼ 0:8m; L ¼ 4m; and h¼ 1mm. In your

calculations, consider the stiffened shell as a structurally orthotropic homogeneous

shell.

18.9 Verify Eqs (18.63) and (18.66).

18.10 Derive Eqs (18.82).

18.11 Consider two extreme cases for a sandwich shallow shell given by Eqs (18.82): (a) let

R1 ! 1 and R2 ! 1 and (b) let Gc ! 1. Transform the above governing equation

for these two cases and explain their physical sense.

18.12 Based on the representations (18.106) and (18.107), write the matrices Bi½ � and Bj

� �
in

the explicit form.

18.13 Write a computer code for calculating the components of the stiffness matrix for the

finite element in the form of a frustum (Fig. 18.7) for an axisymmetrically loaded shell

of revolution. Use the relations introduced in Sec. 18.6.2. Assume reasonable values for

any shell properties required.

18.14 Using the Newton method, find a solution of the equation

4x3 � 2x2 � 4x� 3 ¼ 0:

18.15 Find a solution of the differential equation for the bending moments in a simply

supported beam with a variable cross section:

d2y

dx2
þ ð1þ x2Þy ¼ 0;

y ¼ 0
		
x¼�1

and y ¼ 0
		
x¼1

Use the method of successive approximations.

REFERENCES

1. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, 2nd edn, Oxford University

Press, London, 1959.

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



2. Von Karman, Th., Encyklopadie der Mathematischen, Wissenschaften, vol. IV, 1910.

3. Reissner, E., On the theory of thin elastic plates. In: H. Reissner Anniversary Volume, pp.

231–247 (1949). Ann Arbor, J. W. Edwards.

4. Sanders, L, Jr., Nonlinear Theories for Thin Shells, Contract NONR 1866(02), Office of

Naval Research, Tech. Report No. 10, Harvard Press, Cambridge, Massachusetts, 1961.

5. Mushtari, Kh.M. and Galimov, K.Z., Nonlinear Theory of Thin Elastic Shells, Russian

translational series, NASA TT-F-62, Washington, DC, US Department of Commerce,

1957.

6. Vlasov, V.Z., General Theory of Shells and Its Application in Engineering, NASA TTF-99,

Washington, DC, 1964.

7. Alexandrov, A.V. and Potapov, V.D., The Fundamentals of the Theory of Elasticity and

Plasticity, Izd-vo ‘‘Vyshaya Shkola,’’ Moscow, 1990 (in Russian).

8. Cook, R.D. and Young, W.C., Advanced Mechanics of Materials, 2nd edn, Prentice Hall,

Englewood Cliffs, New Jersey, 1999.

9. Stein, M. and Mayers, J.A., A Small Deflection Theory for Curved Sandwich Plates,

NACA, Washington, DC, 1950.

10. Plantema, F., Sandwich Construction, John Wiley and Sons, New York, 1966.

11. Baker, E.H., Cappelly, A.P., Lovalevsky, L., Risb, F.L., and Verette, R.M., Shell

Analysis Manual, NASA CR-912, Washington, DC, April 1968.

12. Gallagher, R.H., Problems and progress in thin shell finite element analysis, In: Finite

Element for Thin Shells and Curved Members (eds D.G. Ashwell and R.H. Gallagher),

John Wiley and Sons, London, 1976.

13. Hughes, T.J.R., The Finite Element Method, Prentice-Hall, Englewood Cliffs, New

Jersey, 1987.

14. Hughes, T.J.R. and Hinton, E., Finite element method for plate and shell structures, Vol

1: Finite Element Technology, Pineridge Press International, Swansea, UK, 1986.

15. Zienkiewitcz, D.C., The Finite Element Method in Engineering Science, McGraw-Hill,

New York, 1969.

16. Gallagher, R.H., Finite Element Analysis:Fundamentals, Prentice-Hall, Englewood Cliffs,

New Jersey, 1976.

17. Segerlind, L.J., Applied Finite Element Analysis, John Wiley, London, 1975.

18. Petrov, V.V., The Method of Successive Loadings in the Nonlinear Theory of Plates and

Shells, Izd-vo Saratov University, Saratov, 1975 (in Russian).

19. Alexandrov, A.V. and Potapov, V.D., The Fundamentals of the Theory of Elasticity and

Plasticity, Izd-vo ‘‘Vyshaya Shkola,’’ Moscow, 1990 (in Russian).

20. Krylov, A.N., Lectures on Approximate Calculations, Izd-vo Academy of Sciences of

USSR, Moscow, 1949 (in Russian).

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



19

Buckling of Shells

19.1 INTRODUCTION

An efficiency of the membrane stress state, based on the strength conditions only,
enables one to employ a very small shell thickness, as discussed in the preceding
chapters of Part II. However, a possibility of the shell buckling impedes that, causing
us either to increase the shell thickness or to reinforce the shell by stiffeners. It should
be noted that the shell buckling is always disastrous, unlike, for example, a column
or plate buckling. Therefore, the problem of the stability in designing shell structures
is extremely vital. This problem is made worse because of some specific difficulties
associated with determining correctly the critical values of loads applied to thin
shells. Note that these difficulties are much greater than in the buckling analysis
of columns, frames, and flat plates. They are associated with a complicated mathe-
matical description of the deformed state of shells, and with a diversity of situations
at which a shell can buckle.

General postulations, definitions, and fundamentals of the structural stability
theory, introduced in Chapter 8 for the plate buckling problems, can be applied also
to the shell buckling analysis. In this chapter, we present a systematic but simplified
analysis of shell buckling, and obtain some useful relationships between the critical
values of applied loads and shell parameters. We limit ourselves to the consideration
of thin shells for which elastic buckling without plastic deformation is possible.

19.2 BASIC CONCEPTS OF THIN SHELLS STABILITY

Let us compare qualitatively the buckling behavior of columns, flat plates, and
shells. For the sake of simplicity, we treat a column, plate, and shell as one degree
of freedom systems and consider typical diagrams of the relationship between the
applied load p and some deflection parameter f in the buckling problems. We assume
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that the deflections are small compared with the overall dimensions of the structural
member, but of the same order of magnitude as the depth of the column cross
section, or the wall thickness of the plate or shell.

The representative ‘‘load–deflection’’ diagram for columns and plates of per-
fect geometric form and loaded by in-plane compressive forces p is shown in Fig.
19.1a. Each position plotted in this figure represents an equilibrium configuration of
the member – stable, neutral, or unstable – depending upon whether the slope of the
path at that point is positive, zero, or negative, respectively. Points not lying on this
diagram, of course, correspond to nonequilibrium configurations. The equilibrium
path consists of the three branches: (a) branch OA refers to an initial, unbuckled
configuration of equilibrium that is assumed to be momentless; (b) two ‘‘rising’’
branches CA and AD refer to buckled configurations of equilibrium. Note that
the curve CAD is symmetrical about the p axis. For the equilibrium path, shown
in Fig. 19.1a, at the transition point A, a bifurcation of equilibrium is said to occur,
since there are at least two possible states of equilibrium, f ¼ 0 and f ! 1. Such a

Fig. 19.1
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transition point A, as mentioned in Sec. 8.2, is referred to as a bifurcation point, and
the load at that point is called the critical load, pcr. As shownin Fig. 19.1a, there are
new and stable, buckled configurations of equilibrium in the immediate vicinity of
the bifurcation point. Therefore, with the slight and smooth increase in the applied
load above pcr, the initial configuration of equilibrium of the structural member
(column or plate) ceases to be stable, and smoothly, without any jumps, it goes
over to an adjacent buckled, stable configuration of equilibrium. It follows from
the above that the critical values of an applied load can be determined with the use of
linear differential equations of the structural stability theory, introduced in Sec. 8.2.
A geometrically nonlinear theory can be used only for describing the postbuckling
behavior of the member.

Lets turn our attention to the analysis of a shell buckling process. The repre-
sentative paths of equilibrium for a simply supported shallow cylindrical shell under
a uniform axial loading p (Fig. 19.1b) are shown in Fig. 19.1c. The solid curve OABD
refers to the shell whose initial configuration is assumed to be perfect, i.e., without
any geometric and other imperfections. The load p is applied statically such that the
initial configuration of equilibrium of the shell is in the membrane state of stress, and
thus, f ¼ 0. The equilibrium path OABD consists of the ‘‘rising’’ branches OA and
BD, corresponding to stable equilibrium states, and the ‘‘descending’’ branch AB
that corresponds to an unstable equilibrium configuration.

Point A on the curve OABD can also be interpreted as a bifurcation point.
However, unlike the equilibrium path, shown in Fig. 19.1a, for columns and flat
plates, there are no new stable buckled configurations in the immediate vicinity of
the bifurcation point A. The stable, buckled configurations of equilibrium are off
from the initial ones at some finite distances (on the branch BD). Therefore, a
transition from the initial configuration of equilibrium (branch OA) to a new,
buckled and stable configuration of equilibrium (branch BD) occurs by a jump,
i.e., the shell ‘‘jumps’’ from a stable state at A through the statically unstable
state, given by the branch AB, to the stable state at F on the branch BD, as
shown in Fig. 19.1c. This sudden transition from the initial configuration of equili-
brium to the next, stable and buckled configuration of equilibrium, with the corre-
sponding jump in f , is termed as snap-through buckling. As a result, the shell buckling
analysis, in a general case, must be based on the geometrically nonlinear shell theory.

The curve OABD has been analyzed above for the buckling model of some
perfect shell. However, a real shell typically has some geometric and other imperfec-
tions due to manufacturing. Such irregularities of the shell geometric form are
equivalent to prebuckling deformations imposed on the original shell configuration.
Note, that experiments performed on columns and flat plates under in-plane com-
pressive forces showed that they are relatively insensitive to slight geometric imper-
fections. This is not the case in a shell buckling process. Buckling experiments carried
out on shells showed that some shells are very sensitive to geometric and loading
imperfections. For instance, for the shallow cylindrical shell under consideration
(Fig. 19.1b), such an elevated sensitivity to slight imperfections can be explained
by the closeness of the unstable branch AB to the initial shell configuration of
equilibrium given by straight line OA.

The path of shell instability for the given real shell with geometric and other
imperfections is given by the dashed curve shown in Fig. 19.1c. It is seen that,
due to the above-mentioned irregularities, the real shell begins to deviate from its
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initial configuration at the beginning of loading, and thus, the latter cannot be
assumed to be in a membrane state of stress. The branch OA

0
for increasing

loading will no longer coincide with the p axis. A transition from one stable
state to another will also occur by a jump at the level of the limit point A

0
(the

snap-through buckling).
It follows from the above that there are three distinct values of the critical loads

that characterize the buckling behavior of thin shells:

1. pð1Þcr is the ‘‘upper’’ critical load – it can be defined as the largest load up to
which the initial configuration of equilibrium of the perfect shell remains
stable with respect to infinitesimal disturbances;

2. pð2Þcr is the ‘‘lower’’ critical load – it can be defined as the largest load up to
which the initial configuration of equilibrium of the perfect shell remains
stable with respect to both infinitesimal and finite disturbances;

3. pbis the critical load of a real shell, also referred to as the buckling load – it
can be defined as some load for which the jump (or snap-through buck-
ling) of a real shell occurs, i.e., such a critical value of the load for which
the initial state of equilibrium of a real shell ceases to be stable.

It will be shown later that the values of pð1Þcr are determined with the use of linear
differential equations. In determining pð2Þcr , it is necessary to solve extremely compli-
cated problems of the geometrically nonlinear theory of shells. It is impossible to
obtain an exact and analytical solution of the latter problems. Therefore, all avail-
able results are obtained by numerical methods.

For real shells, the critical load, pb, is somewhere between the values of pð1Þcr and
pð2Þcr , obtained for perfect shells. The more precisely a shell is manufactured, the closer
is value of pb to pð1Þcr . The value of pb is extremely sensitive to geometric and loading
imperfections and to small deviations in boundary conditions. On the one hand, it
results in a large scatter of the experimental results of pb. On the other hand, some
conceptual difficulties occur in the theoretical determination of pb because of the
impossibility of taking into account, with a high degree of accuracy, all the imper-
fections and irregularities during the design stage. As a result, a severe discrepancy
was noted between the theoretical and experimental results in determining the shell
critical loads.

In summary, it should be noted that the linear stability theory is not sufficient
to predict completely the buckling and postbuckling behavior of thin shells. The
stability equations of shells can be derived successfully, based on the nonlinear
equilibrium equations. The nonlinear theory can also be used to consider the
influence of initial imperfections and other effects in the shell buckling analysis.
It was believed that an accurate formulation of the buckling problem, in the
framework of the nonlinear theory and exact solution of the corresponding equa-
tions, would result in a close agreement between the theoretical and numerical
results in determining the critical loads. However, at present, in practice, this
procedure has turned out to be prohibitively difficult and, so far, it has not
lived up to the expectations placed on the geometrically nonlinear shell theory.
The latter theory serves to broaden our knowledge of shell buckling analysis and to
clarify the meaning and limitations of the linear stability theory. But, at present, it
is not a design tool for directly determining the buckling load. Some details of the
buckling design procedure for thin shells will be given in Sec. 19.8. At the same
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time, the buckling analysis of thin shells by means of the linear theory yields some
useful information about the buckling behavior of shells. Particularly, closed-form
analytical expressions, obtained by the linear stability theory, demonstrate the
interplay of various parameters that affect stability when combined with appro-
priate correction and statistical coefficients. One could complement those relations
so that reliable design expressions would be obtained (see Sec. 19.8). In the next
sections, we perform linear and nonlinear stability analyses of shells of various
geometries, and compare the corresponding results.

The basic problem in the buckling analysis of shells, as for thin plates, is in
determining the critical values of applied loads. Such a problem can be solved by
using the equilibrium, energy, and dynamic methods introduced in Sec. 8.2 for the
plate buckling problems. We discuss below some details of application of the equili-
brium and energy methods to the elastic shell buckling analysis.

19.2.1 Equilibrium method

The equilibrium method is adequately applicable to only conservative systems (see
Sec. 2.6). A perfect shell loaded by potential external forces is a particular case of a
conservative system.

As mentioned in Sec. 8.2, the equilibrium method is based on the observation
that at a critical load, a deformed state of a shell exists that is assumed to be an
infinitesimally, close to its initial, unbuckled configuration of equilibrium. Thus, the
appearance of a possible bifurcation in the solution corresponds to the critical load.
This criterion for determining critical loads can be used to obtain the governing
differential equations of the shell buckling analysis. As we have seen, the structure
of the governing differential equations of the general, even linear, theory of thin
shells is sufficiently complicated. Therefore, a solution of practical shell problems
involves considerable difficulties. Fortunately, many shell stability problems, having
great practical importance, can be simplified. For example, this is particularly true
for such cases when a shell bucking is accompanied by an appearance of compara-
tively small-sized deformation waves (i.e., such waves whose dimensions are, at least
in one direction, small compared with the radii of curvature of the middle surface or
with the overall shell dimensions). In this case, a buckled shell in the neighborhood
of the formed bulges can be treated as a shallow shell. In many cases that enables one
to apply the theory of shallow shells, introduced in Sec. 17.4, for the shell buckling
problems

Now, we derive the stability equations for shallow shells by the equilibrium
method. Let w0 and �0 be the prebuckled values of the deflection and stress function,
respectively. They correspond to the initial equilibrium position. The values of w and
�, corresponding to the deformed adjacent position that occurs at buckling, would
then be represented by the following:

w ¼ w0 þ w1; � ¼ �0 þ�1; ð19:1Þ
where w1 and �1 represent some increments in values of the deflection and stress
function in transition from the initial position of equilibrium to an infinitesimally
close adjacent configuration of equilibrium. Applying the governing differential
equations of the geometrically nonlinear shallow shell theory, Eqs (18.31), to the
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initial, prebuckled state of equilibrium, one obtains the following system of equa-
tions:

r2r2�0 ¼ �Eh
1

2
Lðw0;w0Þ þ r2

kw0

� �
;

Dr2r2w0 � r2
k�0 þ Lð�0;w0Þ

� � ¼ p3:

ð19:2Þ

Now, let us apply Eqs (18.31) to the adjacent buckled configuration of equilibrium.
Substituting for w and � from Eqs (19.1) into Eqs (18.31), we obtain the modified
nonlinear differential equations of the shallow shell theory. Subtracting Eqs (19.2)
from these modified equations gives the following equations that will be applied to
the shell buckling problems:

1

Eh
r2r2�1 ¼ �r2

kw1 �
@2w0

@x2
@2w1

@y2
þ 2

@2w0

@x@y

@2w1

@x@y
� @

2w1

@x2
@2w0

@y2
;

Dr2r2w1 ¼ r2
k�1 þ

@2�0

@x2
@2w1

@y2
� 2

@2�0

@x@y

@2w1

@x@y
þ @

2�0

@y2
@2w1

@x2

 !

þ @2�1

@x2
@2w0

@y2
� 2

@2�1

@x@y

@2w0

@x@y
þ @

2�1

@y2
@2w0

@x2

 !
:

ð19:3Þ

In deriving these equations, the terms

@2w1

@x2
@2w1

@y2
;

@2w1

@x@y

 !2

;
@2�1

@x2
@2w1

@y2
; 2

@2�1

@x@y

@2w1

@x@y
;

and

@2�1

@y2
@2w1

@x2

were neglected, since they are small compared with the corresponding remaining
terms. Equations (19.3) represent a system of two linear differential equations in
w1and�1with variable coefficients corresponding to w0 and �0.

Thus, the procedure introduced above results in the replacement of nonlinear
differential equations by the linear differential equations of shell stability. In so
doing, the deflection w0 and stress function �0 can be determined from either linear
or nonlinear equations, which are set up for the initial equilibrium path. The most
common simplification is to apply the equations of the linear shell theory to the
initial position of equilibrium, such that w0 and �0 are given by the solutions of the
linear governing equations. A further simplification is usually introduced in the
linear stability analysis. Since it is assumed that the classical linear shell theory is
applicable to the prebuckled state, then, for consistency, all the terms containing
prebuckled rotations can be omitted from Eqs (19.3). If these terms are neglected the
stability equations (19.3) reduce to the form
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1

Eh
r2r2�1 ¼ �r2

kw1;

Dr2r2w1 ¼ r2
k�1 þ

@2�0

@x2
@2w1

@y2
� 2

@2�0

@x@y

@2w1

@x@y
þ @

2�0

@y2
@2w1

@x2
:

ð19:4Þ

Using Eqs (17.31) and letting 	 ¼ x; 
 ¼ y; and A ¼ B ¼ 1, we can express the
prebuckled stress function �0 in terms of the membrane internal forces acting in the
middle surface of the shallow shell prior to buckling, N10;N20; and S0. We have the
following:

N10 ¼
@2�0

@y2
; N20 ¼

@2�0

@x2
; S0 ¼ � @

2�0

@x@y
ð19:5Þ

Applying these relations to the second Eq. (19.4), we can rewrite the system of the
stability equations (19.4) in the following alternative form:

1

Eh
r2r2�1 ¼ �r2

kw1; ð19:6aÞ

Dr2r2w1 ¼ r2
k�1 þ N10

@2w1

@x2
þ 2S0

@2w1

@x@y
þN20

@2w1

@y2

 !
: ð19:6bÞ

As for the plate buckling analysis (see Sec. 8.2), the terms in parentheses on the right-
hand side of Eq. (19.6b) can be treated as some fictitious transverse surface load p

ðfÞ
3 .

So, we can rewrite Eqs (19.6) in terms of this fictitious load, p
ðfÞ
3 , as follows:

1

Eh
r2r2�1 ¼ �r2

kw1;

Dr2r2w1 ¼ r2
k�1 þ p

ðfÞ
3 ;

ð19:7Þ

where

p
ðfÞ
3 ¼ N10

@2w1

@x2
þ 2S0

@2w1

@x@y
þN20

@2w1

@y2
: ð19:8Þ

The coupled equations (19.4) or (19.6), or (19.7) are referred to as the stability
equations for shallow shells. They are homogeneous partial differential equations in
which the critical load appears as an unknown parameter. Equations (19.7) can be
conveniently reduced to one uncoupled equation in w1. Applying the operator r4 to
the second equation and the operator r2

k to the first equation of the above system,
and adding these equations, one obtains the following governing stability equation:

Dr4r4w1 þ Ehr2
kr2

kw1 ¼ r4ðpðfÞs Þ: ð19:9Þ
The linear governing stability equations (19.7) or (19.9) can be applied to various
stability problems of shallow and cylindrical shells. The general procedure of the
equilibrium method, based on the above-mentioned governing equations, for deter-
mining the critical loads in shell buckling problems is quite similar to that of dis-
cussed in Sec. 8.2 for the plate bending problems. The application of this procedure
will be illustrated in the next sections.
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19.2.2 Energy method

The energy method of the buckling shell analysis is based on the observation that the
total potential energy of a loaded shell is a relative minimum for a stable configura-
tion along the equilibrium path, but is only stationary for unstable configurations.

We apply the energy criterion (8.5a) derived in Sec. 8.2 to the linear shell
buckling problems. Applying this criterion, we assume that: (a) there is no bending
prior to buckling, so that the initial shell is in the membrane state of stress only, and
(b) at the onset of buckling, there are additional contributions to the strain energy
due to the middle surface straining and bending.

We present the energy criterion (8.5a), as follows:

�� ¼ �U þ�� ¼ 0; ð19:10Þ
where

�U ¼ U �U0 ð19:11Þ
is the change in the shell strain energy during buckling; U is the total strain energy of
the shell after it has buckled; U0 is the strain energy of the shell just before buckling;
and �� is the increment in the potential of the external loading owing to stretching
of the middle surface and bending as the shell deflects due to the buckling action. The
components of �� in Eq. (19.10) can be obtained by using either Eqs (12.51)–(12.53)
in the general case, or Eqs (17.50) if the shallow shell theory is of interest. We present
below the expressions of the components U;U0; and �� for the shell buckling
problems based on Eqs (12.51)–(12.53). We have the following:

U ¼ Eh

2ð1� �2Þ
ð ð

A

ð"1 þ "2Þ2 þ 2ð1� �Þ ð�12Þ2
4

� "1"2
" #( )

ABd	d


þD

2

ð ð
A

½ð�1 þ �2Þ2 þ 2ð1� �Þð�212 � �1�2Þ�ABd	d
; ð19:12aÞ

U0 ¼
Eh

2ð1� �2Þ
ð ð

A

ð"10 þ "20Þ2 þ 2ð1� �Þ ð�012Þ2
4

� "10"20
 !" #

ABd	d
;

ð19:12bÞ
where

"1 ¼ "10 þ "11; "2 ¼ "20 þ "21; �12 ¼ �012 þ �112: ð19:13Þ
Assuming that all loads applied to the shell remain unchanged during buckling,

we obtain the following expression for ��:

�� ¼ �
ð ð

A

ðp1u1 þ p2v1 þ p3w1ÞABd	d
: ð19:14Þ

In the expressions (19.12)–(19.14), "10; "20; and �
0
12 refer to prebuckled strain com-

ponents corresponding to the initial position of equilibrium; u1; v1;w1 are the incre-
mental displacements due to the buckling, and "11; "21; �

1
12, and �1; �2; �12 represent

the in-plane strain components, changes in curvature and twist corresponding to
these incremental displacements, respectively; and p1; p2; and p3 are in-plane com-
pressive edge loads and normal surface load, respectively, applied to the shell. Since
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the initial configuration of equilibrium is assumed to be momentless, the changes in
curvature and twist may occur as a result of buckling only. Therefore, the index 1 for
these components will be omitted from here on.

The general procedure of the energy method in the shell buckling analysis for
determining the critical values of applied loading is analogous to that discussed in
Sec. 8.4 for the plate bending problems.

19.3 LINEAR BUCKLING ANALYSIS OF CIRCULAR CYLINDRICAL
SHELLS

19.3.1 General

Buckling of cylindrical shells can occur in those cases when they are subjected to the
action of axial compression, transverse pressure, torsion, etc. These loads can be
applied either separately or in various combinations. We present below the simplified
linear buckling analysis of circular cylindrical shells based on the Donnel–Mushtari–
Vlasov (DMV) theory, which is assumed to be applicable with reasonable accuracy
to this analysis. It has been shown (see, for instance Ref. [1]) that the simplified linear
equations of the DMV theory can be applicable to the local instability shell problems
if the dimensions of bulging, formed in buckling, are small compared with the shell
typical dimensions, at least in one direction.

19.3.2 Critical load for an axially compressed cylinder

Consider the stability problem of a closed cylindrical shell of radius R and of length
L, simply supported on its edges and subjected to uniform compressive forces q1.
This case of loading is of a great practical importance. For example, an aircraft
fuselage is subjected to compressive forces transmitted from the engine at the accel-
eration path. Some other problems including the buckling of shells in bending, can
also be reduced to application of results obtained from the case of axially symme-
trical compression. Along with that, the circular cylindrical shell compressed along
its generator can serve as some standard for comparing the theoretical and experi-
mental data to check various approaches in shell stability analysis.

The boundary conditions for the deflections, w, in buckling of the shell under
consideration are of the following form:

w ¼ 0jx¼0;L;
@2w

@x2
¼ 0

					
x¼0;L

: ð19:15Þ

The x and y coordinates can be chosen as coordinates that determine the location of
a point on the middle surface. They define the position of a point along the shell
generator and over the arc of its cross section, respectively, as shown in Fig. 19.2.

As a first variant of the solution of this buckling problem, let us assume that
the deflected surface of the shell after buckling is axisymmetric, i.e., the shell cross
section remains circular, as shown in Fig. 19.2. Assuming that the initial, prebuckled
configuration of equilibrium of the cylindrical shell is momentless, take the equation
for deflections w in buckling in the form

w ¼ �f sin
m�x

L
: ð19:16Þ
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The index 1 for w will be omitted since no confusion is possible when the initial state
of equilibrium is momentless. It is evident that the deflections in the form of Eq.
(19.16) satisfy the boundary conditions (Eqs (19.15)). We apply the energy method to
determine the critical forces in the considered symmetrical buckling.

First, determine the strain components prior to buckling, i.e., in the pre-
buckled, membrane state. Since there is no acting normal load, one obtains from
Eq. (15.40) that N20 ¼ 0. The applied compressive load is constant over the shell
circumference, thus, we have N10 ¼ �q1. The axial strain, just before buckling, is
found from Eq. (12.45), as follows:

"10 ¼
N10

Eh
¼ � q1

Eh
: ð19:17aÞ

The corresponding circumferential strain follows also from Eqs. (12.45), as shown
below:

"20 ¼ ��"10: ð19:17bÞ

As a result of buckling, the deflection w occurs, producing the circumferential strain
"21. Assuming that w is given by Eq. (19.16), we can determine "21 from Eq. (15.38),
as follows:

"21 ¼ �w

R
¼ f

R
sin

m�x

a
: ð19:18Þ

Therefore, the total circumferential strain after the shell has buckled is

"2 ¼ "20 þ "21 ¼ ��"10 �
w

R
¼ ��"10 þ

f

R
sin

m�x

L
: ð19:19Þ

To find the corresponding total meridional strain, "1, we now refer to the first Eq.
(12.45), with N1 ¼ N10 ¼ �q1, as follows:

N10 ¼ �q1 ¼
Eh

1� �2 ð"1 þ �"2Þ;

from which,

"1 ¼ � ð1� �2Þ
Eh

q1 � �"2:

Fig. 19.2
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Substituting for q1=Eh from Eq. (19.17a) into the above yields

"1 ¼ ð1� �2Þ"10 þ �
w

R
þ �"10

� �
¼ "10 þ �

w

R
¼ "10 �

�

R
f sin

m�x

L
: ð19:20Þ

Note that, owing to the axisymmetric deformation, the shear strain is zero. Now we
can analyze the buckled axisymmetric configuration of the shell equilibrium. Let us
determine the changes in curvature. Due to axisymmetric bending deformation, we
have the following:

�1 ¼ � d2w

dx2
¼ f

m�

L

� �2
sin

m�x

L
; �2 ¼ �12 ¼ 0 ð19:21Þ

The increase in strain energy during buckling, �U, can be determined. For this
purpose, Eqs (19.19), (19.20), and (19.17) are introduced into Eqs (19.12a) and
(19.12b), respectively. Then, subtracting U and U0, we finally obtain �U, as follows:

�U ¼ 2��q1

ðL
0

f sin
m�x

L
dxþ f 2

�EhL

2R
þ f 2

DR�5m4

2L3
: ð19:22Þ

Let us determine the increment in the potential of the external loading, ��. In the
case of axisymmetric loading, we have the following:

�N10 ¼ q1;N2 ¼ 0; and S ¼ 0; p
ðfÞ
3 ¼ N10

@2w

@x2
¼ q1f

m�

L

� �2
sin

m�x

L
:

ð19:23Þ
To evaluate ��, we use Eq. (19.14), setting p2 ¼ p3 ¼ 0. Determine the increment in
the potential produced by the compressive forces q1. As discussed in Sec. 2.5,
�� ¼ ��We, where, We is the work done by external loading. Let us first evaluate
the elementary work done by the compressive forces during the buckling. We have
(for dead load q1) the following:

�ðdWeÞ ¼ ðq1dyÞdu1 ¼ ðq1dyÞ
du1
dx

dx ¼ q1"11dxdy:

Thus,

��1 ¼ �
ð ð

A

q1"11dxdy ¼ �
ð ð

A

q1ð"1 � "10Þdxdy: ð19:24Þ

Substituting for "1 and "10 from Eqs (19.20) and (19.17a) into the above integral,
utilized for the circular cylindrical shell, yields the following:

��1 ¼ 2��q1

ðL
0

wdx ¼ �2��q1f

ðL
0

sin
m�x

L
dx: ð19:25aÞ

The increment in the potential of the normal component of the in-plane forces, ��2

– refer to the loading p
ðfÞ
3 given by Eq. (19.8) – can be evaluated from Eq. (19.14) by

replacing p3 with p
ðf Þ
3 and letting N10 ¼ �q1;N20 ¼ S0 ¼ 0. This integral, utilized for

the given cylindrical shell, has the form

��2 ¼ � 1

2

ðL
0

ðpðfÞ3 wÞ2�Rdx
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or

��2 ¼ � 1

2
q1ð2�RÞf 2

ðL
0

m�

L

� �2
sin

m�x

L

� �2
dx: ð19:25bÞ

Finally, adding ��1 and ��2, we obtain the following:

�� ¼ �2�q1 �

ðL
0

f sin
m�x

L
dxþ R

4

m2�2

L
f 2

 !
: ð19:26Þ

Introducing the expressions for �U and �� from Eqs (19.22) and (19.26), respec-
tively, into the energy criterion (19.10), yields the following equation for determining
the critical value of q1:

�EhL

2R
þ �

5Rm4D

2L3
� �

3Rm2q1
2L

 !
f 2 ¼ 0:

For the above to be valid for any f , it is required that

q1 ¼
D�2

R2
þ Eh

�2
; ð19:27Þ

where

� ¼ m�R

L
: ð19:28Þ

Determine the minimum value of q1 by equating the first derivative of q1 with respect
to � to zero. In so doing, we assume that m � 1. Then, we obtain the following:

�cr ¼
ffiffiffiffiffiffiffiffiffiffiffi
EhR2

D

4

r
: ð19:29Þ

Substituting for �cr from the above into Eq. (19.27) results in the critical value of the
applied compressive load, q1;cr, corresponding to the bifurcation point in the frame-
work of the linearized buckling analysis of the shell. We have the following expres-
sion:

q1;cr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� �2Þ
p Eh2

R
: ð19:30Þ

For � ¼ 0:3, we obtain

q1;cr ¼ 0:605
Eh2

R
; ð19:31aÞ

and the corresponding critical stress is

�1;cr ¼
q1cr
h

¼ 0:605
Eh

R
: ð19:31bÞ

This formula is of fundamental importance in the structural theory of shell stability.
It follows from Sec. 19.2 that Eqs (19.30) and (19.31) determine the upper value of
the critical loads, i.e., q

ð1Þ
1;cr. However, hereafter, the superscript 1 is dropped because

the linear buckling analysis of shells is of interest in this section. Determine the
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length of half sine waves into which the shell buckles, lw ¼ L=m. It follows from Eqs
(19.28) and (19.29) that one can show the following:

lw ¼ �
ffiffiffiffiffiffi
Rh

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� �2Þ4

p : ð19:32Þ

In the case of very short shells, if ðL=RÞ2 � 1, one should set m ¼ 1 and the differ-
entiation of Eq. (19.27) becomes invalid. However, in this case, � will be so much
larger that the second term in the above equation becomes negligible compared with
the first term. As a result, we obtain the following:

q1;cr ¼
�2D

L2
and �1;cr ¼

�2D

hL2
:

This is the well-known Euler’s formula for a strip column [2] cut from the shell in the
direction of its generator.

Now, let us turn our attention to a more general variant of the solution of the
buckling problem under consideration and assume that the shell buckled surface is
asymmetric. For this general case, we apply the equilibrium method introduced in Sec.
19.2. The stability equation (Eq. (19.9)) for an axially loaded, by uniform compres-
sive forces q1, cylindrical shell takes the form (assuming N10 ¼ �q1)

Dr4r4wþ Eh

R2

@4w

@x4
þ q1r4 @2w

@x2

 !
¼ 0: ð19:33Þ

We solve this equation in the manner outlined by Batdorf [3]. The general solution
satisfying the boundary conditions (19.15) will be sought in the following form:

w ¼ f sin
m�x

L
sin

ny

R
; ð19:34Þ

where m and n are the numbers of half-waves in the longitudinal and circumferential
directions, respectively. We also introduce the following dimensionless parameter 
,
where


 ¼ nL

�R
; ð19:35Þ

and rewrite Eq. (19.34) as follows:

w ¼ f sin
m�x

L
sin

�y

L
: ð19:36Þ

Substitution of Eq. (19.36) into Eq. (19.33), gives the following:

D
�

L

� �8
ðm2 þ 
2Þ4 þ Eh

R2
m4 �

L

� �4
�q1

�

L

� �6
m2ðm2 þ 
2Þ2 ¼ 0: ð19:37Þ

Dividing Eq. (19.37) by Dð�=LÞ8, one obtains the following equation:

ðm2 þ 
2Þ4 þ 12m4Z2

�4
� K1m

2ðm2 þ 
2Þ2 ¼ 0; ð19:38Þ

where

Z ¼ L2

Rh
ð1� �2Þ1=2
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and

K1 ¼
q1L

2

D�2
: ð19:40Þ

The nondimensional parameter Z is a shape factor. It is a measure of the ratio of the
shell length to its radius and is useful for distinguishing between short and long
cylinders. The parameter K1 is the buckling coefficient similar to the one that appears
in the plate buckling analysis (see Eq. (8.8)). It is a measure of the ratio of the shell
length to its radius and is useful for distinguishing between short and long cylinders.
Solving Eq. (19.38) for K1, one obtains

K1 ¼
ðm2 þ 
2Þ2

m2
þ 12Z2m2

�4ðm2 þ 
2Þ2 : ð19:41Þ

Differentiating the above expression with respect to ðm2 þ 
2Þ2=m2 and setting the
result equal to zero, shows that K1 has a minimum value when

ðm2 þ 
2Þ2
m2

¼ 12Z2

�4

 !1=2

: ð19:42Þ

Substitution of (19.42) into (19.41), gives

K1 ¼
4
ffiffiffi
3

p

�2
Z; ð19:43Þ

from which

q1;cr ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� �2Þ
p Eh2

R
: ð19:44Þ

The corresponding critical stress is given by

�1;cr ¼
q1;cr
h

¼ Eh

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p : ð19:45Þ

If � ¼ 0:3, then

q1;cr ¼ 0:605
Eh2

R
and �1;cr ¼ 0:605

Eh

R
: ð19:46Þ

Comparing Eqs (19.44) or (19.46) and Eqs (19.30) and (19.31), it is seen that the
critical loads for asymmetric and axisymmetric buckling modes coincide exactly. We
return now to Eq. (19.42) to establish the range of validity of Eqs (19.43) and (19.46).
Solving Eq. (1942) for 
, we have


 ¼ ð12Z2Þ1=4
�

m�m2

" #1=2

: ð19:47Þ

Since, as a minimum, m ¼ 1, it is apparent that for real values of 
 one obtains the
following:

Z � �2

121=2
� 2:85: ð19:48Þ
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Thus, the expressions (19.43) and (19.46) can be applied to cylinders for which Z �
2:85 or whose length L > 1:69

ffiffiffiffiffiffi
Rh

p
=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �24

p
. Such cylinders are classified as moder-

ate-length cylinders. For short cylinders, for Z less than 2.85, the values of 
 ¼ 0 and
m ¼ 1 are to be substituted into Eq. (19.41). For a short and simply supported
cylinder, we obtain

K1 ¼ 1þ 12Z2

�4
: ð19:49Þ

The critical stress for cylinders with Z < 2:85 is thus given by

�1;cr ¼
K1�

2D

hL2
; ð19:50Þ

where K1 is defined by Eq. (19.49). Expression (19.50) indicates that the critical stress
of a short cylinder approaches that of a wide laterally unsupported plate as Z
approaches zero or as a simply supported column.

In the foregoing analysis, it was assumed that failure would occur as a result of
local surface buckling. This assumption is valid only as long as the cylinder is not
extremely slender. Long narrow cylinders may become unstable as a result of Euler’s
column buckling (general or global instability) before the local instability stress is
reached, and must therefore be checked for both modes of failure. It has thus been
shown that the buckling mode of an axially loaded cylinder depends on the ratio of
its length to its radius. The local instability occurs for short and moderate-length
cylinders, whereas a long cylinder buckles as a column. There is a big difference
between local and general bucklings of short and long cylinders. The buckling of a
very long cylinder (Euler’s buckling mode) does not involve surface distortion of the
circular cross section at all. Instead, the member simply behaves like Euler’s column.
The local instability largely involves a surface distortion for short cylinders.
Intermediate-length cylinders are to be found between these two extremes and repre-
sent the majority of actual cylinders. Cylinders of this type buckle by developing
surface distortions in both the longitudinal and circumferential directions, and their
critical stress is given by Eq. (19.46).

19.3.3 Buckling of cylindrical shells under external pressure

Consider the case when a shell is subjected to uniform external pressure of intensity p
(Fig. 19.3). Such a type of loading is typical for submarine hulls and shell aircraft
engine housings. Also tanks in chemical plants often experience an excessive external
pressure.

The external uniform pressure causes the membrane longitudinal stress �1 and
circumferential stress �2, as well as the bending stresses in a cylindrical shell. In
analyzing the shell buckling, the circumferential compressive stresses are of great
importance. If a shell is sufficiently long, then the critical values of the external
pressure p only slightly affect the boundary conditions prescribed on the shell
edges. This means that a distortion of the circular cross section will be identical
throughout the length of the shell. Hence, the buckling analysis of long cylindrical
shells can be replaced (for the sake of simplicity) by the analysis of the stability of a
ring of unit length with the same radius and thickness as for the given shell. Such a
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buckling problem was analyzed, for example, in Ref. [2]. The critical value of the
external pressure is given by

pcr ¼
ðn2 � 1ÞEI

R3
; ð19:51Þ

where n is the number of half-waves in the circumferential direction. The minimum
value of pcr is reached when n ¼ 2, i.e.,

pcr:min ¼ 3EI

R3
: ð19:52Þ

For long shells, pcr is also given by Eq. (19.52), replacing EI by the flexural rigidity,
D ¼ Eh3=12ð1� �2Þ.

If a cylindrical shell subjected to a uniform external pressure is not too long,
then its buckling analysis should be carried out with the use of equations of the
structural stability theory, discussed in Sec. 19.2. Assume that the shell edges are
simply supported and there is no bending of the shell. The circumferential stress is
�2 ¼ �pR=h. Hence, the action of the transverse pressure p is equivalent to the action
of the compressive circumferential forces, equal to pR. Making use of the homoge-
neous equation (19.9) and setting N10 ¼ 0; N20 ¼ �pr; and S ¼ 0 and dividing both
sides by h, one obtains the following equation for the problem under consideration:

D

h
r8wþ E

R2

@4w

@x4
þ pR

h
r4 @2w

@y2

 !
¼ 0: ð19:53Þ

where r8 � r4ð. . .Þr4ð. . .Þ.
One can take the solution of this equation in the form of Eq. (19.34) that

satisfies the prescribed boundary conditions. Substituting the above expression for
w into Eq. (19.53), one obtains the following:

D

h

m2�2

L2
þ n2

R2

 !4

þ E

R2

m4�4

L4
� pR

h

m2�2

L2
þ n2

R2

 !2
n2

R2
¼ 0; ð19:54Þ

from which

Fig. 19.3
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pmn ¼ DR
m2�2

L2n
þ n

R2

 !2

þ Eh

Rn2
1

1þ n2L2

R2m2�2

� �2
: ð19:55Þ

It is evident that in determining the critical pressure we have to take m ¼ 1. This
means that the cylindrical shell subjected to external pressure has to buckle along the
shell generator over one half-wave. Then we obtain the following from Eq. (19.55):

pn ¼
Dn2

R3
1þ 1

n2
�R

L

� �2
" #2

þEh

R

�R
L

� �4
n6 1þ 1

n2
�R
L

� �2� �2 : ð19:56Þ

Determine from Eq. (19.56) the number of half-waves in the circumferential direc-
tion, ncr, which provides a minimum value of pn, i.e., the value of pcr. In the general
case, this problem can be solved only numerically; however, for some important
practical cases, it may be simplified. For example, for intermediate-length shells
when 0:3

ffiffiffiffiffiffiffiffiffi
R=h

p
> L=R >

ffiffiffiffiffiffiffiffiffi
h=R

p
, the expression (19.56) is simplified significantly; it

is possible to assume n2 � ð�R=LÞ2. Then, instead of Eq. (19.56), one obtains

pn ¼
D

R3
n2 þ Eh

R

ð�R=LÞ4
n6

:

Minimizing the above expression in n from the condition dpn=dn ¼ 0, we can find
(for � ¼ 0:3Þ

n2cr ¼
�R

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
36ð1� �2Þ4

q ffiffiffiffi
R

h

r
� 7:5

R

L

ffiffiffiffi
R

h

r
ð19:57Þ

and

pcr ¼
�

ffiffiffi
6

p

9ð1� �2Þ3=4 E
R

L

� �
h

R

� �5=2

¼ 0:92
Eh2

RL

ffiffiffiffi
h

R

r
: ð19:58Þ

For short shells, when L=R <
ffiffiffiffiffiffiffiffiffi
h=R

p
, the expression (19.56) can be also simplified.

Investigations showed that buckling of such shells is accompanied by a large number
of half-waves in the circumferential direction [4]. Consequently, the second term in
the expression (19.56) can be neglected and we obtain

pn ¼
Dn2

R3
1þ 1

n2
�R

L

� �2
" #2

:

The minimum value of pn is reached for ncr ¼ �R=L. Thus, the critical value of the
external pressure for the short shells is

pcr ¼
4D�2

RL2
: ð19:59Þ

This value of the critical pressure corresponds to the following value of the circum-
ferential force, N2;cr

N2;cr ¼ pcrR ¼ 4D�2

L2
: ð19:60Þ
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This expression is analogous to that obtained in Sec. 8.3 for the critical load of a
simply supported rectangular plate compressed uniformly in one direction. Thus, a
short cylindrical shell with simply supported edges under external pressure buckles as
a simply supported plate, compressed in the longitudinal direction, whose width b is
equal to L, and the number of half-waves is equal to 2n.

It should be noted that expression (19.51) for long cylindrical shells cannot be
obtained from Eq. (19.56) as a limiting case when L=R ! 1. This can be explained
as follows. Expression (19.56) was obtained on the basis of the simplified equations
of the shallow shell theory, Eqs (19.53). It has been shown [4] that the assumptions of
the shallow shell theory, introduced in Secs 17.3 and 17.4, are equivalent to the
condition n2 � 1 (assume that this inequality holds for n � 4Þ for the buckling
problem under consideration. Thus, expression (19.56) is valid only if the above
inequality holds. Cases n ¼ 2; 3 that are typical for buckling of long cylindrical shells
should be considered using a more refined shell theory: in particular, a more refined
expression for a change of curvature of the deflected middle surface along the shell
circumference. The latter can be obtained, for instance, by using the semi-membrane
theory of the cylindrical shell, introduced in Sec. 17.2. Omitting the details of deriv-
ing the buckling governing equation based on this refined curvature expression, we
present only the final result for the upper critical value of the external pressure for
long shells, as follows [4]:

pcr ¼
DR

n2 � 1

�2

L2
þ n2

R2

 !2

þ 1

R4
1� 2 �

�2R2

L2
þ n2

 !" #8<
:

9=
;

þ Eh

R

�4

L4

1

�2

L2 þ n2

R2

� �2

ðn2 � 1Þ
; n > 1:

ð19:61Þ

For a very long cylindrical shell, when L � R, this equation reduces to Eq. (19.51),
i.e., the critical value of the external pressure for a ring of unit length.

19.3.4 Buckling of circular cylindrical shells under axial loads and
external pressure

A combination of axial loads and external pressure is typical, for example, for
elevated tower-shaped reservoirs or tanks used in chemical engineering. For these
structures, the compressive stresses due to their self-weight occur at the bottom of
tanks, whereas some vacuum may occur inside the tank.

Applying the linear buckling analysis, let us combine Eqs (19.33) (dividing it by
h) and (19.53). As a result, we obtain the buckling governing equation for inter-
mediate-length cylindrical shells subjected to axial compressive loads, q1, and a
uniform internal pressure, p, in the following form [4]:

D

h
r4r4wþ E

R2

@4w

@x4
þ q1

h
r4 @2w

@x2

 !
þ pR

h
r4 @2w

@y2

 !
¼ 0: ð19:62Þ

Introducing the expression for w from Eq. (19.34) into the above, one obtains

q̂q1 þ
p

�2
¼ 1

12ð1� �2Þ
ð1þ �2Þ2

�2
þ �2

ð1þ �2Þ ; ð19:63Þ
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where

q̂q1 ¼
q1R

Eh
; p̂p ¼ p

E

R

h

� �2

; � ¼ m�R

nL
;  ¼ n2h

R
: ð19:64Þ

It is seen that the critical combinations of values q̂q1 and p̂p are related to one another
by a linear relationship. The plot of q̂q1 vs p̂p represents some polygon ACDB, as
shown in Fig. 19.4. This figure is taken from Ref. [4].

Note that points A and B in this figure correspond to the upper critical values
of axial compressive load, q̂q1cr, and external pressure, p̂pcr, respectively, applied sepa-
rately from one another. If we join these points by a straight line, we obtain some
intermediate values of q̂q1 and p̂p corresponding to the following equation:

q̂q1
q̂q1cr

þ p̂p

p̂pcr
¼ 1

or

q1
q1cr

þ p

pcr
¼ 1 ð19:65Þ

(the superscript 1 that refers to the upper critical loads is omitted in the above and
further equations, because in the linear buckling analysis only such a critical load can
be obtained).

It is easily seen that Eq. (19.65) determines the critical combination of the axial
loads and external pressure conservatively with respect to the polygon. Therefore,
this equation can be used as a first approximation in a practical design.

Theoretical investigations and experiments showed that an axial compression
decreases the value of the external critical pressure, compared with the case when this
compression is absent. An axial tension increases the value of the external critical
pressure. In turn, an internal pressure increases the value of the axial compressive
critical force.

Also it should be noted that in the shell buckling problems introduced above,
the solutions were obtained by assigning the boundary conditions for the deflections
of the type of Eqs (19.15) on the shell edges, ignoring the in-plane displacements
prescribed also on these edges. The investigations associated with the effect of the in-

Fig. 19.4
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plane boundary conditions on the values of the critical loads for simply supported
shells showed that the critical stress is reduced drastically if the edges are permitted
to move freely in the tangential direction [5,6].

19.3.5 Buckling analysis of cylindrical shells subjected to torsion

Let us consider a cylindrical shell of radius R and length L subjected to the twisting
couples T applied to its ends. The unbuckled (initial) state of stress in such shells is
determined by the shear stresses, �. For thin cylindrical shells, such stresses are

� ¼ T

2�R2h
: ð19:66Þ

Buckling of cylindrical shells under twisting couples occurs when these couples reach
some critical values Tcr. Such a type of buckling can take place under certain con-
ditions in shells of aircraft structures and aircraft engines.

We consider here the linear buckling analysis only. Assume that the intermedi-
ate-length cylindrical shell, loaded by twisting couples T , is simply supported on its
ends. Then, the stability equation (Eq. (19.9)) for this particular case of the shell
geometry and loading will have the following form (after dividing both sides of the
above equation by h):

D

h
r4r4wþ E

R2

@4w

@x4
þ 2�r4 @2w

@x@y

 !
¼ 0: ð19:67Þ

By analogy with the stability problem of flat plates in shear, one can assume that the
shell buckling in torsion will be followed by the formation of regularly located over a
circumference waves, which are inclined under some angle to the shell generator.

A solution of Eq. (19.67) will be sought in the following form [4]:

w ¼ f cos
�x

L
cos

n

R
ðyþ �xÞ; ð19:68Þ

where the origin of the x axis is taken at the shell midspan, n is the number of waves
along a circumference, and � is the slope of the crest of waves to the shell generator.
Equation (19.68) satisfies the boundary conditions for x ¼ �L=2.

After intermediate lengthy and cumbersome manipulation, we obtain some
approximate expressions for the critical values of the twisting moment, Tcr. We have

Tcr ¼ 2�
E

1� �2
R2h3

L2
2:8þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2:6þ 1:4

L2

2Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p� �1:5
s2

4
3
5: ð19:69aÞ

If the shell ends are fixed, then Tcr can be found from the following approximate
equation:

Tcr ¼ 2�
E

1� �2
R2h3

L2
4:6þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:8þ 1:67

L2

2Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p� �1:5
s2

4
3
5: ð19:69bÞ
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All the above equations were given for the intermediate-length cylindrical shells (the
intermediate-length shell criterion was introduced in Sec. 19.3.4). For long-length
shells when

L2h

ð2RÞ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p > 7:8

for fixed shell ends, and

L2h

ð2RÞ2
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �2
p > 5:5

for simply supported shell ends, it had been established that Tcr does not depend on
the shell boundary conditions and can be approximated by the following equation:

Tcr ¼
1:5E

1� �2� �0:75 ffiffiffiffiffiffi
Rh

p
: ð19:70Þ

The detailed buckling analysis of cylindrical shells in torsion is given in Ref. [4].

19.4 POSTBUCKLING ANALYSIS OF CIRCULAR CYLINDRICAL
SHELLS

It was mentioned previously that the critical stress, given by the solution based on
the linear buckling analysis, is not supported by test data. Experiments to validate
the theoretical results inevitably indicated that the actual cylinders buckle at loads
considerably below that those predicted by the linear stability theory. For instance,
buckling loads for axially compressed cylinders were as low as 30% of the load given
by the linear stability theory solution. Furthermore, the test results exhibited an
unusually large degree of scatter.

Donnel [7,8] was the first to propose the use of the nonlinear or finite-deflection
theory of cylindrical shells in an attempt to explain the existing discrepancy between
the theoretical and experimental results. Then, von Karman and Tsien [9], using
Donnel’s large-deflection stability equations, obtained the first accurate description
of the postbuckling behavior of an axially compressed cylinder. The next step in the
study of the stability of cylindrical shells was made when Donnel and Wan [10]
introduced in 1950 an initial imperfection into the buckling analysis. They showed
that the initial imperfections can reduce appreciably the maximum load that an
axially compressed cylinder can support. The next investigations supported the
view that the discrepancy between the linear stability theory and test results was
due mainly due to the presence of initial geometric and loading imperfections. For
example, some investigators were be able to manufacture near-perfect shell speci-
mens and thus minimize the effects of initial imperfections. For these near-perfect
specimens, the observed buckling load was closer to the theoretically obtained cri-
tical load.

The governing equations of the large-deflection theory (Eqs (18.31)) are applic-
able for an initially perfect shallow shell. Several minor modifications must be intro-
duced to make these equations valid also for a shallow shell with initial imperfections
of shape. Assume that the lateral deflection consists of an initial deflection (compar-
able with the shell thickness), wi, in addition to the deflection w produced by the
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applied loads. Let us rewrite the strain–displacement relations (18.19) to include the
effects of the initial imperfections. If in the derivation of these expressions given in
Sec. 18.2.2 the lateral deflection w is replaced by wþ wi, then Eqs (18.19) take the
form

"1 ¼
@u

@x
� �1ðwþ wiÞ þ

1

2

@w

@x

� �2

þ @w
@x

@wi

@x
;

"2 ¼
@v

@y
� �2ðwþ wiÞ þ

1

2

@w

@y

� �2

þ @w
@y

@wi

@y
;

�xy ¼
@u

@y
þ @v

@x
þ @w
@x

@w

@y
þ @wi

@x

@w

@y
þ @w
@x

@wi

@y
:

ð19:71Þ

Following the procedure for the derivation of the differential equations of the large-
deflection theory, given in Sec. 18.2, we obtain the following

D

h
r2r2w� Lðwþ wi;�Þ � r2

k� ¼ p3
h
;

1

E
r2r2� ¼ � 1

2
Lðwþ 2wi;wÞ � r2

kw

ð19:72Þ

where � ¼ �=h and the operator LðU;VÞ is given by Eqs. (18.30). The above equa-
tions are the nonlinear governing equations of an initially imperfect shallow shells.

We analyze below the postbuckling behavior of a shallow square cylindrical
panel of side a, subjected to uniform compressive forces q1 applied along the curvi-
linear edges of the panel, as shown in Fig. 19.5. The radius of curvature of the panel
is R, and its thickness is h. The postbuckling behavior of such a panel is very similar
to that of the entire cylinder, however, the calculation of the critical values of the
compressive loads for this panel is less lengthy and less complicated than for the
entire cylinder. The analysis presented here follows the general outline of that given
by Volmir [4].

As far as the boundary conditions are concerned, it is assumed that (1) the
edges are simply supported, (2) the shear force S vanishes along each edge, (3) the
edges y ¼ 0 and y ¼ a are free to move in the y direction, and (4) the panel retains its
rectangular shape (in a plane) during buckling. These conditions are satisfied if we let

Fig. 19.5
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w ¼ f sin
�x

a
sin
�y

a
: ð19:73Þ

The panel is also assumed to have an initial deflection, given by

wi ¼ fi sin
�x

a
sin
�y

a
: ð19:74Þ

It was shown [10] that the effect of initial imperfections is found to be stronger if
their shape corresponds to the wave-like behavior of a perfect shell in buckling.

Let us substitute for w and wi from Eqs (19.73) and (19.74) into the second Eq.
(19.72). Making in the above equation �2 ¼ 1=R; �1 ¼ 0, one obtains the following:

r2r2� ¼ E ðf 2 þ 2f � f1Þ
�4

2a4
cos

2�x

a
þ cos

2�y

a

� �
þ f�2

Ra2
sin
�x

a
sin
�y

a

" #
:

ð19:75Þ
A particular solution of this equation, obtained by the method of undetermined
coefficients, is

�p ¼ Eðf 2 þ 2f � fiÞ
32

cos
2�x

a
þ cos

2�y

a

� �
þ Efa2

4�2R
sin
�x

a
sin
�y

a
: ð19:76Þ

Determine the complementary solution of Eq. (19.75), �h. This solution should
satisfy the homogeneous equation r2r2� ¼ 0 and also has to correspond to the
primary membrane forces that exist prior to buckling and are caused by the given
loading q1. We have that N1 ¼ �q1;and N2 ¼ S ¼ 0. Noting that

q1
h
¼ @2�

@y2
;

one obtains the following:

�h ¼ � q1y
2

2h
: ð19:77Þ

Thus, the general solution of the second Eq. (19.72) is obtained, as follows:

� ¼ Eðf 2 þ 2f � fiÞ
32

cos
2�x

a
þ cos

2�y

a

� �
þ Efa2

4R�2
sin
�x

a
sin
�y

a
� q1y

2

2h
: ð19:78Þ

Now, let us return to the first Eq. (19.72). We satisfy this equation approximately
only in Galerkin’s procedure sense. So, setting p3 ¼ 0; �1 ¼ 0; and �2 ¼ 1=R, we
obtainða ða

0

D

h
r2r2w� Lðw;wi;�Þ �

1

R

@2�

@x2

" #
sin
�x

a
sin
�y

a
dxdy ¼ 0: ð19:79Þ

Substituting for w;wi; and � from Eqs (19.73), (19.74), and (19.78) into the above
and integrating, we obtain, after some mathematics, the following equation:

Df�4

a2
� q1�

2

4
ðf þ fiÞ þ

Efha2

16R2
� 5

6
f þ fi

� �
Eh

R
f þ Eh�4

32a2
ðf 2 þ 3ffi þ 2f 2i Þf ¼ 0;

ð19:80Þ
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from which

q̂q1 ¼
�2

3ð1� �2Þ þ
k2

4�2
þ �

2

8
�2 þ 3��i þ 2�2i
� �� 4k

�2
5

6
�þ �i

� �" #
�

�þ �i
; ð19:81Þ

where

q̂q1 ¼
q1a

2

Eh3
; k ¼ a2

Rh
; � ¼ f

h
; �i ¼

fi
h
: ð19:82Þ

For � ¼ 0:3, the relation (19.81) becomes

q̂q1 ¼ 3:6þ k2

39:5
þ 1:23ð�2 þ 3��i þ 2�2i Þ � 0:405kð0:83�þ �iÞ

" #
�

�þ �i
: ð19:83Þ

Setting �i ¼ 0, we obtain the nonlinear load–deflection relationship for the perfect,
axially compressed square shallow cylindrical shell, as follows:

q̂q1 ¼
�2

3ð1� �2Þ þ
k2

4�2
þ �

2

8
�2 � 10

3�2
k�: ð19:84Þ

If we set k ¼ 0 (the curvature parameter), we derive the following nonlinear load–
deflection relationship:

q̂q1 ¼
�2

3ð1� �2Þ þ
�2

8
�2; ð19:85Þ

which coincides with the corresponding nonlinear relationship for a square, simply
supported flat plate.

Comparing Eqs (19.84) and (19.85), we can conclude that the presence of an
additional linear term on the right-hand side of Eq. (19.84) indicates some peculia-
rities in the buckling behavior of a cylindrical panel compared with that of a flat
plate. As buckling occurs, the applied compressive load drops, reaches a known
minimum and only then is starting to increase. The minimum value of q̂q1 can be
obtained from the following:

dq̂q1
d�

¼ �2

4
�� 10

3�2
k ¼ 0; ð19:86Þ

from which

� ¼ 40k

3�4
� 0:14k: ð19:87Þ

The following critical load parameter corresponds to this definition:

q̂q
ð2Þ
1;cr ¼

�2

3ð1� �2Þ þ
k2

4�2
� 200

9�6
k2; ð19:88Þ

which represents the lower critical load parameter q̂q1 for the perfect shallow cylind-
rical panel (see Sec. 19.2).

Approaching �! 0 in Eq. (19.84), one obtains the following equation for the
upper value of the critical load parameter q̂q1 in a simply supported, axially com-
pressed perfect square cylindrical panel by the linear buckling analysis:
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q̂q
ð1Þ
1;cr ¼

�2

3ð1� �2Þ þ
k2

�2
: ð19:89Þ

Thus, we can represent the nonlinear load–deflection relationship for the given
perfect cylindrical panel as

q̂q1 ¼ q̂q
ð1Þ
1 þ �

2

8
�2 � 10

3�2
k�: ð19:90Þ

Inserting Eq. (19.89) into Eq. (19.88) leads to the following:

q̂q
ð2Þ
1;cr ¼ q̂q

ð1Þ
1;cr �

200

9�6
k2: ð19:91Þ

Let us turn to Eq. (19.83). As mentioned in Sec.19.2, there is a good reason to
believe that the initial imperfections of a shell geometry have a great effect on the
scatter of experimental data of the critical loads and on the discrepancies between the
theoretical and experimental results. Figure 19.6 (taken from Ref. [11]) shows the
load–deflection relationships for a flat plate with k ¼ 0 (Fig. 19.6a) and for a cylind-
rical panel with k ¼ 24 (Fig. 19.6b).

The curves in each figure depict the variation of the load parameter q̂q1 with the
total lateral deflection parameter �þ �i. The curves for several different values of the
initial imperfection �i are presented. It follows from Fig. 19.6a, that small initial
deformations practically do not affect the buckling behavior of flat plates and the
behavior of the flat plate is similar to that of a column. In fact, as in the case of the
perfect plate (�i ¼ 0), the critical load does not represent the maximum carrying
capacity of the imperfect plate. Instead, as the deflection continues to grow, the
imperfect plate is able to resist increasing loads. Furthermore, as the deflections
increase, the curves of the initially imperfect plates approach that of the perfect plate.

The cylindrical panels demonstrate another behavior. A strong dependence of
the maximum axial compressive load on the magnitude of the initial imperfection is
seen from Fig. 19.6b. As long as the axial load is small, bending increases very
gradually with an increase in the load. Then, suddenly, at a certain load whose
magnitude appears to depend on the magnitude of the initial imperfection, the
bending deflections begin to grow rapidly and the load drops. The important con-
clusion that can be drawn from this figure is that the maximum load, i.e., the buck-
ling load, q1b as introduced in Sec. 19.2, the initially imperfect panel can support, is
considerably less that the upper critical load given by the linear stability theory. Even
for very small imperfections, such as �i ¼ 0:05, the maximum buckling load is only
75% of the upper critical load. Thus, small initial imperfections have a very signifi-
cant effect on the buckling characteristics of cylindrical panels. The failure of the
moderate-length cylinders in axial compression should be influenced profoundly by
the magnitude of initial imperfections in the cylinder.

It should be noted that the general conclusions made above on the effect of the
initial imperfections on the buckling characteristics of axially compressed panels are
valid also for closed axially compressed cylinders. However, they are not typical for
the buckling behavior of cylindrical shells under other loads.

Let us discuss briefly some important theoretical results available on the post-
buckling behavior of cylinders subject to external pressure whose linear buckling
analysis was presented in Sec. 19.3.3. It was shown [4,8] that the effect of nonlinear-
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ity in the case of the external pressure is significantly weaker than for the case of axial
compression. The level of q̂q

ð2Þ
1;cr is about 70–75% of q̂q

ð1Þ
1;cr, while for axial compression

the above level lowered to 30–35%. Experimental data obtained by various investi-
gators showed that the influence of the geometric imperfections on the critical value
of applied loads depends essentially upon R=h. For instance, for very thin shells, the
critical value of the transverse pressure drops significantly due to the presence of
initial imperfections in the shell geometry.

19.5 BUCKLING OF ORTHOTROPIC AND STIFFENED CYLINDRICAL
SHELLS

19.5.1 Orthotropic cylindrical shells under external pressure

Consider the stability problem for an orthotropic cylindrical shell of length L and
radius R. The shell is simply supported on its ends and is subjected to an external

Fig. 19.6
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pressure p. Assume that the material of the shell is so arranged that at each point of
the shell its mutual orthogonal directions of elastic symmetry coincide with the
principal lines of curvature of the shell midsurface.

The differential equation of stability for orthotropic cylindrical shells under
external pressure can be derived in much the same way as for isotropic shells (see Sec.
19.3.3). The solution of this equation can also be sought in the form of Eq. (19.34).
Omitting the lengthy and cumbersome mathematics, we present below the following
final expression for the critical value of external pressure, pcr:

pcr ¼ min
Dn

R3
þ h
n

	2

Rtn

" #
1

�n

( )
; ð19:92Þ

where,

Dn ¼ D1	
4 þ 2D3	

2ðn2 � 1Þ þD2ðn2 � 1Þ2 þ ðD3 � �1D2Þ	2;


n ¼ 	2 þ ð	2 � �2n2Þ D3	
2 þD2ðn2 � 1Þ� � 1

E2R
2h
;

tn ¼ 	4�2 þ 2�3	
2n2 þ �1n4; �n ¼ 0:5	2 þ n2 � 1;

�1 ¼
1

E1

; �2 ¼
1

E2

; �3 ¼
1

2G
� �1
E1

; 	 ¼ �R

L
:

ð19:93Þ

The rigidities D1;D2; and DG are given by Eqs (18.45b) and D3 ¼ D1�2 þDG. It
follows from Eq. (19.92), that the critical value of pressure, pcr, is obtained by
selecting the number of half-waves in the circumferential direction, n, so that it
makes Eq. (19.92) a minimum.

19.5.2 Stability of stiffened cylindrical shells

As mentioned previously, cylinders are frequently manufactured with longitudinal
(stringers) and circumferential (ribs or collars) stiffeners. An aircraft fuselage and a
submarine hull are examples of stiffened shells. As a rule, stiffened shells are more
efficient than unstiffened shells. In addition, they are less sensitive to initial imper-
fections. Therefore, the critical values of applied loads for such shells are closer to
the theoretically determined values of the upper critical loads predicted by the linear
stability theory.

The buckling analysis of stiffened shells, just as the corresponding analysis of
stiffened plates, requires several steps. The first step in this analysis is to assess the
overall or primary buckling response of the stiffened shell. The second step is to
determine the local skin buckling response for skin segments located between stiffen-
ers. The third step is to determine whether stiffener buckling has occurred at the
given buckling load level. Our main concern in this book is with the primary buck-
ling analysis of stiffened shells.

The primary buckling analysis of thin shells reinforced by closely spaced ortho-
gonal stiffeners can be addressed conveniently with the use of the orthotropic shell
theory, introduced in Sec. 18.3. In this case, the rigidities of the stiffeners are smear-
ing along the shell middle surface, and a gird-stiffened shell is replaced by a structu-
rally orthotropic unstiffened shell. We locate a point on the shell midsurface by the x
and y coordinates (see Fig. 19.2). Following the simplified DMV theory of thin
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shells, introduced in Sec. 17.3, let us derive the governing differential equations for
the structurally orthotropic circular cylindrical shell. Assume that the stiffeners and
shell skin are made of the same isotropic material having the modulus of elasticity E
and Poisson’s ratio �, and that the stiffeners are symmetric with respect to the middle
surface (i.e., K11 ¼ K22 ¼ 0). For this particular case, setting R1 ! 1 and R2 ¼ R,
the governing equations of the stiffened cylindrical shells, Eqs (18.63) and (18.66),
are reduced to the following form:

D11

@4w

@x4
þ 2ðD21 þD33Þ

@4w

@x2@y2
þD22

@4w

@y4
� 1

R

@2�

@x2
¼ p3;

B11

Bs

@4�

@x4
þ 1

B33

� 2B12

Bs

� �
@4�

@x2@y2
þ B22

Bs

@4�

@y4
þ 1

R

@2w

@x2
¼ 0:

ð19:94Þ

It can be shown that for an unstiffened circular cylindrical shell, D11 ¼ D22 ¼ D;
D12 ¼ �D; D33 ¼ Dð1� �Þ; B11 ¼ B22 ¼ B; B12 ¼ �B; B33 ¼ Bð1� �Þ=2;
Bs ¼ B2ð1� �2Þ, Eqs (19.94) are reduced to the governing equations of an isotropic
circular cylindrical shells according to the DMV theory. If R ! 1, the first Eq. of
(19.94) transforms into Eq. (7.31), derived in Sec. 7.2 for the structurally orthotropic
flat plates. Introducing the operators

r4
Dð::Þ � D11

@4ð::Þ
@x4

þ 2ðD12 þD33Þ
@4ð::Þ
@x2@y2

þD22

@4ð::Þ
@y4

;

r4
Bð::Þ �

B11

Bs

@4ð::Þ
@x4

þ 1

B33

� 2B12

Bs

� �
@4ð::Þ
@x2@y2

þ B22

Bs

@4ð::Þ
@y4

;

ð19:95Þ

we can rewrite Eqs (19.94) as follows:

r4
Dw� 1

R

@2�

@x2
¼ p3; r4

B�þ 1

R

@2w

@x2
¼ 0: ð19:96Þ

In the buckling analysis problems, p3 is replaced by p
ðfÞ
3 from Eq. (19.8); then the first

Eq. (19.96) becomes

r4
Dw� 1

R

@2�

@x2
¼ N10

@2w

@x2
þN20

@2w

@y2
þ 2S0

@2w

@x@y
: ð19:97Þ

Consider a structurally orthotropic circular cylindrical shell subjected to uniform
axial compression forces q1. Using Eqs (19.96) and (19.97) and setting N10 ¼ �q1;
N20 ¼ S0 ¼ 0, one obtains the following:

r4
Dw� 1

R

@2�

@x2
þ q1

@2w

@x2
¼ 0;

r4
B�þ 1

R

@2w

@x2
¼ 0:

ð19:98Þ

The Galerkin method can be applied to solving Eqs (19.98). Let us approximate the
deflection w by the following series (the first-order approximation):

w ¼ f sin
�x

lx
sin
�y

ly
; ð19:99Þ
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where lx and ly are the lengths of the half-waves in the longitudinal and circumfer-
ential directions, respectively. Dropping intermediate and lengthy manipulations, we
present below, following Volmir [4], the final result for the upper critical forces
corresponding to the axisymmetric mode of buckling, when only circumferential
axisymmetric bulges take place. In this particular case, w ¼ f sin�x=lx and the
above-mentioned critical forces are

q
ð1Þ
1;cr ¼

2

R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D11Bs

B11

s
: ð19:100Þ

For an isotropic circular cylindrical shell subjected to compressive forces q1 in the
longitudinal direction, the above expression passes into Eq. (19.30).

Similarly, the stability problem for a cylindrical shell simply supported on its
ends and reinforced by closely spaced (at equal distances lx stiffening rings under
external pressure, can be considered. Assume that the rings are symmetrically placed
with respect to the shell midsurface and that the shell and rings are made of the same
isotropic material, having the modulus of elasticity E and Poisson’s ratio �. For this
particular case, Eqs (18.48) and (18.50) are simplified to the following form:

B11 ¼ B ¼ Eh

1� �2 ; B12 ¼ B21 ¼ B; K11 ¼ K22 ¼ 0;

B22 ¼ Bþ EAc

lx
; B33 ¼ B

1� �
2

;

D11 ¼ D ¼ Eh3

12ð1� �2Þ ; D12 ¼ D21 ¼ �D; D22 ¼ Dþ EIc
lx
; D33 ¼ Dð1� �Þ;

ð19:101aÞ

where Ac and Ic are the cross-sectional area and moment of inertia of the rings
about the tangent to the middle surface. Comparing the rigidities of the cylind-
rical shell reinforced by rings (Eqs (19.101a)) and the rigidities of the orthotropic
cylindrical shell (Eqs (18.44) and (18.45b)), we can derive the following approx-
imate relations for the elastic constants in the reduced structurally orthotropic
shell:

E1 ¼ E;E2 ¼ E 1þ Ac

lxh

� �
;D1 ¼ D;D2 ¼ Dþ EIc

lx
;

�2 ¼ �; �1 ¼
�E

E2

;D3 ¼ DG þ �D1 ¼ D;

�1 ¼
1

E
; �2 ¼

1

E2

; �3 ¼
1þ �� �E=E2

E
:

ð19:101bÞ

Substituting these values into Eqs (19.92) and (19.93) leads to the following
expression for the critical value of external pressure:
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pcr ¼ min
1

0:5	2 þ n2 � 1

EIc
R3lx


ðn2 � 1Þ2 þ 	2

�n

ðn2 � 1Þð	2 � �n2Þ
" #

þ Eh

R

ð1þ �Þ	4
�n

þ D

R3

	2

�n

"
ð	2 � �n2Þð	2 þ n2 � 1Þ þ ð1� �Þ	2

þð	2 þ n2 � 1Þ2
��

ð19:102Þ

where

� ¼ Ac

lxh
; �n ¼ ð	2 þ n2Þ2 þ �n2 2ð1þ �Þ	2 þ n2

� �
:

For thin stiffened shells of aircraft and marine structures, the value of � is
much less than unity and the flexural rigidity of rings, EIc, is much larger than the
stiffness of the shell between the rings, Dlx. Therefore, with a small error, one can
assume that � ¼ 0 and D ¼ 0. If, in addition, the small terms in the first brackets of
Eq. (19.102) are omitted, then the above equation is simplified to the form

pcr ¼ min
E

0:5	2 þ n2 � 1

Ic
R3lx

ðn2 � 1Þ2 þ h

R

	4

ð	2 þ n2Þ2
" #( )

: ð19:103Þ

The critical value of the external pressure is obtained by selecting n so that it makes
Eq. (19.102) or Eq. (19.103) a minimum. Conducted investigations have shown that
a minimum is obtained, as a rule, if n ¼ 2; 3.

If we take 	 ¼ 0 in Eq. (19.103), i.e., consider an infinitely long cylindrical shell
reinforced by rings, one obtains, by setting q ¼ plx, for n ¼ 2; the expression for the
critical value of external pressure in a closed circular ring in the form

qcr ¼
3EIc
R3

:

As expected, the above equation coincides with Eq. (19.52).
For stiffened cylindrical shells subjected to axial compressive loads and exter-

nal pressure, Eq. (19.65) is generalized to the following form [4]:

q1
q1;cr

� �	
þ p

pcr
¼ 1; ð19:104Þ

where 	 > 0 is some parameter. The recommended value of 	 is determined by the
level of designed limiting state in combined loading. For example, for waffle shells,
	 ¼ 1:7. The values of this coefficient are given for some stiffened shells in Ref. [4].

Comprehensive theoretical and numerical investigations of stiffened shells sub-
jected to global and local buckling, as well as the design strategy for optimal design
of the above shells, are given in Refs [4,12,13]. In particular, it was shown that a
waffle-type cylindrical shell with closely placed stringers and rings meets minimum
weight requirements. Terebushko showed [14] that with typical geometric parameters
for stiffeners and the distances between them, one can design a stiffened cylindrical
shell that will be about 1.5 times lighter than the corresponding unstiffened isotropic
cylindrical shell of the same overall geometry.
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19.6 STABILITY OF CYLINDRICAL SANDWICH SHELLS

Consider a closed cylindrical sandwich shell loaded symmetrically about its middle
surface. The buckling analysis of the sandwich shells includes two modes of buck-
ling: a global (or general), associated with bending of the middle surface of the shell;
and a local, which is manifested in bending of facing sheets without bending of the
shell as a whole. The local bending of face sheets can be modeled by a shell resting on
an elastic foundation. In this book, we consider only the global buckling of a sand-
wich shell.

The small-deflection theory of the shallow sandwich shells was introduced in
Sec. 18.4. The governing differential equations (18.78), (7.129), and (18.81) derived
for the shallow sandwich shells may also be applied to a circular cylindrical sandwich
shell if its middle surface is referred to the coordinates x and y measured along the
shell generator and arc of its cross section. To apply the above-mentioned equations
for the stability problems, they should be modified. The value of the transverse
surface load p3 in the fifth equation of equilibrium (Eq. 18.78e)) has to be replaced
by the value of p

ðfÞ
3 according to Eq. (19.8). Thus, Eqs (18.78a–d) remain unchanged,

while Eq. (18.78e), for the buckling problems of the sandwich cylindrical shell, takes
the form

@Q1

@x
þ @Q2

@y
þN10

@2w

@x2
þN20

1

R
þ @

2w

@y2

 !
þ 2S0

@2w

@x@y
¼ 0: ð19:105Þ

The stress resultants–displacements relations have the form of Eqs (18.81). The
constitutive equations in terms of the moments, shear forces, and deflections are,
as follows (see Eqs. (7.129)):

M1 ¼ �D
1

@2w

@x2
þ �2

@2w

@y2

 !
� 1

DQ1

@Q1

@x
þ �2
DQ2

@Q2
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� �" #
;

M2 ¼ �D
2

@2w

@y2
þ �1

@2w

@x2

 !
� 1

DQ2

@Q2

@y
þ �1
DQ1

@Q1

@x

� �" #
;

H ¼ �D12

@2w

@x@y
� 1

2

1

DQ1

@Q1

@y
þ 1

DQ2

@Q2

@x

� �" #
;

ð19:106Þ

where

D
1 ¼

D1

1� �1�2
; D

2 ¼
D2

1� �1�2
; ð19:107Þ

and �1; �2;D1;D2; and D12 are the flexural Poisson’s ratios, flexural and twisting
stiffness, respectively; DQ1

and DQ2
are the transverse shear stiffnesses (see Sec. 7.6).

Let us analyze the compressive buckling of an isotropic, sandwich circular
cylindrical shell. For this special case, the above governing differential equations
of the small-deflection sandwich shell theory can be reduced to a single eight-order
differential equation in w in the form of Eq. (18.83). Modifying the above equations
to the stability analysis of the sandwich circular plate, we obtain
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Dsr4r4wþ 1� Ds

DQ

r2

� �
2Ef t

R2

@4w

@x4

 !
� r4 N10

@2w

@x2
þN20

@2w

@y2

 "

þ2S0

@2w

@x@y

!#
¼ 0;

ð19:108Þ

where Ds and DQ are given by Eqs (18.82).
Following Plantema [17], consider the axisymmetric buckling of an infinitely

long, axially compressed isotropic sandwich cylinder. Let the axial compressive load
per unit run be q1. Then, N10 ¼ �q1, N20 ¼ S0 ¼ 0. For axisymmetric buckling, it is
observed that all derivatives of the deflection w with respect to the y coordinate
vanish. Thus, Eq. (19.108) is simplified to the following:

Ds

@8w

@x8
þ 1� Ds

DQ

@2

@x2

 !
@4

@x4
2Ef t

R2
wþ q1

@2w

@x2

 !
¼ 0: ð19:109Þ

A solution of this equation may be represented in the form

w ¼ A sin
�x

l
; ð19:110Þ

where l is the half-wave length in the axial direction. Substituting the above into Eq.
(19.109), we obtain, after some mathematics, the following:

q1 ¼
�2Ds

l2
1þ �

2Ds

l2DQ

 !�1

þ 2Ef tl
2

�2R2
:

With

Ds ¼
Ef td

2

2ð1� �2Þ
this equation becomes

q1 ¼ Ds

�2

l2
1þ �

2Ds

l2DQ

 !�1

þ 4ð1� �2Þl2
�2R2d2

2
4

3
5: ð19:111Þ

Find the minimum value of q1 as a function of the continuous variable l. The
condition @q1=@l ¼ 0 leads to the following relationship:

l2

�2
¼ Rd

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p � Ds

DQ

: ð19:112Þ

Substitution of the above into Eq. (19.111) gives the following expression for the
critical load:

q1;cr ¼
4Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

Rd
1�Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

DQRd

 !
: ð19:113Þ
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If the shear stiffness of the sandwich shell is infinite, then the corresponding critical
load will be given by the following:

q1;cr ¼
4Ds

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p

Rd
¼ 2Ef td

R
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p : ð19:114Þ

19.7 STABILITY OF SHALLOW SHELLS UNDER EXTERNAL
NORMAL PRESSURE

Consider a shallow shell, rectangular in a plan, with the principal curvatures �1 ¼
1=R1¼ const and �2 ¼ 1=R2 ¼ const (see Fig. 17.6). Assume that the shell edges are
pin-connected with some diaphragms, which are absolutely stiff in bending in their
own planes and have a small bending stiffness in planes tangent to the middle sur-
face. In addition, we assume that points belonging to end sections of the shell are free
to slide along the diaphragms. The following boundary conditions correspond to the
these assumptions:

w ¼ 0;
@2w

@x2
¼ 0; �1 ¼ 0; �12 ¼ 0

					
x¼0;x¼a

ð19:115Þ

Similar conditions are assigned to the shell edges y ¼ 0; b. The external pressure p is
uniformly distributed across the shell surface, and acts viewed from the shell con-
vexity, i.e., p3 ¼ p. Assume that the shell is geometrically perfect.

The analysis presented here follows the general outline of that given by Volmir
[4]. We use the nonlinear shell buckling analysis and the governing equations
(18.31). The latter are represented in the form

X � D

h
r2r2w� Lð�;wÞ � r2

k��
p3
h
¼ 0;

Y � 1

E
r2r2�þ 1

2
Lðw;wÞ þ r2

kw ¼ 0;

ð19:116Þ

where � ¼ �=h.
The Galerkin method can be applied for integration of the above system of

equations for the given boundary conditions (19.115). We seek the functions w and �
in the form of the following series:

� ¼
X
m

X
n

Amn sin
n�x

a
sin

m�y

b
; w ¼

X
m

X
n

Bmn sin
n�x

a
sin

m�y

b
: ð19:117Þ

Consider a solution of the problem based on the first approximation, retaining in
the series (19.117) only the first terms. It can be shown that the first three bound-
ary conditions (19.115) will be satisfied; the fourth condition is satisfied ‘‘ on the
average,’’ for the shell edges x ¼ 0; a so this condition is satisfied in the following
sense:

1

a

ða
0

�12dy ¼ 0:
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The Galerkin method equations (see Sec. 6.5) are the following:

ða
0

ðb
0

X sin
�x

a
sin
�y

b
dxdy ¼ 0;

ða
0

ðb
0

Y sin
�x

a
sin
�y

b
dxdy ¼ 0: ð19:118Þ

Substituting expressions (19.116) together with the approximations (19.117) into the
above and integrating, one obtains

D

h
B1

�6

16

1

a2
þ 1

b2

� �2

�A1B1

2

3

�4

a2b2
þ A

�4

16

k1
b2

þ k2
a2

� �
� p

h
¼ 0;

A1

E
þ 16B2

1

3�2 b
aþ a

b

� �2 � k1
b2

þ k2
a2

� �
B1

�2
1

1
a2

þ 1
b2

� �2
¼ 0:

ð19:119Þ

Introduce the following dimensionless parameters:

k1 ¼
k1a

2

h
; k2 ¼

k2b
2

h
; k ¼ k1 þ k2; � ¼ a

b
; � ¼ B1

h
; p̂p ¼ p

E

ab

h2

� �2

:

ð19:120Þ
Using the above-introduced parameters, we can represent a solution of Eqs (19.119),
in the following load–deflection relationship:

p̂p ¼ 32�2

9

�3

1þ 1
�

� �2 � k�2�2

1þ 1
�

� �2 þ ðkÞ2�2

16 1þ 1
�

� �2 þ �
6 1
�þ �
� �2

192ð1� �2Þ

2
64

3
75�: ð19:121Þ

For a square shallow shell panel and � ¼ 0:3, the above equation simplifies to the
form

p̂p ¼ 8:77�3 � 2:46k�2 þ ½0:154ðkÞ2 þ 22��: ð19:122Þ
For a cylindrical shallow shell panel, �1 ¼ 0 and �2 ¼ 1=R, then k ¼ b2=Rh.

Figure 19.7 illustrates the diagrams of p̂p vs :� for various values of k and for
� ¼ 1. These diagrams are shown by dashed lines. The numerical data presented in
the Fig. 19.7 are taken from Ref. [4]. It is seen that for small values of k the value of
p̂p increases continuously, just as for flat plates; for large values of k, the diagram
p̂pð�Þ has a descending branch. To find the value of k at which jumping occurs from
one stable configuration of equilibrium to another, it is necessary to analyze dp̂p=d�.
Equating it to zero, one finds the values of � corresponding to the upper and lower
values of the critical pressure previously introduced in Sec. 19.2. We have the
following:

� ¼ 3

32
k � 1

32

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ðkÞ2 �

�4 1þ 1
�

� �4
2ð1� �2Þ

vuut
: ð19:123Þ
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The boundary of the domain of this jump corresponds to the case when the diagram
p̂pð�Þ has a point of inflection with a horizontal tangent. In so doing, the expression
under the radical sign must vanish. Thus, a limiting value of k will be of the form

k ¼
�2 1þ 1

�

� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6ð1� �2Þ

p for � ¼ 3

32
k: ð19:124Þ

If we retain four terms in series (19.177), the refined solutions will be obtained. They
are shown by solid lines in Fig.19.7. It is seen from this figure that the distinctions of
the refined diagrams from the first-approximation diagrams become perceptible only
for ‘‘elevating’’ shells, starting with k ¼ 36, and the refined diagrams give slightly
lower upper critical values of pressure. However, the refined diagrams illustrate the
changes in the lower critical loads: in some cases, the loads change sign.

19.8 BUCKLING OF CONICAL SHELLS

Thin conical shells find wide applications in the structures of jet engines, aircrafts,
liquid storages, reservoirs, etc. Buckling analysis of conical shells is more compli-
cated than the corresponding analysis of cylindrical shells, because of the complexity
of the stability governing equations.

We consider below some final results of the linear buckling analysis of inter-
mediate-length conical shells subjected to uniform external pressure p, as shown in
Fig. 19.8. Assume that the shell ends cannot displace at their ends in the direction
normal to the shell midsurface. The criterion of the ‘‘intermediate-length cylindrical
shell’’ was introduced in Sec. 19.3. This criterion can be employed for conical shells,
too, by replacing R with the mean radius of the parallel circle rm ¼ ðr1 þ r2Þ=2, and
by setting L equal to the length of the longitudinal axis of the shell (Fig. 19.8). For
the above-mentioned shells, n2 > �2, where n is the number of half-waves in the
circumferential direction of the shell and � ¼ �rm=L. Then, the approximate relation
for determining the critical value of the external pressure in a conical shell is

Fig. 19.7
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pcr ¼
0:855

ð1� �2Þ0:75
Eh

L

h

rm

� �1:5

ðcos	Þ1:5: ð19:125Þ

For � ¼ 0:3, this relation appears in the form

pcr ¼ 0:92
Eh

L

h

rm

� �1:5

ðcos	Þ1:5: ð19:126Þ

This expression differs from the corresponding value of critical pressure in cylind-
rical shells, Eq. (19.58), by the factor ðcos	Þ1:5. Hence, for angles of conicity of
2	 < 408, pcr, given by Eqs (19.125) or (19.126), will differ from the critical value
of the external pressure, determined for a mean cylinder of length L and having
R ¼ rm, not more than 10%.

The critical values of other loads (axial forces, twisting moments, etc.) applied
to conical shells with an angle not more than 20
, can be approximately found from
the corresponding relations for cylindrical shells by replacing R with rm and setting
the cylindrical shell length equal to the length of the longitudinal axis of the conical
shell.

19.9 BUCKLING OF SPHERICAL SHELLS

The most important stability problem for thin spherical shells is referred to the case
when they are loaded by external pressure. Such a type of problem is met in radar
antenna caps in aircrafts, submarine bulkheads, bottoms of reservoirs, etc. We con-
sider here the linear buckling analysis of spherical segments whose rise is comparable
with their radius and closed spherical shells under external pressure. The stability
analysis of shallow spherical shells under external pressure was considered in Sec.
19.7.

We determine the critical load for a closed spherical shell. It was shown that the
critical stresses for the above shell and for elevated spherical segments under external
pressure are identical [4]. We assume that within the limits of area of local initial
bulging, the shell can be considered as a shallow one: therefore, Eqs (17.36) are
applicable. For a spherical shell, the operator r2

kð::Þ ¼ r2ð::Þð1=RÞ, where R is the
radius of the middle surface. Thus, Eqs (17.36) for the spherical shell take the form

Fig. 19.8
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Dr2r2w ¼ 1

R
r2�þ p3;

1

Eh
r2r2� ¼ � 1

R
r2w:

ð19:127Þ

Eliminating � from the above equations results in the following sixth-order differ-
ential equation for w:

Dr6wþ Eh

R2
r2w ¼ r2p3; ð19:128Þ

where r6ð::Þ ¼ r2r2r2ð::Þ. If an external pressure is applied to the spherical shell,
then initial direct forces in all normal sections of the unbuckled shell are (see Sec.
14.3) the following:

N1 ¼ N2 ¼ � pR

2
: ð19:129Þ

It should be noted that the uniform external pressure does not appear directly in Eq.
(19.128) but indirectly only, in terms of the fictitious load p

ðfÞ
3 . The latter load is

expressed through the direct internal forces (19.129) and can be found from Eq.
(19.8). We have (setting p3 ¼ p)

p
ðfÞ
3 ¼ � pR

2
r2w: ð19:130Þ

Therefore, Eq. (19.128) appears in the form

Dr6wþ pR

2
r4wþ Eh

R2
r2w ¼ 0: ð19:131Þ

Following the approach of Ref. [4], assume that the solution of Eq. (19.131) must
satisfy the relation

r2w ¼ ��2w; ð19:132Þ
where � is some undetermined parameter. Substituting the above relation into Eq.
(19.131) yields the following equation (for � 6¼ 0):

D�4 � pR

2
�2 þ Eh

R2

� �
�2w ¼ 0; ð19:133Þ

and solving this equation for p yields

p ¼ 2Eh

R3�2
þ 2D

R
�2: ð19:134Þ

Taking the limit of p with respect to �2, one obtains

�2 ¼
ffiffiffiffiffiffiffiffiffiffi
Eh

DR2

r
¼ 1

Rh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12ð1� �2Þ

q
:

Substituting the above into Eq. (19.134) gives the following value of the critical
pressure:

pcr ¼
2Eh2

R2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p ¼ 2Effiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p h

R

� �2

: ð19:135Þ
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For � ¼ 0:3, we obtain

pcr ffi 1:21E
h

R

� �2

:

The corresponding value of the critical stress, �cr, is

�cr ¼
N1;cr

h
¼ Eh

R

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð1� �2Þ

p : ð19:136aÞ

or, for � ¼ 0:3

�cr ffi 0:605
Eh

R
: ð19:136bÞ

Thus, the critical stress of a spherical shell under external pressure is the same as the
critical stress of a closed cylindrical shell under axial uniform compression (see Eq.
(19.31b)).

The critical stress given by Eqs (19.136) can be classified as the upper critical
stress, pð1Þcr , for the shell and loading under consideration (see Sec. 19.2). However,
numerous experimental investigations showed that the actual critical stresses of
spherical shells under external pressure are far below the values given by Eqs
(19.136), obtained on the basis of the linear stability theory. It can be explained
by the fact that the real spherical shells are found to be sensitive to the lightest initial
imperfections, just as compressed cylindrical shells discussed in Sec. 19.3.2.
Therefore, the buckling analysis of spherical shells should be performed in the frame-
work of the nonlinear stability theory. Such a buckling analysis is more complicated
from the mathematical and mechanical points of view (for details, see for example
Ref. [4]). We present below only the final results of the nonlinear stability problem
for the spherical shells under external pressure, associated with determining the
lower value of the critical pressure, pð2Þcr , which is [4]

pð2Þcr ¼ 0:31E
h

R

� �2

: ð19:137Þ

It is seen that this value is four times less than pð1Þcr .

19.10 DESIGN STABILITY ANALYSIS

Let us summarize the basic theoretical and experimental results of buckling shell
analysis, discussed in the preceding sections. As mentioned previously, there is a
large discrepancy between the analytical predictions of the shell buckling behavior
and the corresponding experimental results. In addition, the scatter of the test data
may be quite large. The major reason for the above discrepancy is the sensitivity of
shell buckling to the initial geometric and loading imperfections, and to deviation in
boundary conditions. As a result of these imperfections, as well as the inelastic
behavior of shells in buckling, the critical load of real shells, called the buckling
load in Sec. 19.2, for some shell configurations and loads can be much less than pð1Þcr ,
predicted by the linear buckling analysis. It should be noted that application of the
geometrically nonlinear stability theory for determining pð2Þcr , in order to eliminate the
discrepancy between the theoretical and experimental data in the buckling of thin
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shells, is associated with very cumbersome and difficult computations, and the
results, obtained by this theory, did not justify such efforts [16].

Since the load-carrying capability of thin shells is mostly determined by the
buckling load, it is very important to determine a reliable and accurate value of
this load for design purposes. Because the effects of initial imperfections men-
tioned above are extremely difficult to determine at the design stage, many
theoretical and experimental investigations have been directed toward the evalua-
tion of an alternative to, or at least a modification of, the classical, linear
stability theory. Now, the buckling design analysis of thin shells is based on
the classical, linear stability theory applied to initially perfect elastic shell, pro-
vided one accounts for the reduction in critical load resulting from initial imper-
fections and inelastic behavior. On this basis, several approaches were developed
for determining the allowable design buckling loads.

When sufficient experimental data exist for a given shell and loading, a statis-
tical method of design curves may be useful in determining the allowable design
buckling load. Each such design curve was obtained at a certain probability level.
The load at which a shell may be expected to buckle is the load which corresponds to
the curve best fit. This approach is described in Refs [12,13, 19, 22, 23, etc].

Whenever sufficient experimental data do not exist to obtain a statistical
allowable design buckling load, design recommendations have been based on
allowable behavior of a shell structure. In general, this involves empirical reduction
factors to decrease the theoretical upper critical load [4,12,15, 24, etc.]. Due to the
lack of test data for some types of shells and loads, the recommendations may be
conservative for some cases. We consider here only the second approach and
present below a small selection of the empirical equations for determining the
allowable buckling loads for cylindrical shells that incorporate the above-men-
tioned correction factors.

19.10.1 Buckling of unstiffened cylindrical shells

(a) Axial compression

The classical critical stress formula (19.31b) can be used to predict buckling of
initially imperfect cylindrical shells, provided it is written in the following form:

�cr ¼ �
Eh

R
; ð19:138Þ

where � is the so-called buckling coefficient that varies with R=h. For high-quality
manufactured shells the above coefficient is determined from the following relation-
ship, which agrees well with experimental data (for R=h ¼ 100 . . . 1500Þ [4]:

� ¼ 1

�
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100h

R

� �3
s

: ð19:139Þ

If shells are manufactured under insufficient quality controls and the initial imper-
fections are comparable to the shell thickness, the design values of the buckling
coefficient have to be divided by approximately two. Initial imperfections that exceed
the shell thickness noticeably are absolutely inadmissible because they decrease the
stiffness of shell structure appreciably.
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The critical stress for a short and thin cylinder with length L � 1:22
ffiffiffiffiffiffi
Rh

p
for

simply supported edges, and with L � 2:5
ffiffiffiffiffiffi
Rh

p
for fixed edges, can be determined

from the buckling formula derived previously for a wide flat plate, as follows:

�cr ¼ �
Eh2

L2
; ð19:140Þ

where � ¼ 0:9 for simply supported and � ¼ 3:6 for fixed shell edges.
The alternative buckling stress equations were derived by Donnel and Wan

[10]. They are in good agreement with the relations (19.138) and (19.140).
The following approximate equation for the allowable axial compressive stress

in cylindrical shells for elastic buckling was developed in the ASME Code [22] by
using a factor of safety of 10 in Eq. (19.31b):

� ¼ 0:0625Eh

R
: ð19:141Þ

For structural steel cylinders, inelastic buckling cannot be readily dealt with
using a plasticity reduction factor. Instead, it is customary to use some empirical
formulas, such as those listed in Refs [22,23].

(b) External pressure

The critical value of external pressure for simply supported cylindrical shells (besides
very short and very long shells) is given by [4]

pcr ¼ 	ð0:855Þ Eh2

RLð1� �2Þ0:75
ffiffiffiffi
h

R

r
; ð19:142Þ

where the coefficient 	 depends on the ratio R=h, as follows:

R=h . . . . . . . . . 250 500 1000 1500

	 . . . . . . . . . . . . 0:7 0:6 0:5 0:4

In designing short L � 2:5
ffiffiffiffiffiffi
Rh

p� �
, simply supported cylindrical shells under external

pressure, the value of pcr is given by [4]

pcr ¼ 	1
Eh2

RL
; ð19:143Þ

where 	1 ¼ 1:8 for all-around pressure and 	1 ¼ 3:6 for side pressure.
For long, simply supported cylindrical shells ðL > 3:35R

ffiffiffi
R
h

q
Þ, the critical value

of the pressure can be determined from the following relationship:

pcr ¼ 0:275
Eh3

R3
: ð19:144Þ

The boundary conditions exert some effect on the critical value of the external
pressure. For example, for a cylindrical shell having one pin-connected edge and
the second one fixed, the critical value of external pressure, pcr, is given by [4]

pcr ¼ 0:6pcr; ð19:145Þ
where pcr is the critical value of external pressure for the previously introduced
simply supported cylindrical shell.
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An empirical equation developed by the U.S. Navy [20] for the buckling of
cylindrical shells under lateral and axial pressure in the elastic range is given by

pcr ¼
2:42E

ð1� �2Þ3=4
ðh=2RÞ2:5

L=2R� 0:45ðh=2RÞ0:5� � : ð19:146Þ

For cylindrical shells with large R=h ratios, the above equation can be simplified to

pcr ¼
2:42E

ð1� �2Þ3=4
ðh=2RÞ2:5
L=2R

: ð19:147Þ

19.10.2 Buckling of unstiffened spherical shells under external
pressure

The critical value of external pressure and critical stress is shown below [4]

pcr ¼ 	
Eh2

R2
; �cr ¼ 	

Eh

2R
; ð19:148Þ

where the coefficient 	 for high-quality manufactured shells and for 250 � R=h �
800 is determined by the following formula:

	 ¼ 1

2:36
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100h

R

� �3
s

: ð19:149Þ

For the range R=h � 250, according to the recommendations of Ref. [4], 	 ¼ 0:3. If a
spherical shell is not manufactured with sufficient accuracy and initial imperfections
are comparable with its thickness, the coefficient 	 is reduced by about 1.5–2 times.

The following empirical equations for determining the critical stress and the
critical pressure were developed in Refs [17]:

�cr ¼ 0:125
Eh

R
; pcr ¼ 0:25

Eh2

R2
: ð19:150Þ

19.10.3 Buckling of unstiffened conical shells

Conical shells subjected to external pressure can be designed as cylindrical shells with
the effective thickness, he; and efffective length, Le, determined from the following
relations [24]:

he ¼ h cos	; Le ¼
L

2
1þ r1

r2

� �
; ð19:151Þ

where h is thickness of the cone, L is the height of the conical shell, and r1 and r2 are
the radii of parallel circles at the top and bottom sections of the truncated cone,
respectively.

19.10.4 Stiffened shells

Experimental investigations showed that stiffened shells are less sensitive to overall
and local imperfections [12]. Therefore, the critical values of applied loads for such
shells are closer to the theoretically determined values of the upper critical loads
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predicted by the linear stability theory. Some empirical equations were developed for
determining the critical stresses and loads for stiffened shells of various configuration
under axial compression, external pressure, torsion, shear, as well as various loading
combinations [12,14,19,21]. For example, for the spherical shell with closely and
equally spaced stiffeners in two mutually orthogonal directions under external pres-
sure, the buckling value of the above pressure is given by [21]

pcr ¼ 0:366E
hm
R

� �2
hb
hm

� �3=2

; ð19:152Þ

where hm ¼ hþ A=s is the effective membrane thickness and hb ¼ 12I=sð Þ1=3is the
effective bending thickness; A and I are the area and moment of inertia of the
stiffener, s is the spacing between stiffeners.

Local buckling of the spherical shells between the stiffeners must also becon-
sidered for large-diameter shells. One such equation is given by

pcr ¼ 7:42
Eh3

Rs2
: ð19:153Þ

Only a small selection of the recommended design relations for determining
the critical loads in thin shells has been introduced above. The interested reader is
referred to Refs [4,12,13,14,19–24].

In conclusion, note that in practice one must tend to designing the shell struc-
tures whose stability would not depend on occasional and not easily controlled
factors. The basic avenues of designing such shell structures is the use of stiffened
shells, sandwich shells, corrugated shells, etc. In some, the most important cases,
sharpened shells are applied.

PROBLEMS

19.1 It follows from Fig. 19.1a that the path of equilibrium for a flat plate is symmetric

about the vertical, p axis, whereas the corresponding path for a shallow shell is non-

symmetrical. Explain the above difference in the buckling behavior of plates and shells.

19.2 Provide a detailed deviation of Eqs (19.3).

19.3 Derive Eqs (19.4) from (19.3) by neglecting all the terms containing prebuckled rota-

tions.

19.4 Derive Eqs (19.9) from Eqs (19.7).

19.5 A water tower support constructed of a long steel piping of 1.0 m diameter is to carry

an axial compression load of 520 kN. Assuming that the supports ends are pin-con-

nected, determine the required thickness of the shell that will prevent this tower sup-

port from buckling. Use L ¼ 2:0m; E ¼ 200GPa; � ¼ 0:3, and a factor of safety (FS)

of 3.5.

19.6 Verify Eq. (19.22)

19.7 A thin steel pipe is subjected to a vacuum pressure of 150 psi. Assuming that the pipe

edges are simply supported, determine the required thickness of the pipe, preventing

the pipe from buckling. Given E ¼ 29,000 psi, � ¼ 0:3, L ¼ 10 ft, R ¼ 2:5 ft, and the

factor of safety (FS) is 3.0.

19.8 Determine the critical stress in a simply supported circular cylindrical panel subjected

to a uniformly distributed compressive forces q1, as shown in Fig. P.19.1. Assume that

the shell edges are simply supported.

Hint: take the deflection w in the form
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w ¼ f sin
m�x

L
� sinm��

�0
:

19.9 Determine the critical value of the external pressure p acting on a spherical shell of

radius R.

Hint: eliminating � from Eqs (19.7) and letting R1 ¼ R2 ¼ R and p ¼ �hr2w, yields

the following equation:

Dr6wþ pr4wþ Eh

R2
r2w ¼ 0: ðaÞ

The solution of this equation satisfies the condition r2w ¼ ��2w; where � is some

indeterminate parameter. Substituting r2w into Eq. (a) minimizing over �2, yields pcr.
19.10 Determine the critical stress for an axially compressed unstiffened closed cylindrical

shell of radius R ¼ 2:0m and of thickness h ¼ 0:01m. The shell length is L ¼ 0:6m.

Assume that the shell manufactured is of insufficient quality. Use also E ¼ 220GPa;
and � ¼ 0:3.

19.11 Determine the critical value of the external pressure p in an unstiffened cylinder having

the radius R ¼ 2:5m; thickness h ¼ 8mm, and length L ¼ 0:5m. Assume that one end

of the cylinder is fixed and the other one is free. Take E ¼ 210GPa; and � ¼ 0:3:
19.12 A thin-walled cylinder is used to support a reactor of weight W . Find the maximum

value of W that can be applied to the cylinder without causing it to buckle. Take L ¼
10ft; R ¼ 2 ft; E ¼ 29,000 ksi, h ¼ 0:2 in:; � ¼ 0:25, and the factor of safety (FS) is 2.5.
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20

Vibrations of Shells

20.1 INTRODUCTION

The dynamic effects of time-dependent loads on shell structures are quite similar
to those discussed in Chapter 9 for plates. Thus, the objectives of the vibration
analysis of shells, as well the general approach for deriving the shell equations
of motion, remain analogous to the plate vibration analysis introduced in Sec.
9.1.

Assume that the state of stress within a shell during vibrations has a char-
acter determined by the equations of equilibrium, and the shell middle surface
deforms according to the same law during vibrations as in the static equilibrium
state. Based on the above, the equations of motion of the vibrating shell can be
obtained by applying the D’Alambert principle, just as it was done for vibrating
plates – i.e., by adding the inertia forces to given external loads, assigned by
components p1; p2; and p3, namely (damping forces are not considered here):

p1 ! p1 � �h
@2u

@t2
; p2 ! p2 � �h

@2v

@t2
; p3 ! p3 � �h

@2w

@t2
; ð20:1Þ

where p1; p2; p3; and u; v;w are functions of the Cartesian coordinates of the mid-
dle surface and time, � is the mass density of the material, and h is the shell
thickness. As for vibrating plates, we distinguish between free vibrations of shells,
which occur in the absence of applied loads but are initiated by some initial
conditions imposed on the shell, and forced vibrations of shells, which result
from the application of time-dependent loads. We consider in this chapter both
types of vibrations.
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20.2 FREE VIBRATIONS OF CYLINDRICAL SHELLS

20.2.1 General

As mentioned in Sec. 9.1, free vibrations deal with some natural characteristics of
shells. These natural vibrations occur at discrete frequencies, depending only on the
geometry and material of the shell. A knowledge of the free-vibration characteristics
of thin elastic shells is important both for our general understanding of the funda-
mentals of the shell behavior and for industrial applications of shell structures. In
connection with the latter, the natural frequencies of shell structures must be known
to avoid the destructive effect of resonance with adjacent rotating or oscillating
equipment (such as jet and reciprocating aircraft engines, electrical machinery, mar-
ine turbines and propulsors, etc.).

Since the free vibrations occur in the absence of all external forces
(p1 ¼ p2 ¼ p3 ¼ 0), we address the free-vibration analysis of shells with the solution
of homogeneous partial differential equations with homogeneous boundary condi-
tions. Let us derive the equations of the free vibrations of thin elastic cylindrical and
shallow shells.

20.2.2 Axisymmetric free flexural vibrations of cylindrical shells

Consider the free flexural vibrations of a circular cylindrical shell when the radial w
and longitudinal u displacements do not depend on the angular coordinate �, and the
circumferential displacement v is zero. Any cross section of such a shell will be a
circular ring, and several half-waves can be placed throughout the shell length, as
shown in Fig. 20.1.

The equation of axisymmetrical free vibrations can be obtained from the gov-
erning differential equation of the axisymmetrically loaded circular cylindrical shell,
Eq. (15.44). One replaces, due to Eq. (20.1), the normal component of the external
loading p3 by the normal component of the inertia forces, and neglects the long-
itudinal component of the above forces. Thus, the differential equation of the axi-
symmetrically vibrating circular cylindrical shell is found to be

@4w

@x4
þ 4
4w ¼ � �h

D

@2w

@t2
; ð20:2Þ

Fig. 20.1
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where the deflection w ¼ wðx; tÞ is a function of the x coordinate and time t.
The solution of Eq. (20.2) for a simply supported shell of length L, assuming

harmonic equations in time, is sought in the following form:

wðx; tÞ ¼
X1
n¼1

An sin
n�x

L
sin!t; ð20:3Þ

where ! is the frequency of natural vibrations (or natural frequency) of the given shell.
It is related to the vibration period T by the relationship ! ¼ 2�=T . Substituting for
w from Eq. (20.3) into Eq. (20.2), one obtains

D
n�

L

� �4
þEh

R2
¼ �h!2;

and the natural frequency ! is given by

!2 ¼ E

�R2
ð1þ ��4Þ; ð20:4Þ

where

� ¼ h2

12R2ð1� �2Þ ; � ¼ n�R

L
: ð20:5Þ

The value of � for thin shells is small compared with unity. For shells that are not
short, when �4 < 1, the product ��4 can be neglected. Then, the natural frequency of
axisymmetrical vibrations for all numbers n will coincide with the natural frequency
of axisymmetrical vibrations of a ring or an infinitely long shell. For other shells, not
simply supported at their ends, a solution of Eq. (20.2) will be sought in the follow-
ing general form:

wðx; tÞ ¼ WðxÞ sin!t: ð20:6Þ
Substituting the above into Eq. (20.2), we obtain an ordinary fourth-order differ-
ential equation inWðxÞ. Its solution will have an analogous form to that discussed in
Sec. 15.3 if axisymmetrical deformations of a statically loaded circular cylindrical
shell are of interest. Satisfying the given boundary conditions, one can obtain – from
the condition of nontriviality of the above solution – the expression for the natural
frequencies in axisymmetrically vibrating cylindrical shells. For example, for fixed
shell edges, the natural frequency of the first mode of axisymmetrical vibrations (the
fundamental natural frequency) is determined from the following equation:

!2
1 ¼

E

�R2
1þ � 4:73

R

L

� �4
" #

: ð20:7aÞ

The frequency of the second harmonics for the above shell is

!2
2 ¼

E

�R2
1þ � 7:83

R

L

� �4
" #

: ð20:7bÞ

Since the value of � for thin shells is small, then, as follows from Eqs (20.7), the fixed
edges of the shell have a low effect on the natural frequencies of vibrations as
compared with the simply supported edges. Similar results will be obtained for
other boundary conditions. Hence, the natural frequency of axisymmetrical (long-
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itudinally-radial) vibrations of thin and not-short circular cylindrical shells depends
a little on boundary conditions and on the mode of vibrations (for the first mode).

To determine the frequencies of axisymmetric vibrations, the energy method,
based on the variational principles (see Sec. 2.6), can also be applied. As shown in
Sec. 15.3, the axisymmetric bending of a circular cylindrical shell is quite similar to
the bending of a strip-beam of unit width cut off the shell and resting on an elastic
foundation with the foundation modulus k ¼ Eh=R2. The strain energy of such a
strip-beam, deflecting by wðxÞ; will be of the form

U ¼ EI

2

ðL
0

d2w

dx2

 !2

dxþ k

2

ðL
0

w2dx; ð20:8Þ

where L denotes the span of the strip-beam. It follows from the above that the strain
energy consists of the strain energy of the strip-beam itself, which is proportional to
h3, and the energy of the elastic foundation, which is proportional to h (the shell
thickness). If the small value of the strain bending energy (the first term in Eq. (20.8))
is neglected, then the maximum value of the strain energy will be equal to the
following:

Umax ¼
Eh

R2

ðL
0

w2dx: ð20:9Þ

The maximum value of the kinetic energy for any mode of free vibrations is given by

Kmax ¼
�h!2

2

ðL
0

w2dx:

Equating Umax and Kmax, we obtain the following expression for the frequency of
free vibrations:

!2 ¼ E

�R2
: ð20:10Þ

Hence, under the assumption introduced above (neglecting the bending potential
energy of a strip-beam in Eq. (20.8)), the frequency of natural radial vibrations
does not depend on wmax, i.e., on the vibration mode and boundary conditions. It
is necessary only that a circular cross section is preserved on the shell ends.

In increasing the shell thickness and decreasing its length, the dependence of
vibration frequencies on the mode and boundary conditions becomes more signifi-
cant. For cylindrical shells, such a mode of axisymmetric vibrations is possible when
u ¼ w ¼ 0. In this case, points of such shells are displaced in the circumferential
direction only (i.e., v 6¼ 0); these are torsional vibrations.

20.2.3 Free asymmetric flexural vibrations of circular cylindrical
shells

1. Closed cylindrical shells

The differential equations of equilibrium in terms of the displacement components
for a circular cylindrical shell are given by Eqs (15.7)–(15.9). According to the
Donnel–Mushtari–Vlasov (DMV) theory, they can be simplified by dropping the
bending terms in the operators l23 and l32 that are proportional to h2=R2 (see Eqs

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



(15.9)). Taking into account the relations (20.1), we can write the differential equa-
tions of motion for a freely vibrating circular cylindrical shell in the framework of
the DMV theory in terms of the x and � coordinates, as follows:

@2u

@x2
þ 1� �

2R2

@2u

@�2
þ 1þ �

2R

@2v

@x@�
� �

R

@w

@x
¼ 1� �2

E
�
@2u

@t2
;

1þ �
2R

@2u

@x@�
þ 1� �

2

@2v

@x2
þ 1

R2

@2v

@�2
� 1

R2

@w

@�
¼ 1� �2

E
�
@2v

@t2
;

�

R

@u

@x
þ 1

R2

@v

@�
� w

R2
� h2

12

@4w

@x4
þ 2

R2

@4w

@x2@�2
þ 1

R4

@4w

@�4

 !
¼ 1� �2

E
�
@2w

@t2
:

ð20:11Þ

Assume that the given closed cylindrical shell of length L is simply supported on its
edges. Then, the solutions of Eqs (20.11) can be sought in the following form:

u ¼
X
m

X
n

Amn cosm� cos
n�x

L
sin!t;

v ¼
X
m

X
n

Bmn sinm� sin
n�x

L
sin!t;

w ¼
X
m

X
n

Cmn cosm� sin
n�x

L
sin!t;

ð20:12Þ

where Amn;Bmn; and Cmn are some constants; m refers to the number of half-waves in
the circumferential direction of the shell, whereas n characterizes the number of half-
waves of displacements placed on the shell length L. The displacement components
u; v; and w in the form of Eqs (20.12) satisfy the prescribed boundary conditions on
the shell edges x ¼ 0 and x ¼ L and the periodicity conditions with respect to the
variable �.

Inserting Eqs (20.12) into Eqs (20.11), we obtain the following system of
homogeneous algebraic equations in Amn;Bmn; and Cmn :

��2 � 1� �
2

m2 þ�

� �
Amn þ

1þ �
2

m�Bmn � ��Cmn ¼ 0;

1þ �
2

m�Amn þ �m2 � 1� �
2

�2 þ�

� �
Bmn þmCmn ¼ 0;

���Amn þmBmn þ �1� a2ð�2 þm2Þ2 þ�
� �

Cmn ¼ 0;

ð20:13Þ

where

� ¼ n�R

L
; � ¼ ð1� �2ÞR2

E
�!2; a2 ¼ h2

12R2
:

The constants Amn;Bmn; and Cmn cannot be simultaneously equal to zero. To deter-
mine nontrivial solutions of the above system of homogeneous equations, it is neces-
sary to equate its determinant to zero. We have the following:

��2 � 1� �
2

m2 þ� 1þ �
2

m� ���
1þ �
2

m� �m2 � 1� �
2

�2 þ�
� �

m

��� m � 1þ a2ð�2 þm2Þ2 ��
� �

									

									
¼ 0:
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The resulting equation of the third power in �, or of the sixth power in ! determines
the natural frequencies of vibrations of the given cylindrical shell corresponding to
certain numbers of m and n. The above equation can also be written in the form

T1!
6 þ T2!

4 þ T3!
2 þ T4 ¼ 0; ð20:14Þ

where T1;T2;T3; and T4 are some coefficients depending on m and n, as well as
geometric and mechanical parameters of the shell. It can be shown that all the roots
of the characteristic equation (20.14) are always real, and three values of the natural
frequencies ! correspond to each pair of numbers m and n. The negative values of !,
which are the roots of Eq. (20.14) but have no physical meaning, are dropped.

Having determined any of the three frequencies, the ratios between the ampli-
tudes, for instance Amn=Cmn; Bmn=Cmn can be calculated from the homogeneous
equations (20.13). Each value of ! corresponds to a certain ratio between the ampli-
tudes of the longitudinal, tangential, and normal displacements.

Conducted investigations showed that for mostly transverse (or normal) vibra-
tions of circular cylindrical shells, the value !2 will be small and their degrees higher
than second can be neglected. In this case, we obtain the following from Eq. (20.14):

!2 ¼ �T4

T3

or !2 ¼ E

�R2ð1� �2Þ
ð1� �2Þ�4 þ a2ð�2 þm2Þ4

m2 þ ð�2 þm2Þ2 : ð20:15Þ

It is of great practical importance to determine the values of m and n for which
the natural frequency of predominantly transverse vibrations, given by Eq. (20.15),
will be the smallest. The analysis shows that the lowest natural frequency will be for
n ¼ 1, i.e., for one half-wave located over the shell length, and, hence, � ¼ �R=L.
The natural frequency, as a function of m, has a minimum. It can be shown that for
intermediate-length shells, the value of m2, corresponding to the smallest frequency,
can be neglected compared with ð�2 þm2Þ2. Then, Eq. (20.15) can be rewritten for
the above-mentioned shells, as follows:

� ¼ T1

ð�2 þm2Þ2 þ a2ð�2 þm2Þ2;

where T1 ¼ ð1� �2Þ�4. Denoting X ¼ ð�2 þm2Þ2, we can rewrite the above equation
as follows:

� ¼ T1

X
þ a2X : ð20:16Þ

To determine the value of X (or m) corresponding to the minimum of �, we differ-
entiate Eq. (20.16) with respect to X and equate this derivative to zero. We have the
following:

@�

@X
¼ � T1

X2
þ a2 ¼ 0;

from which

X ¼
ffiffiffiffiffiffi
T1

a2

r
¼ ð�2 þm2Þ2 or m2 ¼

ffiffiffiffiffiffi
T1

a2
4

r
� �2: ð20:17Þ
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Since the number of m may be an integer only, then, after determining m from Eq.
(20.17), it should be taken to be equal to the nearest integer. The smallest natural
frequency corresponds to this integer. The second derivative of � with respect to m
will be positive; therefore, Eq. (20.17) defines a minimum.

Example 20.1

For a simply supported closed cylindrical shell of radius R ¼ 17 cm and of length
L ¼ 54 cm, find the number of half-waves in the circumferential direction and the
minimum natural frequency. Use the following geometric and mechanical para-
meters of the shell: h ¼ 0:08 cm; � ¼ 0:3; E ¼ 200GPa, and � ¼ 0:3:

Solution

For the given geometric and mechanical shell parameters, we can find that
a2 ¼ 0:18	 10�5, � ¼ 1, and T1 ¼ 0:9. Substituting the above data into Eq.
(20.17), gives m ¼ 5:1. Hence, the minimum natural frequency of predominantly
transverse vibrations, !min, takes place for five half-waves or for 10 nodal points
placed over the circumference of the shell cross section. The value of ! is found from
Eq. (20.15) for m ¼ 5. The relationship between the frequency and m is shown in
Fig. 20.2.

Figure 20.3 illustrates the relationship of the frequency for any fixed value of m
from the shell length, L. It is seen that the frequency decreases as the length of the
shell increases. However, starting from some length L, the frequency becomes a
constant and practically coincides with the frequency determined for a shell having
free edges or for a shell of an infinite length when the shell experiences only bending
without stretching of the middle surface.

If a shell is not too short (L > R), then the natural frequency is virtually
independent of the boundary conditions and it is possible to determine this fre-
quency for a shell with any, say simply supported, boundary conditions.

The strain energy of a shell of any geometry is given by Eq. (12.51). The kinetic
energy of a vibrating shell is of the following form:

K ¼ �h

2

ð ð
A

@u

@t

� �2

þ @v

@t

� �2

þ @w

@t

� �2
" #

ABd	d
: ð20:18Þ

Fig. 20.2
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Assuming, again, the harmonic vibrations in time, we can approximate the displace-
ments of a cylindrical shell midsurface as follows:

u ¼ u0ðx; �Þ sin!t;
v ¼ v0ðx; �Þ sin!t;
w ¼ w0ðx; �Þ sin!t;

where u0;w0; and w0 are the maximum displacements. Substituting the derivatives of
u; v; and w with respect to time into Eq. (20.18), we can find the maximum value of
the kinetic energy:

Kmax ¼
�h

2
!2

ð ð
A

u20 þ v20 þ w2
0

� �
Rdxd�: ð20:19Þ

Equating Kmax and Umax and letting, A ¼ 1;B ¼ R; 	 ¼ x; and 
 ¼ �, we obtain the
following expression for the frequency of asymmetric flexural free vibrations of a
cylindrical shell in terms of its strain and kinetic energies:

!2 ¼ 2
Umax

�h
Ð Ð

A
u20 þ v20 þ w2

0

� �
Rdxd�

: ð20:20Þ

2. Open cylindrical shells (panels)

The vibration analysis of cylindrical shells can be conveniently carried out with the
use of Eqs (17.36) in terms of the stress function � and deflection w. Assuming that
the stiffness of the shell in the middle surface is much greater than its stiffness in the
normal direction with respect to the middle surface, we can use the following con-
ditions according to Eqs (20.1):

p1 ¼ p2 ¼ 0 and p3 ¼ ��h @
2w

@t2
:

Substituting the above into Eqs (17.36) and taking 	 ¼ � ¼ x=R; 
 ¼ � ¼ s=R,
�1 ¼ 0, and �2 ¼ 1=R, one obtains the following system of equations:

Fig. 20.3
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� @
2�

@�2
RþDr2r2wþ �hR4 @

2w

@t2
¼ 0;

r2r2�þ REh
@2w

@�2
¼ 0:

ð20:21Þ

The above is a set of the governing differential equations of the undamped, free linear,
transverse vibrations of circular cylindrical shells. The details of determining the
natural frequencies of cylindrical shells is explained in the illustrative problem that
follows.

Example 20.2

Determine the natural frequency of free vibrations of the circular cylindrical, simply
supported shell shown in Fig. 20.4. Calculate the fundamental natural frequency for
the shell made of reinforced concrete and having the following geometric and
mechanical parameters: L ¼ 55m, l ¼ 21m; f ¼ 4:0m; R ¼ 15:0m; h ¼ 0:1m; �0 ¼
1:6 rad; E ¼ 6GPa; � ¼ 1:6	 103 kg=m3, and � ¼ 0.

Solution

The simply supported boundary conditions in the adapted coordinate system are of
the form

w ¼ v ¼ M1 ¼ N1 ¼ 0
		
�¼0;�¼L=R

;

w ¼ u ¼ M2 ¼ N2 ¼ 0
		
�¼0:�¼�0 :

A solution of Eqs (20.15) is sought in the form of the following series:

� ¼
X1
m¼1

X1
n¼1

Amn sin �n� sin�m� � sin !t;

w ¼
X1
m¼1

X1
n¼1

Bmn sin �n� sin�m� � sin!t;
ðaÞ

where

Fig. 20.4
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�n ¼
n�R

L
; �m ¼ m�

�0
:

Substituting the above into Eqs (20.21), one obtains the following:

AmnR�
2
n þ BmnDð�2n þ �2

mÞ2 � Bmnð�hÞR4!2 ¼ 0;

Amn

Eh
ð�2n þ �2

mÞ2 � BmnR�
2
n ¼ 0:

From the condition of nontriviality of the solution of the above system of the
homogeneous algebraic equations, we obtain the following characteristic equation:

!2 ¼ 1

�hR4

EhR2�4n

ð�2n þ �2
mÞ2

þDð�2n þ �2
mÞ2

" #
: ðbÞ

To determine the fundamental natural frequency of free vibrations, it is necessary to
calculate the values of m and n (values of �n and �m) corresponding to the lowest
frequency. Analysis of Eq. (b) shows that the fundamental mode of the vibrations
corresponds to �1 (for n ¼ 1, one half-wave in the longitudinal direction). Let us
calculate the number m (the number of circumferential half-waves) that corresponds
to the fundamental natural frequency of the given shell. For this purpose, take the
first derivative of the expression (b) with respect to �m and equate it to zero for
�1 ¼ const. We have

@ð!2
mnÞ

@�m

¼ 0:

After some simple manipulations, one obtains

�m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12R2ð1� �2Þ

h2
4

s
� �1

0
@

1
A

vuuut :

It can be easily shown that for long and intermediate-length shells, the fundamental
natural frequency occurs for n ¼ 1 and m ¼ 2 (one half-wave in the longitudinal and
two half-waves in the circumferential directions, respectively). The shell under con-
sideration, having 4 < L=l ¼ 2:64 > 1, can be classified as an intermediate-length
shell. So, we obtain the following:

�1 ¼
�ð15:0Þ
55:0

¼ 0:856; �2 ¼
�ð2Þ
1:6

¼ 3:927:

Substituting the above data into Eq. (b), we obtain !12 ¼ 7:151=s.

20.3 FREE VIBRATIONS OF CONICAL SHELLS

The governing equations of free vibrations of conical shells can be derived from Eqs
(12.23), (12.24), and (12.41), (12.42), (12.45), (1246) of the general linear shell theory
by introducing the curvilinear coordinates 	 ¼ s and 
 ¼ � (where s is the distance of
a point of the midsurface, measured from some reference point, e.g., from the shell
vertex, and � is the circumferential angle determining the location of the meridian),
substituting the corresponding Lamé parameters, and replacing the distributed sur-
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face loads p1; p2; and p3 with the inertia forces according to Eqs (20.1). The govern-
ing equations of free vibrations in displacements obtained represent the partial
differential equations with variable coefficients. Their solution represents a very
complicated mathematical problem.

Conducted analyses and tests showed that for small angles of conicity 2	
(about 30
–40
Þ (see Fig. 19.8), the frequency of axisymmetric, free radial vibrations
can be approximately calculated by Eqs (20.4) and (20.7) by replacing R in these
equations with rm ¼ ðr1 þ r2Þ=2 and setting the length of the longitudinal axis of the
conical shell equal to L (cylindrical shell length). It should be noted that conical
shells with these angles of conicity are met in nozzle structures of jet engines. The
vibration shell analyses showed that the error introduced by the above approximate
procedure was not more than 5–10%. For larger angles of conicity, refined solutions,
based on the governing differential equations of free vibrations mentioned above,
should be employed.

The dependence of the frequency of free radial vibrations on the number of
waves along the shell cross section has a minimum, just as for a cylindrical shell (see
Fig. 20.2). The above minimum is explained by relations between the strain energy
due to elongation and the strain energy due to bending in various undulations.

A conical shell can have longitudinal and torsional vibrations but they are of
less importance than the bending and normal axisymmetric vibrations.

20.4 FREE VIBRATIONS OF SHALLOW SHELLS

The governing differential equations of free vibrations of shallow shells can be
obtained from Eqs (17.36) by using the relations (20.1), setting p1 ¼ p2 ¼ p3 ¼ 0,
and assuming that stiffness of the shell in the middle surface is much greater than its
stiffness in the direction normal to the middle surface. Therefore, putting 	 ¼ x and

 ¼ y and neglecting the in-plane inertia forces, we obtain the following differential
equations of free vibrations of shallow shells:

Dr2r2w� r2
k�þ �h @

2w

@t2
¼ 0;

r2r2�þ Ehr2
kw ¼ 0;

ð20:22Þ

where the operators r2 and r2
k are given by Eqs (17.44), respectively.

To determine the natural frequencies of shallow shells having arbitrary bound-
ary conditions, the approximate and numerical methods introduced in Chapter 6
may be used. Let us consider an application of some methods to the free-vibration
problems of a shallow shell given by Eqs (20.22). Assume that the projection of the
shell into the Oxy coordinate plane is a rectangle with sides a and b.

1. Galerkin method

The stress function � and deflection w are sought in the form of the following series:

� ¼
X
m

X
n

Amn�mnðx; yÞ sin!t;

w ¼
X
m

X
n

BmnWmnðx; yÞ sin!t:
ð20:23Þ
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The functions �mn andWmn must satisfy the prescribed boundary conditions on shell
edges x ¼ 0; a and y ¼ 0; b. It is convenient to assign the above functions in the form
of the product of two functions, each of which depends upon only one independent
variable, i.e.,

�mn ¼ XnðxÞYmðyÞ; Wmn ¼ �nðxÞ
mðyÞ:
The functions Xn;Ym;�n; and 
m are chosen such that they would satisfy the given
boundary conditions on the corresponding shell edges. It is convenient to employ the
so-called fundamental beam functions [1] as the above-mentioned approximating
functions. The Galerkin equations (Eqs (6.39)) for free-vibration analysis of shallow
shells can be represented in the following form:ð ð

A

Dr2r2w� r2
k�þ �h @

2w

@t2

 !
Wijdxdy ¼ 0;

ð ð
A

r2r2�þ Ehr2
kw

� �
�ijdxdy ¼ 0:

ð20:24Þ

Substituting for w and � from Eqs (20.23) into the above and evaluating the inte-
grals, we obtain a system of homogeneous algebraic equations in Amn and Bmn.
Equating the determinant of the above system of equations to zero results in the
following characteristic equation for determining the natural frequencies:

!2
mn ¼

1

�h
D
J4
J5

þ Eh
J2J3
J1J5

� �
; ð20:25Þ

where,

J1 ¼
ð ð

A

XnYmr2r2ðXnYm

� �
dxdy;

J2 ¼
ð ð

A

XnYm 
m

@

@x
ð�2� 0

nÞ þ�n

@

@y
�1


0
m

� �� �
dxdy;

J3 ¼
ð ð

A

�n
m Ym

@

@x
ð�2X 0

nÞ þ Xn

@

@y
ð�1Y 0

mÞ
� �

dxdy;

J4 ¼
ð ð

A

�n
mr2r2�n
mdxdy; J5 ¼
ð ð

A

�2
n


2
mdxdy:

ð20:26Þ

In choosing Xn;Ym;�n; and 
m, it is important to assign orthogonal function,
whose second and fourth derivatives also possess orthogonality properties. In this
case, an infinite system of the homogeneous linear algebraic equations with an
infinite number of equations is separated down into a system consisting of the
pair of equations in Amn and Bmn for each pair of the numbers m and n.

2. The Rayleigh–Ritz method

According to the Rayleigh–Ritz method, natural frequencies of free vibrations of
shallow shells are determined from the condition of a minimum of the sum of the
potential and kinetic energies of the shell. The strain energy of a shallow shell is given
by Eq. (17.50) and the kinetic energy for the above shallow shell can be represented
by Eq. (20.18), if we put A ¼ B ¼ 1; 	 ¼ x; and 
 ¼ y. If the membrane inertia forces
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are neglected compared with the transverse inertia forces, then we obtain, from Eq.
(20.18), the following expression for the kinetic energy of a shallow shell:

K ¼ �h

2

ð ð
A

@w

@t

� �2

dxdy: ð20:27Þ

If a shell is undergoing harmonic vibrations, then a maximum value of the kinetic
energy is given by the following expression:

Kmax ¼
�h!2

2

ð ð
A

w2dxdy: ð20:28Þ

Assume that the stress function � and deflection w of the shell are approximated by
the expressions (20.23). The conditions of the minimum of the Rayleigh’s fraction
gives

@

@Amn

Umax � !2Kmax

� � ¼ 0;
@

@Bmn

Umax � !2Kmax

� � ¼ 0; ð20:29Þ

from which the characteristic equation for determining the natural frequencies is
obtained.

Example 20.3

Determine the natural frequency of free vibrations of a shallow, simply supported
shell of a double positive curvature. Assume that the shell is a rectangular in a plane,
as shown in Fig. 17.6, and �1 ¼ 1=R1 ¼ const; �2 ¼ 1=R2 ¼ const.

Solution

The simply supported boundary conditions on the shell edges are of the form

w ¼ v ¼ M1 ¼ N1 ¼ 0
		
x¼0;a

; w ¼ u ¼ M2 ¼ N2 ¼ 0
		
y¼0;b

: ðaÞ
Let us approximate the stress function � and deflection surface w by the following
series:

� ¼
X1
m¼1

X1
n¼1

Amn sin �nx sin�my sin!t;

w ¼
X1
m¼1

X1
n¼1

Bmn sin �nx sin�my sin!t;

ðbÞ

where �n ¼ n�=a; �m ¼ m�=b. It can be shown that the expressions for � and w in
the form of Eqs (b) satisfy the boundary conditions (a). Substituting the expressions
(b) into Eqs (20.22), we obtain the homogeneous system of linear algebraic equations
in Amn and Bmn. To obtain a nontrivial solution of this system, it is necessary to
equate its denominator to zero. Expanding the above determinant, one obtains

!2
mn ¼

1

�h
Dð�2n þ �2

mÞ2 þ
Eh

�2n
R2

þ �
2
m

R1

� �2

ð�2n þ �2
mÞ2

2
6664

3
7775: ðcÞ
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For a cylindrical, simply supported shallow shell, Eq. (c) takes the following form
(R1 ¼ 1;R2 ¼ R ¼ const):

!2
mn ¼

1

�h
Dð�2n þ �2

mÞ2 þ
Eh

R2

�4n

ð�2n þ �2
mÞ2

" #
: ðdÞ

Equations of a minimum @!2
mn=@�n ¼ 0 for a fixed value of �m and @!2

mn=@�m ¼ 0 for
a fixed value of �n have no real roots, which shows the monotonic character of the
variation of !2

mn as a function of �n and �m. Thus, the frequency of the fundamental
mode, or the lowest natural frequency of free vibrations of a given shallow, simply
supported shell, corresponds to one half-wave in the x and y directions, i.e.,
m ¼ n ¼ 1.

20.5 FREE VIBRATIONS OF STIFFENED SHELLS

The analytical solution of free-vibration problems of stiffened shells presents con-
siderable difficulties. Consider the free vibrations of a cylindrical shell reinforced by
transverse rings (collars). The method of an approximate analysis of flexural vibra-
tions of such a shell depends on the ratio between the flexural stiffnesses of the ring
(in its own plane) and the shell itself. If the shell stiffness Dmultiplied by the distance
between the rings, lx, is significantly less than the flexural stiffness of the ring, EIr,
then the natural frequencies can be found from Eqs (20.4) and (20.15), assuming
L ¼ lx. If the value of D � lx is significantly larger than EIr then to determine the
natural frequency of flexural vibrations of the stiffened shell, the stiffness of the rings
can be uniformly distributed over the shell and the latter is considered as structurally
orthotropic, i.e., having different flexural stiffnesses in the longitudinal and trans-
verse directions (see Sec. 18.3.2). In the circumferential direction, such a shell will
have the flexural stiffness equals to Dþ EIr=lx, where Ir is the moment of inertia of
the ring cross section with joined segment of the shell (of length lx) about the
common axis x of bending of this combined section.

Expression (20.15), for the structurally orthotropic cylindrical shell, can be
written in the following form:

!2 ¼ 1

�hR2

�4Ehþ ðDþ EIr=lxÞ
R2 ð�2 þm2Þ4

ð�2 þm2Þ2 þm2
: ð20:30Þ

The relation (20.30) is valid if the modulus of elasticity of the shell material differs
slightly from the modulus of elasticity of the ring material. If the moduli of elasticity
of the shell and ring differ significantly, then the relation (20.15) must be trans-
formed, as follows:

!2 ¼ B

M̂MR2

ð1� �2Þ�4 þ ðDþ ErIr=lxÞ
BR2 ð�2 þm2Þ4

m2 þ ð�2 þm2Þ2 ; ð20:31Þ

where

B ¼ Esh

1� �2s
is the extensional stiffness of the shell at a section of unit
length;
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Es and �s are the modulus of elasticity and Poisson’s ratio of the
shell material;

M̂M ¼ �shþ
Ar�r
lx

is a shell mass referred to an area of the shell middle
surface;

Ar is the ring’s cross-sectional area;
�s and �r are the mass densities of the shell and ring materials,

respectively;

D ¼ Esh
3

12ð1� �2s Þ
þ ErIr

lx

is the flexural stiffness of the stiffened shell (see Eqs
(18.50)); and

Er is the modulus of elasticity of the ring material.

All the above relations and equations of free vibrations have been derived for
unloaded shells. However, it is known that the natural frequencies of free vibrations
depend on the character and value of applied static loading, such as the normal
surface pressure, axial force, torque, etc. Let us discuss first an influence of these
static loads on the natural frequencies of closed unstiffened circular cylindrical shells.
Assume that the shell is simply supported on its edges. The governing differential
equations of free vibrations of such shells will be analogous to those of Eqs (20.11),
with an addition of terms depending on the given static loading. Dropping the
intermediate mathematics associated with deriving the above equations (these deri-
vations are quite similar to those carried out in Sec. 20.2.3), we give only the final
results. The natural frequency of free vibrations of a circular, simply supported
cylindrical shell subjected to a combined static loading is

� ¼ �0 þ
ð�2 þm2Þ2  1ðm2 � 1Þ þ  2�

2 � 2 3�m
� �
m2 þ ð�2 þm2Þ2 ; ð20:32Þ

where

�0 ¼
ð1� �2Þ�R2

E
!2
0 ¼

ð1� �2Þ�4 þ a2ð�2 þm2Þ4
m2 þ ð�2 þm2Þ2 ; ð20:33Þ

!0 is the natural frequency of free vibrations of the unloaded shell, and

 1 ¼
pRð1� �2Þ

Eh
;  2 ¼

N1ð1� �2Þ
Eh

;  3 ¼
Hð1� �2Þ
2�R2Eh

; ð20:34Þ

where p is the difference between the normal internal and external pressure, N1 is an
axial tension force, and H is a torque. Thus, it is seen from the expression (20.32)
that the presence of the internal pressure and axial tensile force increases the natural
frequencies of free vibrations in comparison with the corresponding natural frequen-
cies of an unloaded shell. An application of the torque decreases the natural fre-
quencies of free vibrations corresponding to certain wave numbers m and n.

If the value of m2 in the denominator of Eq. (20.32) is neglected (which corre-
sponds to neglecting the membrane internal forces in the vibration equations), then
the expression for determining the natural frequencies in statically loaded shells is
simplified to the following:

� ¼ �0 þ  1ðm2 � 1Þ þ  2�
2 � 2 3�m: ð20:35Þ
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Such a simplification is absolutely coincident with the accuracy of the general shell
theory for m > 3. If no torque and axial force are applied to the shell and only a
normal internal pressure acts on the shell, then

 3 ¼ 0;  2 ¼
 1

2
:

Thus, in this case of loading, Eq. (20.32) becomes

� ¼ ð1� �2Þ�4 þ a2ð�2 þm2Þ4 þ  1ð�2 þm2Þ2ðm2 � 1Þ
m2 þ ð�2 þm2Þ2 : ð20:36Þ

This expression can be applied to the case of external pressure by replacing  1 with
(� 1). As seen from Eq. (20.32), for m ¼ 1, i.e., for vibrations of a beam type when
circumferences of the shell cross sections do not deform, the natural frequency of
free vibrations does not depend on a normal pressure. The latter also does not
influence the natural frequencies of axisymmetrical vibrations of cylindrical shells.

If a static load acts on the stiffened cylindrical shell reinforced by the transverse
rings, then the natural frequency will also be determined by Eq. (20.32) in which �0

is figured out for an unloaded structurally orthotropic shell, i.e.,

�0 ¼
ð1� �2Þ�R2

E
!2
0s; ð20:37Þ

where !0s is given by the expression (20.25).

20.6 FORCED VIBRATIONS OF SHELLS

In this section, we are concerned with determining the response of thin elastic shells
to external time-dependent loads. Consider a problem of forced transverse vibrations
of a simply supported shallow shell subjected to the action of an arbitrary load
p3ðx; y; tÞ. Assume that the latter varies in time according to the harmonic law, i.e.,

p3ðx; y; tÞ ¼ p3ðx; yÞ sin�t; ð20:38Þ
where � is the frequency of the applied load. The equations of forced transverse
vibrations of a shallow shell can be represented in the form

1

Eh
r2r2�þ r2

kw ¼ 0;

Dr2r2w� r2
k�þ �h @

2w

@t2
� p3 ¼ 0:

ð20:39Þ

If the shallow shell projection on the xy-coordinate plane is a rectangle with sides a
and b, then a solution of Eqs (20.39) is sought in the following form:

� ¼ sin�t
X1
m¼1

X1
n¼1

Amn sin �nx sin�my;

w ¼ sin�t
X1
m¼1

X1
n¼1

Bmn sin �nx sin�my:

ð20:40Þ
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The external load applied to the shell is also extended into the following series:

p3ðx; y; tÞ ¼ sin�t
X1
m¼1

X1
n¼1

Cmn sin �nx sin�my; ð20:41Þ

where

Cmn ¼
4

ab

ð ð
A

p3ðx; yÞ sin �nx sin�mydxdy

and

�n ¼
n�

a
; �m ¼ m�

b
: ð20:42Þ

Substituting Eqs (20.40) and (20.41) into Eqs (20.39), we obtain, after some mathe-
matics, the following:

Bmn

Ehðk2�2n þ k1�
2
mÞ2

ð�2n þ �2
mÞ2

þDð�2n þ �2
mÞ2 � �h�2

" #
¼ Cmn: ð20:43Þ

Taking into account expression (c) of Example 20.3 for determining the natural
frequencies of free vibrations, Eq. (20.43) can be rewritten as follows:

Bmn ¼
1

�h

Cmn

ð!2
mn ��2Þ : ð20:44Þ

Then, the amplitude of the forced vibrations is determined as follows:

w ¼ 1

�h

X1
m¼1

X1
n¼1

Cmn

!2
mn ��2

; ð20:45Þ

where !mn, the frequency of the natural vibrations of the shallow shell, is given by
Eq. (c) of Example 20.3.

When the frequency of the forced vibrations, �, coincides with one of the
natural frequencies, a resonance occurs (w ! 1). If � is small compared with
!mn, then the deflections will correspond to the case of static loading, i.e.,

B̂Bmn ¼
1

�h

Cmn

!2
mn

: ð20:46Þ

Let us introduce the dynamic coefficient �, as the ratio of Bmn=B̂Bmn. Using the
expressions (20.44) and (20.46) for the coefficients in the above ratio, we obtain

� ¼ 1

1��2=!2
mn

: ð20:47Þ

Let us now consider some special classes of dynamic loading applied to the shallow
shell.

1. Uniform surface loading p sin�t
For this type of dynamic loading,

Cmn ¼
16p

�2mn
; m ¼ 1; 3; 5; . . . ;1; n ¼ 1; 3; 5; . . . ;1;
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and the amplitude of the forced vibrations is given by

w ¼ 16p

�2�h

X1
m¼1;3;...

X1
n¼1;3;...

sin �nx sin�my

mnð!2
mn ��2Þ : ð20:48Þ

2. Concentrated force P sin�t applied at a point �; 
For this case of dynamic loading,

Cmn ¼
4P

ab
sin �n� sin�m; m; n ¼ 1:2; 3; . . . ;1;

and the amplitude of the forced vibrations is

w ¼ 4P

�hab

X1
m¼1

X1
n¼1

sin �n� sin�m

!2
mn ��2

sin �nx sin�my: ð20:49Þ

Example 20.4

Determine the amplitude of forced vibrations in a simply supported cylindrical shell
having the dimensions of Example 20.2. The shell is subjected to a uniformly dis-
tributed surface loading varying with time as p3 ¼ p sin�t, where p ¼ 0:5 kN=m2 and
� ¼ 20=s.

Solution

We can use all the expressions derived in this section for cylindrical shells, replacing
the coordinates x and y by 	 ¼ x=R and � ¼ s=R, respectively, where s is the arc of
the circumference of the shell cross section. Expanding the load p into the trigono-
metric series in 	 and 
, determine from Eq. (20.42) the coefficients Cmn. We have the
following:

Cmn ¼
4pR

�0L

ð�0
0

ðL=R
0

sin �n	 sin�m�d	d� ¼
16p

�2mn
; m; n ¼ 1; 3; 5; . . . ;1:

The amplitude of the forced vibrations is given by Eq. (20.49), where the natural
frequencies can be calculated from Eq. (b) of Example 20.2. Calculating the first
three natural frequencies from the above equations, corresponding to m ¼ 1; n ¼ 1;
m ¼ 3; n ¼ 1; and m ¼ 5; n ¼ 1, we obtain

!11 ¼ 18:841=s; !31 ¼ 9:6081=s; !51 ¼ 25:5911=s

(here only the frequencies for odd numbers of m and n are given). For these values of
!mn, the value of w calculated from Eq. (20.49) is w ¼ 1:931	 10�2 m.

The case considered above of the transverse vibrations eliminating the defor-
mations of the middle surface is approximate. It has been assumed that the exten-
sional stiffness of a shell is infinitely large. Since a real shell has a finite stiffness in
tension, the natural frequencies must be lower than those given above. It is impor-
tant to note that, in some cases, vibrations without stretching of the middle surface
are impossible (for instance, for closed spherical shells). However, the investigations
of equations of motion of shells conducted show that stretching of the shell middle
surface is significantly small for a larger part of the shell surface and it may play a
significant role only near the shell edges.
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This chapter contains only some general information about the dynamic
response of thin shells. The interested reader is referred to Refs [2–5] for additional
reading.

PROBLEMS

20.1 Determine the fundamental natural frequency of the axisymmetric radial free vibra-

tions of a circular cylindrical shell of length L and radius R for the two types of

boundary conditions at the shell ends x ¼ 0 and x ¼ L: (a) the fixed edges and (b)

the simply supported edges. Let R ¼ 0:5m; h ¼ 8mm; L ¼ 4R. The shell is made of

steel.

20.2 Investigate the variation of frequency of free radial vibrations of a simply supported

open circular cylindrical shell (see Fig. 20.4) from its length L. Take the geometric

parameters of the shell in the transverse direction from Example 20.2. Let the shell

length L ¼ 6:0; 10:0; . . . ; 54m with the step of 4.0 m.

Hint: Use Eq. (b) in Example 20.2 for your calculations and take n ¼ 1;

m ¼ 1; 2:3; 4; 5.
20.3 Consider a shallow cylindrical shell having a square plan with sides a	 a. Investigate

an influence of the shell shallowness f =a on the frequencies of free vibrations. Take in

your calculations n ¼ 1;m ¼ 1; 2 in the series expansions. Use the following geometric

and mechanical parameters of the shell: a ¼ 16m; h ¼ 6 cm; E ¼ 15GPa; � ¼ 0:15;
and � ¼ 2400 kg=m3. Confine your analysis to the following range: 1/20� f =a � 1=8.

20.4 Calculate the lowest frequency of free vibrations of a spherical shallow shell on a

square plan. Assume that the shell is simply supported on its edges. Let a ¼ 10m; f ¼
0:3m; E ¼ 210GPa, � ¼ 2300 kg=m3; � ¼ 0:3; h ¼ 0:1m; and R ¼ 85m.

20.5 Calculate the lowest frequency of free vibrations of a shallow shell of double curvature

on a rectangular plane (Fig. 17.6). The shell is simply supported on its ends. Let a ¼
20m; b ¼ 20m, h ¼ 10 cm; f ¼ 4m; R1 ¼ 25m; R2 ¼ 42m; E ¼ 22GPa; and

� ¼ 0:15.
20.6 Determine the amplitude of forced vibrations of a cylindrical shell loaded by a con-

centrated harmonic force P sin�t applied at a point with the coordinates 	1 and 
1.
Assume reasonable values for any additional properties and parameters required.

Hint: Replace the given concentrated force by a uniform load q distributed over a small

portion of a cylindrical surface with sides � and , so that q ¼ P=4R2�.
20.7 Calculate the amplitude of the forced vibrations of a spherical shallow shell subjected

to a uniformly distributed load p ¼ p0 sin�t. Take as the dimensions of the shell the

frequencies of free vibrations from Problem 20.5. Use p0 ¼ 0:8 kN=m2 and � ¼ 60 s�1.
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Appendix A

Some Reference Data
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A.1 Typical properties of selected engineering materials at room temperaturesa (U.S. Customary Units)

Material

Specific weight

(lb/in3)

Ultimate strength (ksi) Yield strengthb

0.2% offset

tension (ksi)

Modulus of

elasticity

(106 psi)

Coefficient of

thermal

expansion

10�6=
F
Poisson’s

ratioTensile Compressionb

Steel:

Structural, ASTM-A36 0.284 58 — 36 29 6.5 0.32

Tool L2 0.295 116 — 102 29 6.5 0.32

Stainless (304) 0.284 75 — 30 28 9.6 0.27

Cast iron:

Gray, ASTM A-48 0.260 25 97 — 10 6.7 0.28

Malleable, ASTM A-47 0.264 40 83 33 24 6.7 0.28

Aluminum:

Alloy 2014-T6 0.101 68 — 60 10.6 12.8 0.35

Alloy 6061-T6 0.098 42 — 38 10.0 13.1 0.35

Brass, yellow, cold-rolled 0.306 78 — 63 15 11.3 0.35

Bronze, cold-rolled 0.320 81 — 75 16 9.9 0.31

Magnesium alloys 0.065 40 — 22 6.5 14.3 0.30

Concrete:

Medium strength 0.084 — 4 — 3.5 5.5 0.15

High strength 0.084 — 6 — 4.3 5.5 0.15

Timber (air dry):

Douglas fir 0.017 0.30c 3.76d — 1.9 — 0.29c

White spruce 0.130 0.36c 5.18d — 1.4 — 0.31c

Glass, 98% silica 0.079 — 7 — 9.6 44 0.17

Plastic reinforced:

Kevlar 0.0524 104 70 — 19 — 0.34

30% glass 0.0524 13 19 10.5 0.34

Rubber 0.033 2 — — — 90 0.5

a Properties may vary widely with changes in composition, heat treatment, and method of manufacture.
b The yield and ultimate strength for ductile metals are generally assumed to be equal for both tension and compression.
c Measured perpendicular to the grain.
d Measured parallel to the grain.
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A.2 Typical properties of selected engineering materials at room temperaturea(International System (SI) Units)

Material

Density

(mg/m3)

Ultimate strength (MPa) Yield strengthb

0.2% Offset

tension (MPa)

Modulus of

elasticity

(GPA)

Coefficient of

thermal

expansion

10�6=
C
Poisson’s

ratioTensile Compressionb

Steel:

Structural, ASTM-A36 7.86 400 — 250 200 11.7 0.32

Tool L2 8.16 800 — 703 200 11.7 0.32

Stainless (304), cold-rolled 7.86 517 — 207 193 17.3 0.27

Cast iron:

Gray, ASTM A-48 7.2 179 689 — 67 12.1 0.28

Malleable, ASTM A-47 7.3 276 572 — 172 12.1 0.28

Aluminum:

Alloy 2014-T6 2.8 469 — 414 73 23 0.35

Alloy 6061-T6 2.71 290 — 255 69 23.6 0.35

Brass, yellow, cold-rolled 8.47 540 — 435 105 20 0.35

Bronze, cold-rolled 8.86 560 — 520 110 17.8 0.31

Magnesium alloys 1.83 276 — 80–280 45 27 0.35

Concrete

Medium strength 2.32 — 28 — 24 10 0.15

High strength 2.32 — 40 — 30 10 0.15

Timber (air dry):

Douglas fir 0.47 2.1c 26d — 13.1 4 0.29c

White spruce 3.60 2.5c 36d — 9.65 4 0.31c

Glass, 98% silica 2.19 — 50 — 65 80 0.17

Plastic reinforced:

Kevlar 1.45 717 483 — 131 — 0.34

30% glass 1.45 90 131 72.4 — 0.34

Rubber 0.91 14 — — — 162 0.5

a Properties may vary widely with changes in composition, heat treatment, and method of manufacture.
b The yield and ultimate strength for ductile metals are generally assumed to be equal for both tension and compression.
c Measured perpendicular to the grain.
d Measured parallel to the grain.
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A.3 UNITS AND CONVERSION FACTORS

Quantity International system (SI) units Conversions of US customary

units to SI units

Area m2 1 in:2 ¼ 645:2	 10�6 m2

Density kg=m3 1 slug=in:3 ¼ 890,600 kg=m3

Force N (newton) 1 lb ¼ 4:448N
Frequency 1/2 (Hz, hertz)

Length m (meter) 1 in: ¼ 0:0254m
Mass kg (kilogram) 1 slug ¼ 14:59 kg
Moment N �m 1 in � lb ¼ 0:1130N �m
Moment of inertia m4 1 in:4 ¼ 416:2	 10�9 m4

Power N �m=s ¼ J=s (W, watt) 1 in: � lb=sec ¼ 0:1130W
Pressure, stress N=m2 (Pa, pascal) 1 psi ¼ 6895 Pa

Time s (second)

Velocity m/s 1 in:=sec ¼ 0:0254m=s
Volume m3 1 in:3 ¼ 16:39	 10�6 m3

Work, energy N �m (J, joule) 1 in: � lb ¼ 0:1130N �m

A.4 SOME USEFUL DATA

Atmospheric pressure p � 100 kPa

Acceleration of gravity g � 9:8ms=s=s
Mass density of water � � 1000 kg=m3

Weight density of water � � 9800 kN=m3

Mass to weight conversion w ¼ mg

A.5 TYPICAL VALUES OF ALLOWABLE LOADS

Quantity US customary units International system

(SI) units

Soil:

Ordinary clay and sand mixture 2–3 tons/ft2 200–300 kPa

Hard clay and firm coarse sand 4–6 tons/ft2 400–600 kPa

Bed rock > 15 tons=ft2 > 1400 kPa

Wood, yellow pine 1600 psi 11 MPa

Concrete 1000 psi 7 MPa

Steel 20,000 psi 140 MPa

A.6 FAILURE CRITERIA

Failure criteria are associated with failure of materials, not failure of structure.
Commonly used failure criteria are employed to predict whether a given state of
stress will cause (a) the material to yield (for ductile materials) or (b) the material to
fracture (for brittle materials).
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We consider briefly some failure criteria for isotropic materials. Let the algeb-
raically largest and smallest principal stresses be designated �1 and �3, respectively.

A.6.1 Brittle failure criteria

1. Maximum normal stress criterion

This criterion predicts that a material fails when the maximum principal stress
reaches or exceeds a limiting value. For the case in which this principal stress is
the tensile stress, this criterion has the following form:

failure predicted when �1 � �tf ; ðA:1Þ
where �tf is the limiting tensile stress for a given material determined from a failure
test in uniaxial tension.

If the criterion is applied to a compressive state of stress, then the inequality
(A.1) is of the form

Failure predicted when �3
		 		 � �cf ; ðA:2Þ

where �3
		 		 is the magnitude of the minimum principal stress (�3 < 0) and �cf is the

strength determined by testing a specimen in uniaxial compression.

2. Mohr criterion

Failure is predicted when

�1
�tf

� �3
�cf

� 1: ðA:3Þ

A.6.2 Ductile failure criteria (yield criteria)

1. Maximum shear stress criterion (or Tresca criterion)

This criterion states that yielding will begin when the maximum shear stress reaches
or exceeds limiting value �y, i.e.,

yielding predicted when �max � �y;

where �y is determined from a tension test. In terms of the principal stresses, the
above inequality can be rewritten as follows (�max ¼ ð�1 � �3=2Þ; �y ¼ �y=2):

�1 � �3 � �y; ðA:4Þ
where �y is 0.2% tension offset yield strength. It is assumed here that a ductile
material possesses the same yield strength �y in tension and compression.

2. Von Mises criterion (maximum distortion energy criterion)

This criterion postulates that failure by yielding occurs when the distortion energy
per unit volume reaches or exceeds some limiting value associated with yielding in a
simple tension test, i.e.,

yielding predicted when

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
�1 � �2ð Þ2þ �2 � �3ð Þ2þ �1 � �3ð Þ2� �r

� �y: ðA:5Þ
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Appendix B

Fourier Series Expansion

B.1 DIRICHLET’S CONDITIONS

A function f ðxÞ defined in the interval �� � x � � can be expanded into a trigono-
metric series of the type

f ðxÞ ¼ a0
2
þ
X1
k¼0

ak cos kxþ bk sin kxð Þ; ðB:1Þ

provided that:

(a) f ðxÞ has a finite number of jumps discontinuity points in the given inter-
val and the limiting finite values of the function exist from the right,
f ðx1 þ 0Þ, and from the left, f ðx1 � 0Þ at the above points;

(b) the finite limiting values of f ðxÞ exist at the interval ends, i.e., at points
f ð�� 0Þ and f ð�þ 0Þ; and

(c) f ðxÞ has a finite number of maximum and minimum in the given interval
ð��; �Þ.

B.2 THE SERIES SUM

If Dirichlet’s conditions are satisfied and the coefficients a0; ak; and bk are found (see
below), then the Fourier series have a sum that is equal to

(a) the given function f ðxÞ at any point of continuity inside the interval
��;þ�;

(b) the arithmetic mean of limiting values of f ðxÞ from the right and from the
left from points of the discontinuity jump, i.e., 1

2
f ðx1 þ 0Þ þ f ðx1 � 0Þ½ � at

discontinuity points; and
(c) the arithmetic mean of limiting values, i.e., 1

2
f ð�� 0Þ þ f ð�þ 0Þ½ � on both

end points of the interval (i.e., at points ��;þ�).
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B.3 COEFFICIENTS OF THE FOURIER SERIES

These coefficients are evaluated by multiplying both parts of the equality (B.1) by
cos kxdx and sin kxdx sequentially, and integrating in the limits ��;þ�, i.e.,

a0 ¼
1

�

ð�
��

f ðxÞdx; ak ¼
1

�

ð�
��

f ðxÞ cos kx; bk ¼
1

�

ð�
��

f ðxÞ sin kxdx: ðB:2Þ

If f ðxÞ has discontinuity jumps for x1; x2; . . . ; xs then calculating the above coeffi-
cients,

ak ¼
1

�

ðx1
��

f ðxÞ cos kxdxþ 1

�

ðx2
x1

f ðxÞ cos kxdxþ . . .þ 1

�

ð�
xs

f ðxÞ cos kxdx;

bk ¼
1

�

ðx1
��

f ðxÞ sin kxdxþ 1

�

ðx2
x1

f ðxÞ sin kxdxþ . . .þ 1

�

ð�
xs

f ðxÞ sin kxdx:

B.4 MODIFICATION OF RELATIONS FOR THE COEFFICIENTS OF
FOURIER’S SERIES

(a) A given function f ðx Þ is either even or odd

For even function f ðxÞ; the Fourier expansion coefficients are

ak ¼
2

�

ð�
0

f ðxÞ cos kxdx; bk ¼ 0:

For odd function f ðxÞ; the Fourier expansion coefficients are given by

ak ¼ 0; bk ¼
2

�

ð�
0

f ðxÞ sin kxdx:

The Fourier expansions for the above two cases will be of the following form:

– for even function (f ð�xÞ ¼ f ðxÞÞ:
a0
2
þ
X1
k¼1

ak cos kx:

– for odd function (f ð�xÞ ¼ �f ðxÞ)
X1
k¼1

bk sin kx:

(b) A function f ðx Þ is defined in the interval �l;þl .

Then,

ak ¼
1

l

ðl
�l

f ðxÞ cos k�x
l
dx; bk ¼

1

l

ðl
�l

f ðxÞ sin k�x
l

dx: ðB:3Þ

(c) A given function f ðx Þ is defined in the interval from 0 to 2� (half-range
expansion)

Then, in this case, the Fourier expansion coefficients are given by:
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a0 ¼
1

2�

ð2�
0

f ðxÞdx; ak ¼
1

�

ð2�
0

f ðxÞ cos kxdx; bk ¼
1

�

ð2�
0

f ðxÞ sin kxdx:

(d) A function f ðx Þ is defined in the interval 0; l

Such a function can be expanded into the Fourier series either in sine or cosine. The
expansions and their coefficients in these cases are:

– expansions in cosines (for even functions)

f ðxÞ ¼ a0
2
þ
X1
k¼1

ak cos
k�x

l
; ak ¼

2

l

ðl
0

f ðxÞ cos k�x
l
dx: ðB:4aÞ

– expansions in sines (for odd functions)

f ðxÞ ¼
X1
k¼1

bk sin
k�x

l
; bk ¼

2

l

ðl
0

f ðxÞ sin k�x
l

dx: ðB:4bÞ

B.5 THE ORDER OF THE FOURIER SERIES COEFFICIENTS

Let a function f ðxÞ, defined on the interval ��;þ�, have discontinuities at points
x01; x

0
2; . . . ; x

0
s . One of the end points, for instance �, should be referred to disconti-

nuity points if the limiting values f ð�þ 0Þ and f ð�� 0Þ are different. For the sake of
notation symmetry, we designate that latter point by x0sþ1 ¼ �. Let �0i denote a jump
of f ðxÞ at point x0i , so that

�0i ¼ f ðx0i þ 0Þ � f ðx0i�0Þ:
The coefficients of the Fourier series will be of the form

an ¼
1

�

ðx0i
��

f ðxÞ cos nxdxþ 1

�

ðx02
x0
1

f ðxÞ cos nxdxþ . . .þ 1

�

ð�
x0s

f ðxÞ cos nxdx:

ðB:5Þ
For example, let f ðxÞ be defined in the form (Fig. B.1)

f ðxÞ ¼ 0 �� � x � 0;

f ðxÞ ¼ 1 0 � x � �:

In this case, we have two discontinuities, as follows:

x ¼ 0 �01 ¼ 1

x ¼ � �02 ¼ �1

Fig. B.1
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Integrating Eq. (B.5) by parts, yields the following:

an ¼ � 1

n�

Xi¼sþ1

i¼1

�0i sin�x
0
i �

1

n�

ð�
��

f 0ðxÞ sin nxdx ðB:6Þ

where the prime notation indicates the first derivative of f ðxÞ with respect to x.
Rewrite Eq. (B.6) as follows:

an ¼ �B0

n
� b 0

n

n
ðB:7Þ

where

B0 ¼
1

�

Xi¼sþ1

i¼1

�0i sin�x
0
i ; b 0

n ¼
1

�

ð�
��

f
0 ðxÞ sin nxdx: ðB:8Þ

Similarly, the coefficient bk is given by

bn ¼
A0

n
þ a

0
n

n
; ðB:9Þ

where

A0 ¼
1

�

Xi¼sþ1

i¼1

�0i cos�x
0
i ; a

0
n ¼

1

�

ð�
��

f
0 ðxÞ cos nxdx ðB:10Þ

Applying these relations for the derivative of the given function f 0ðxÞ, one obtains
the following:

a 0
n ¼ �B1

n
� b 00

n

n
; b 0

n ¼
A1

n
þ a 00

n

n
;

where

A1 ¼
1

�

Xi¼s1þ1

i¼1

� 0i cos kx
0
i ;B1 ¼

1

�

Xi¼s1þ1

i¼1

� 0i sin kx;

x
0
i are discontinuity points of f 0ðxÞ and � 0i are jumps of f 0ðxÞ at those points.

Extending this operation further and inserting the obtained values into the relations
(B.7) and (B.9) gives the following:

an ¼ �B0

n
� A1

n2
þ B2

n3
þ A3

n4
� . . . ;

bn ¼
A0

n
� B1

n2
� A2

n3
þ B3

n4
þ . . . ;

ðB:11Þ

where

Aj ¼
1

�

Xi¼sjþ1

i¼1

�ðjÞi cos nx
ðjÞ
i ; Bj ¼

1

�

Xi¼sjþ1

i¼1

�ðjÞi sin nx
ðjÞ
i ;

x
ðjÞ
i are discontinuity points of the jth derivative of the given function f ðxÞ; �ðjÞi are

jumps of f ðjÞðxÞ at those points.
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All the above relations will hold for the interval �l;þl also, but in this case it is
necessary to set

Aj ¼
l

�

� �j
1

�

Xi¼sjþ1

i¼1

�ðjÞi cos
�xðjÞi
l

; Bj ¼
l

�

� �j
1

�

Xi¼sjþ1

i¼1

�ðjÞi sin
�xðjÞi
l
: ðB:12Þ

It follows from Eqs (B.11) that the order of the Fourier expansion coefficients is
determined by the presence of discontinuities in a function itself and in its sequential
derivatives. If f ðxÞ has at least one discontinuity, for instance, on the interval end,
then Eqs (B.11) involve the terms A0 and B0 and, hence, the coefficients an and bn will
be of the order of 1=n. If no discontinuities exist, then A0 ¼ B0 ¼ 0 and the order of
the Fourier coefficients will be of 1=n2. If the first derivative of the given function has
no discontinuity, then the order of the Fourier coefficients is increased by a unity
1=n3, etc.

It should be noted that the differentiation of the Fourier series makes worse its
convergence, so that if for f ðxÞ the order of the coefficients is 1=n2, then for f 0ðxÞ it
becomes 1=n, and for f 00ðxÞ this series ceases to be the Fourier series because its
coefficients will not approach zero as k increases; such a series fails for calculations.

B.6 DOUBLE FOURIER SERIES

The concept of a Fourier series expansion for a function of a single variable can be
extended to the case of a function of two or more variables. For instance, we can
expand f ðx; yÞ into a double Fourier series as follows:

f ðx; yÞ ¼
X1
m¼1

X1
n¼1

fmn sin
m�x

a
sin

n�y

b
: ðB:13Þ

The above represents a half-range sine series in x multiplied by a half-range sine
series in y, using for the period of expansions 2a and 2b, respectively. That is

f ðx; yÞ ¼
X1
m¼1

fmðyÞ sin
m�x

a
; ðB:14aÞ

with

fmðyÞ ¼
X1
n¼1

fmn sin
n�y

b
: ðB:14bÞ

Treating Eq. (B.14a) as a Fourier series wherein y is kept constant, Eq. (B.14b) is
applied to give

fmðyÞ ¼
2

a

ða
0

f ðx; yÞ sinm�x
a

dx: ðB:15Þ

Similarly, for Eq. (B.14b),

fmn ¼
2

b

ðb
0

fmðyÞ sin
n�y

b
dx: ðB:16Þ

Equation (B.16), together with Eq. (B.15), then leads to
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fmn ¼
4

ab

ða
0

ðb
0

f ðx; yÞ sinm�x
a

sin
n�y

b
dxdy: ðB:17Þ

This agrees with Eq. (3.17) of Sec. 3.3, which was derived differently. Similarly, the
results can be obtained for cosine series or for series having both cosines and sines.

B.7 SHARPENING OF CONVERGENCE OF THE FOURIER SERIES

The following efficient method for sharpening of the convergence of the Fourier
series was proposed by Krylov [A.1].

Let a function f ðxÞ have some discontinuity points in a defined interval. We
select such a function F0ðxÞ that has the same discontinuity points and jumps as the
given function. Then, the difference f1ðxÞ ¼ f ðxÞ � F0ðxÞ will have no jumps and,
hence, f1ðxÞ will have the Fourier coefficients of the order of 1=n2. Similarly, a
function f 0ðxÞ (the prime notation indicates here the first derivative of the function
with respect to x) can be treated by letting

f 0ðxÞ ¼ f 0
1 ðxÞ þ F 0

0ðxÞ ¼ f2ðxÞ þ F1ðxÞ
where F1ðxÞ is some linear function with the same jumps as f 0ðxÞ. Analogously,

f 00ðxÞ ¼ f 0
2 ðxÞ þ F 0

1ðxÞ ¼ f3ðxÞ þ F2ðxÞ:
Expanding this process as long as desired, one can obtain in remainder a Fourier
series with coefficients of any order of smallness.

The present section contains only general information about the Fourier series.
The interested reader is referred to Refs [A.2–A.4].
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Appendix C

Verification of Relations of the Theory
of Surfaces

C.1 GEOMETRY OF SPACE CURVES

The equation of a three-dimensional curve l can be represented in the Cartesian
coordinate system (X;Y; and Z) by the following one vector equation:

rð�Þ ¼ Xð�Þiþ Yð�Þjþ Zð�Þk; ðC:1Þ
where r is a position vector from the origin of the coordinate system to a point of
interest and � is some parameter. If Xð�Þ;Yð�Þ; and Zð�Þ are single-valued and
continuous functions of the parameter �, then we will insure that a given value of
that parameter defines only one point on the space curve. For example, an arc length
s, measured along the space curve from some origin, can be chosen as such a para-
meter. In this case, the vectorial equation (C.1) can be written in the following form:

r ¼ rðsÞ: ðC:2Þ
Consider a typical point M and a neighboring point N on the curve l. The position
vectors of those points are r and rþ�r, respectively (Fig. C.1). It is seen from this
figure that the difference of the two vectors, �r, is depicted by a vector whose
magnitude and direction coincide with the chord, joining the points M and N.
When N ! M, the direction of �r approaches the direction of the tangent to the
curve at point M and its length to the arc length between the above points, �s.
Hence, in the limit (when �s ! 0), we have

dr ¼ tds;

where t is the unit tangent vector directed along the tangent to the curve l at pointM.
Thus, the unit tangent vector to the curve at a point of interest is given by

t ¼ dr

ds
; ðC:3Þ

The definition of a curvature of a plane curve was given in Sec. 11.2. Now we rework
this definition in a vector form for a space curve.
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Let tM and tN be the two unit tangent vectors at neighboring points M and N,
respectively. A change �t in the vector t as we move from point M to point N on the
surface is shown in Fig. C.2.

The vector �t lies in a plane passing through point M and the vectors tM and
tN . This plane is called the osculating plane. The length of the vector �t approaches
the value

�tj j ¼ �� ¼ �s

�
:

As one goes to the limit, for �s ! 0, one obtains

dt

ds
¼ v

�
¼ �v; ðC:4Þ

where � is the radius of curvature and �v (� ¼ 1=�) is the curvature vector at point M
of the curve l. Differentiating the identity t

2 ¼ 1 with respect to s, one obtains

Fig. C.1

Fig. C.2
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dt

ds
� t ¼ 0:

Thus, dt=ds, and hence, the unit vector v, is perpendicular to the unit tangent
vector tM . Let us introduce a principal normal to the curve l at a point M. It
can be defined as that vector in the osculating plane at point M that is perpendi-
cular to the tangent tM to the curve at the point of interest. Thus, v represents the
unit vector of the principal normal and it points in the direction of the curve
convexity. Figure C.3 illustrates a curve l on the surface �, the osculating plane
S passing through point M lying on this curve, and the principal normal given by
the unit normal vector v.

Taking into account the relation (C.3), we can represent (C.4) as follows:

d2r

ds2
¼ v

�
¼ �v: ðC:5Þ

The relationship (C.5) is referred to as the Frenet formula.

C.2 GEOMETRY OF A SURFACE

Assume that a surface � is assigned by the vector equation (11.1) and the parameters
	 and 
 are considered as the curvilinear coordinates of a point on the surface. Then,
let the triad of the unit vectors, e1; e2; and e3, given by Eqs (11.24) form a local
vectorial basis to which the displacements and internal forces are referred (see Fig.
11.7).

Consider an arbitrary curve l on the surface given by the following vectorial
equation:

r ¼ rð	; 
Þ; 	 ¼ 	ðsÞ; 
 ¼ 
ðsÞ; ðC:6Þ
where s is the arc length of that curve, measured from some origin. We use the
properties of the curvature vector �v to derive the expression of the second quadratic

Fig. C.3
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form of the surface. To do this, let us calculate the curvature of the curve l, assigned
by Eq. (C.6). According to Eq. (C.5), we have

v

�
¼ d2r

ds2
¼ d

ds

@r

@	

d	

ds
þ @r

@


d


ds

� �
¼ @r

@	

d2	

ds2
þ @r

@


@2


@s2
þ @2r

@	2
d	

ds

� �2

þ 2
@2r

@	@


@	

@s

d


ds
þ @2r

@
2
d


ds

� �2

:

ðC:7Þ

As mentioned in Sec. C.1, the curvature vector �v is directed along the principal
normal to that curve l in the osculating plane S. Let us project that vector on the
direction of the normal to the surface, given by the unit vector e3, at a point M. For
this purpose, both sides of the expression (C.7) are multiplied by e3. In doing so, take
into account that

v

�
� e3 ¼ cos �

1

�
;

@r

@	
� e3 ¼ Ae1 � e3 ¼ 0;

@r

@

� e3 ¼ Be2 � e3 ¼ 0;

where � is an acute angle between the unit normal vectors to the surface, e3, and to
the curve, v (see Fig. C.3), respectively. As a result of this scalar multiplication, we
obtain

cos �

�
¼ 1

ds2
b11d	

2 þ 2b12d	d
þ b22d

2

� �
: ðC:8Þ

The term in the parentheses on the right-hand side of Eq. (C.8) represents the second
quadratic form of the surface introduced in Sec. 11.3 (see Eq. (11.18)) and the
coefficients of that form, bik ði; k ¼ 1; 2Þ are given by Eqs (11.17).

It follows from Eq. (C.8) that, among all curves passing through a point of
interest, a curve whose principal normal, defined by the unit vector v, coincides with
the normal to the surface, defined by the unit normal vector e3, has the smallest
curvature (because in this case, cos � ¼ 1). As mentioned in Sec. 11.2, such a curve is
obtained at the intersection of the given surface by a plane passing through a normal
to that surface and is referred to as a normal section. The curvature of such a normal
section, �n, is defined by

�n ¼ 1

R
¼ b11

d	

ds

� �2

þ2b12
d	

ds

d


ds
þ b22

d


ds

� �2

: ðC:9Þ

According to Eq. (C.7), a curvature of any another plane section, �, that makes an
angle � with the normal section and has the common tangent with the latter, is of the
following form:

� ¼ �n
1

cos �
: ðC:10Þ

This expression relates the curvature � of any inclined section of the surface to the
normal curvature, �n.

The coefficients of the second quadratic form are given by the relations (11.17)
in terms of the curvilinear coordinates 	 and 
. Substituting the expressions (11.4)
and (11.24) into Eqs (11.17), we obtain, after some mathematics, the expressions for
the coefficients bik ði; k ¼ 1; 2Þ in terms of the Cartesian coordinates as follows:
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b11 ¼
1

!

@2X
@	2

@2Y
@	2

@2Z
@	2

@X
@	

@Y
@	

@Z
@	

@X
@


@Y
@


@Z
@


											

											
; b22 ¼

1

!

@2X
@
2

@2Y
@
2

@2Z
@
2

@X
@	

@Y
@	

@Z
@	

@X
@


@Y
@


@Z
@


											

											
;

b12 ¼
1

!

@2X
@	@


@2Y
@	@


@2Z
@	@


@X
@	

@Y
@	

@Z
@	

@X
@


@Y
@


@Z
@


											

											
; ðC:11Þ

where

! ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22 � a212

q
: ðC:12Þ

It was mentioned in Sec. 11.3 that the directions of principal curvatures are
orthogonal. To prove this, it is sufficient to verify that an angle between the two
principal directions is equal to �=2 at any point of the surface. Assume that these
directions have been found and that they are characterized by the following quan-
tities:

�1 ¼
d


d	
and �2 ¼

�


�	
:

The increments of the position vector r along each of these two directions can be
written in the following form:

dr ¼ r;	d	þ r;
d
; �r ¼ r;	�	þ r;
�
:

If these two directions are orthogonal, then

ðdr � �rÞ ¼ ðr;	 � r;	Þd	�	þ ðr;
 � r;
Þd
�
þ ðr;	 � r;
Þðd	�
þ �	d
Þ ¼ 0; ðC:13Þ
or dividing the above equality by d	�	, and taking into account the notations of Eqs
(11.10),

a11 þ a12ð�1 þ �2Þ þ a22ð��2Þ ¼ 0: ðC:14Þ
Substituting for �1 and �2 from Eq. (11.20) into Eq. (C.14), we find that the ortho-
gonality condition is identically satisfied. Thus, the directions of the principal cur-
vatures are orthogonal.

C.3 DERIVATIVES OF UNIT COORDINATE VECTORS

Consider two neighboring points M and M1 on the coordinate line 	, separated by a
small distance �s	. Let e3 and e3 þ�e3 be the inward normal unit vectors at those
points, directed toward the center of curvature O, as shown in Fig. C.4. The corre-
sponding principal radius of curvature of the surface is denoted by R1.

It is seen from the above figure that an increment vector �e3, obtained by
moving e3 from point M to point M1, is parallel to the chord MM1, and in the limit
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when M ! M1; this increment becomes parallel to the tangent vector e1. Thus, �e3
can be represented in the form

�e3 ¼ � �e3
		 		e1: ðC:15Þ

The negative sign in the above equation indicates that the vector �e3 points in the
negative direction of the 	-coordinate axis (see Fig. 11.7).

The magnitude of this increment can be found from similarity of the triangles
(Fig. C.4), i.e.,

�e3
		 		
e3
		 		 ¼ MM1

R1

: ðC:16Þ

Substituting Eq. (C.15) into Eq. (C.16), and noting that e3
		 		 ¼ 1 and

MM1 ¼ �s	 ¼ A�	, yields

�e3

�	
¼ � A

R1

e1: ðC:17Þ

Taking the limit of both sides of the above relation as �	! 0, one obtains

de3
d	

¼ � A

R1

e1: ðC:18Þ

Similarly,

de3
d


¼ � B

R2

e2: ðC:19Þ

Now we can proceed to determine the derivatives of the tangent unit vectors, e1 and
e2, with respect to 	 and 
. Obviously the following equality holds:

@r;	
@


¼ @r;

@	

;

because it is equivalent to the following identity:

Fig. C.4

Copyright 2001 by Marcel Dekker, Inc. All Rights Reserved.



@2r

@	@

¼ @2r

@
@	
:

From the above, and taking into account the relations (11.10) and (11.12), we obtain

@

@

Ae1ð Þ ¼ @

@	
Be2ð Þ: ðC:20aÞ

The derivatives of the unit tangent vectors can be expressed in terms of their com-
ponents along the triad of the unit vectors e1; e2; and e3. Notice that the derivative of
any unit tangent vector is normal to the vector itself, so that there are no components
in the direction of the vector being differentiated. Let us prove this statement.
Consider the following scalar product of the two unit tangent vectors in the curvi-
linear coordinate system:

ei � ej ¼ �ij
�ij ¼ 1 if i ¼ j;
�ij ¼ 0 if i 6¼ j;



where i; j ¼ 1; 2; and 3. Differentiating the scalar product of the two unit vectors
with respect to k (k ¼ 1 or 2) yields

ei � ej
� �

;k
¼ 0;

from which

ej � ei;k þ ei � ej;k ¼ 0:

Setting i ¼ j yields

2 ei � ei;k
� � ¼ 0;

as was to be shown.
First, determine the derivative @e1=@	. As follows from the above, this deriva-

tive can be represented in terms of its components in the directions of e2 and e3 only.
We have

@e1
@	

¼ q	e2 þ t	e3; ðC:20bÞ

where unknown components q	 and t	 represent the projections of the vector @e1=@	
on the directions of e2 and e3, respectively. It is known from the vector algebra that
the projection of any vector a on the direction of a vector b is equal to the scalar
product of a � b. Therefore, the component q	 is given by

q	 ¼ e2 �
@e1
@	

� �
¼ @

@	
e2 � e1ð Þ � e1 �

@e2
@	

� �
¼ �e1 �

@e2
@	

ðC:21Þ

@

@	
e2 � e1ð Þ ¼ 0 because e2 is normal to e1

� �
:

It follows from Eq. (C.20a) that

@

@	
ðBe2Þ ¼ B

@e2
@	

þ e2
@B

@	
¼ @

@

ðAe1Þ: ðC:22Þ

Thus,
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@e2
@	

¼ 1

B

@ðAe1Þ
@


� 1

B

@B

@	
e2: ðC:23Þ

From Eqs (C.21) and (C.22), one obtains the following:

q	 ¼ �A

B
e1 �

@e1
@


� �
� 1

B

@A

@

e1 � e1ð Þ:

Since e1 � e1 ¼ 1 and e1 � @e1@
 ¼ 0, the above equation becomes

q	 ¼ � 1

B

@A

@

: ðC:24Þ

Let us proceed to determining the component t	 in Eq. (C.20b). We have

t	 ¼ e3 �
@e1
@	

¼ @

@	
ðe3 � e1Þ � e1 �

@e3
@	

� �
¼ �e1 �

@e3
@	

ðC:25Þ

(because e3 � e1 ¼ 0). Using Eq. (C.18), we obtain

t	 ¼ �e1 � � A

R1

e1

� �
¼ A

R1

: ðC:26Þ

Finally, substituting for q	 and t	 from Eqs (C.24) and (C.26), we obtain the follow-
ing expression for the derivative @e1=@	:

@e1
@	

¼ � 1

B

@A

@

e2 þ

A

R1

e3: ðC:27Þ

Determine the derivative @e1=@
. Again, we can represent the above derivative
in terms of its components along the unit vectors e2 and e3:

@e1
@


¼ q
e2 þ t
e3; ðC:28Þ

where q
 and t
 are the unknown projections of @e1=@
 on the directions of the unit
vectors e2 and e3, respectively (as mentioned previously, the projection of @e1=@
 on
e1 is zero).

By analogy with Eq. (C.21), we can write

q
 ¼ e2 �
@e1
@

:

Using the identity (C.20), the above relation appears as follows:

q
 ¼ � 1

A

@A

@

e1 � e2ð Þ þ 1

A
e2 �

@ Be2ð Þ
@	

� �
¼ 1

A

@B

@	
:

Thus

q
 ¼
1

A

@B

@	
: ðC:29Þ

Similarly,

t
 ¼ e3 �
@e1
@


� �
¼ @

@

e1 � e3ð Þ � e1 �

@e3
@


¼ �e1 �
@e3
@

:
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Using Eq. (C.19), we can rewrite the above relation as follows:

t
 ¼ �e1 � � B

R1

e2

� �
¼ B

R1

e1 � e2ð Þ ¼ 0:

Finally, substituting t
 ¼ 0 and for q
, from Eq. (C.29) into Eq. (C.28), we obtain the
following expression for the derivative @e1=@
:

@e1
@


¼ 1

A

@B

@	
e2: ðC:30Þ

In a similar manner, one can determine the derivatives @e2=@	 and @e2=@
. The final
expressions for the derivatives of the unit vectors with respect to 	 and 
 are given by
Eqs (11.26).

C.4 VERIFICATION OF CODAZZI AND GAUSS EQUATIONS

Using the evident identity

@2e3
@	@


¼ @2e3
@
@	

;

and substituting the expressions (11.26) for e3;	 and e3;
 into the above, we obtain the
following:

@

@


A

R1

e1

� �
¼ @

@	

B

R2

e2

� �
or

@

@


A

R1

� �
e1 þ

A

R1

@e1
@


¼ @

@	

B

R2

� �
e2 þ

B

R2

@e2
@	
:

ðC:31Þ

Replacing @e1=@
 and @e2=@	 in the above by their values from Eqs (11.26) and
transferring all the terms in Eq. (C.31) to the left-hand side, one finds the following
equation:

@

@


A

R1

� �
� 1

R2

@A

@


� �� �
e1 �

@

@	

B

R2

� �
� 1

R1

@B

@	

� �
e2 ¼ 0: ðC:32Þ

This vector equation is equivalent to the two scalar equations (11.27a), called the
conditions of Codazzi.

Next, consider another identity

@2e1
@	@


¼ @2e1
@
@	

:

This identity, using the relations (11.26), can be reduced to the following:

@

@	

1

A

@B

@	

� �
þ @

@


1

B

@A

@


� �
þ AB

R1R2

� �
e2 þ

@

@


A

R1

� �
� 1

R2

@A

@


� �
e3 ¼ 0: ðC:33Þ

The above vector equation may only be satisfied if the terms in the square brackets
are equal to zero. This gives the two scalar equations, but only the first of these is
new, while the second equation coincides with one of the relationships (Eq. (11.27a)).
So, equating the first term in the square brackets to zero, one obtains Eq. (11.27b),
known as the condition of Gauss.
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Similarly, it is found that the identity

@2e2
@	@


¼ @2e2
@
@	

involves no new relationships between the parameters A;B;R1; and R2.
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Appendix D

Derivation of the Strain–Displacement
Relations

D.1 VARIATION OF THE DISPLACEMENTS ACROSS THE SHELL
THICKNESS

Referring to Fig. 12.2, we can write the following vector equation:

D
z þ ze3 � ze3 ¼ D; ðD:1Þ

where D and D
z are displacement vectors of points M and Mz, located on the middle

and on the equidistant surfaces of the shell, separated by a distance z, respectively; e3
is the unit normal vector of a deformed middle surface at point M1. From Eq. (D.1),
it follows that

D
z ¼ Dþ e

z
3 � e3ð Þz: ðD:2Þ

With the accuracy within the terms of the order of h=Rð Þ2 compared with unity, the
unit normal vector e3 can be determined by the following equality:

e

3 ¼ e


1 	 e


2; ðD:3aÞ

where e

1 and e


2 are the unit vectors tangent to the 	- and 
-coordinate lines on the

deformed middle surface. The equation of the deformed middle surface can be
represented in the following vector form:

r
ð	; 
Þ ¼ rð	; 
Þ þD ¼ rð	; 
Þ þ ue1 þ ve2 þ we3; ðD:3bÞ

where rð	; 
Þ is a position vector of the deformed middle surface of the shell. Note
that from here on, all functions and quantities associated with the deformed middle
surface will be denoted by an asterisk.

Using Eq. (11.24), we can write

e

1 ¼

r

;	

A ; ðD:4Þ

where

A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r;	 � r;	

p
: ðD:5Þ
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Write out the vector r;	 in the following expanded form:

r

;	 ¼

@r

@	
¼ @

@	
rþ ue1 þ ve2 þ we3ð Þ ¼ A"1 þ u

@e1
@	

þ v
@e2
@	

þ w
@"3
@	

þ @u

@	
e1 þ

@v

@	
e2 þ

@w

@	
e3:

ðD:6Þ

Substituting for the first derivative of the unit vectors from the relations (11.26) into
the above, yields the following:

r

;	 ¼ A 1þ 1

A

@u

@	
þ v

AB

@A

@

� w

R1

� �
e1 þ � u

B

@A

@

þ @v

@	

� �
e2 þ

A

R1

uþ @w
@	

� �
e3:

ðD:7Þ
Let us determine the Lamé parameter A of the deformed surface. It follows from
Eqs (11.10) and (11.12) that Að Þ2¼ r;	 � r;	. Calculating the above scalar product,
neglecting the products of displacements and their derivatives as small quantities of
the second order, and retaining the terms depending linearly on the displacements
and their derivatives only, we obtain

Að Þ2¼ A2 1þ 1

A

@u

@	
þ v

AB

@A

@

� w

R1

� �2

; ðD:8Þ

from which

A ¼ Að1þ "1Þ; ðD:9Þ
where

"1 ¼
1

A

@u

@	
þ v

AB

@A

@

� w

R1

: ðD:10Þ

Using Eqs (D.8)–(D.10), one can represent the unit tangent vector e1 as follows:

e

1 ¼

r

;	

A ¼
1

Að1þ "Þ A 1þ 1

A

@u

@	
þ v

AB

@A

@

� w

R1

� ��
e1

þ @v

@	
� u

B

@A

@


� �
e2 þ

A

R1

uþ @w
@	

� �
e3

�
:

ðD:11Þ

Due to the small-displacement assumption, adopted in the linear theory of thin
shells, all the strain components are negligible quantities in comparison with
unity. Following this degree of accuracy, we can obtain from the above the following
final expression for e1:

e

1 ffi e1 þ !1e2 þ #1e3: ðD:12aÞ

Similarly, we can obtain

e

2 ffi e2 þ !2e1 þ #2e3; ðD:12bÞ

where
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!1 ¼
1

A

@v

@	
� 1

AB

@A

@

u; !2 ¼

1

B

@u

@

� 1

AB

@B

@	
v;

#1 ¼
u

R1

þ 1

A

@w

@	
; #2 ¼

v

R2

þ 1

B

@w

@

:

ðD:13Þ

To clarify the geometric meaning of the parameters !1; !2; #1; and #2 we set up the
cross-products of the vectors e1 and e


1 and the vectors e2 and e2. Using Eqs (D.12)

and the properties of the cross-products of the unit vectors, we obtain the following:

e1 	 e

1 ¼ e3!1 � e2#1; e


2 	 e2 ¼ e3!2 � e1#2:

The right-hand sides of the above relations represent the sines of angles by which the
unit tangent vectors e1 and e2 rotate because of a deformation of the middle surface.
Due to the small-displacement assumption, these sines are small quantities of the first
order and they may be identified with the angles of rotations themselves. Thus, the
rotation of the unit vector e1 consists of the rotation through the angle !1 about the
direction e3 and of the rotation through the angle #1 about the direction e2:
Correspondingly, the rotation of the vector e2 comprises the rotation through the
angle !2 about e3 and through the angle #2 about e1.

Introducing the relations (D.12) into Eqs (D.3a) and neglecting the terms of
second differential order, we obtain, after some mathematics, the following:

e

3 ffi e3 � #1e1 � #2e2: ðD:14Þ

Inserting the above expression into the relation (D.2) yields the following:

D
z ¼ Dþ e3 � #1e1 � #2e2 � e3ð Þz or

D
z ¼ D� #1e1 þ #2e2ð Þz:

ðD:15Þ

Projecting this vector on the directions of the unit vectors e1; e2; and e3, we obtain
the three scalar equations (12.1).

D.2 STRAIN COMPONENTS OF THE SHELL

Consider two neighboring points Mð	; 
Þ and M1ð	þ d	; 
Þ lying on the line 	 ¼
const of the shell middle surface. The distance between these points is

� before deformation � ds1 ¼ Ad	; ðD:16aÞ
� after deformation � ds1 ¼ Ad	 ðD:16bÞ

The relative increase in length of a curvilinear linear element of the middle surface in
the direction of the 	-coordinate line is

ds1 � ds1
ds1

:

Substituting for ds1 and ds1 from Eqs (D.16) into the above and taking into account
Eqs (D.9) and (D.10), we obtain the expression for the linear strain in the 	 direction,
"1, in terms of the displacement components at a point of the middle surface in the 	
direction. Similarly, the expression for "2 can be obtained. The above strain–
displacement components are given by Eqs (12.3) and (12.4).
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Determine now the shear strain, �12, in the middle surface. By definition, the
shear strain is equal to the change of an initially right angle between the tangent
vectors e1 and e2, i.e.,

�12 ¼
�

2
�  ; ðD:17Þ

where   is the angle between the directions of e1 and e

2. From the above relation,

  ¼ �

2
� �12

and cos  ¼ sin �12 � �12. Therefore, the shear strain can be determined as follows:

�12 ¼ cos  ¼ e

1 � e2: ðD:18Þ

Substituting for e1 and e

2 from Eqs (D.12) into the above, and neglecting the quan-

tities of the second order of smallness, yields the following:

�12 ¼ e1 þ !1e2 þ #1e3ð Þ � e2 þ !2e1 þ #2e3ð Þ

� 1

A

@v

@	
� 1

AB

@A

@

uþ 1

B

@u

@

� 1

AB

@B

@	
v:

ðD:19Þ

Comparing Eq. (D.19) with the first two relations of (D.13), we can conclude that

�12 ¼ !1 þ !2: ðD:20Þ
Equation (D.20) was given without proof in Sec. 12.2 (see Eq. (12.17)).

In deriving the equation describing a variation of the strain components across
the shell thickness in Sec. 12.2, we assumed that the curvilinear coordinate lines were
orthogonal on the equidistant surface, located at a distance z from the middle sur-
face. Now we will verify the above assumption. The vector equation of the equi-
distant surface can be represented in the following form (see Fig. 12.3):

r
zð	; 
; zÞ ¼ rð	; 
Þ � ze3; ðD:21Þ

where r
zð	; 
; zÞ and rð	; 
Þ are the position vectors of the equidistant and middle

surface of the shell, respectively. Consider the following two vectors:

r
z
;	 ¼ r;	 � z

@e3
@	

and r
z
;
 ¼ r;
 � z

@e3
@

: ðD:22Þ

These vectors are tangents to the coordinate lines 	 and 
, respectively, of the
equidistant surface. We will prove that these vectors are orthogonal. The above
requirement is equivalent to the following condition:

r
z
;	 � rz;
 ¼ 0: ðD:23Þ

Substituting for rz;	 and r
z
;
 from Eqs (D.22), we can write the left-hand side of the

above equation as follows:

r
z
;	 � rz;
 ¼ r;	 � r;
 � z r;	 �

@e3
@


þ @e3
@	

� r;

� �

þ z2
@e3
@	

� @e3
@


� �
: ðD:24Þ

Using Eqs (11.26) for the differentiation of the unit vectors with respect to 	 and 
,
one obtains that each of the scalar products on the right-hand side of the equality is
equal to zero. Equation (D.24) and, hence, Eq. (D.23), are identically satisfied and
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Appendix E

Verification of Equilibrium Equations

Consider a differential element of the middle surface bounded by two pairs of the
normal sections passing through the 	- and 
-coordinate lines and specify the equi-
librium conditions of that element under external and internal forces and moments,
as shown in Fig. 12.5.

We replace the internal forces and moments acting on the differential ele-
ment by equivalent couple–force systems consisting of the resultant force T

ðiÞ and
resultant couple M

ðiÞ (i ¼ 1:2Þ, applied to every face of the element, as shown in
Fig. E.1.

On the face 	 ¼ 0 the above resultant forces and resultant moments are

�T
ð1Þ ¼ � N1e1 þN12e2 þQ1e3ð ÞBd
;

�M
ð1Þ ¼ � M1e2 �M12e1ð ÞBd
:

ðE:1Þ

On the face 
 ¼ 0, the resultants Tð2Þ and M
ð2Þ are

�T
ð2Þ ¼ � N21e1 þN2e2 þQ2e3ð ÞAd	;

�M
ð2Þ ¼ � M21e2 �M2e1ð ÞAd	:

ðE:2Þ

The signs preceding the internal forces and moments in the above equations have
been chosen in accordance with Figs (12.5) and (E.1). The forces and moments of
opposite signs act on the opposite faces of the differential element. The resultant
forces and resultant moments acting on the faces 	 and 	 þ d	, as well as 
 and

 þ d
, differ by increments and they have opposite signs, as shown in Fig. E.1.
Thus, the resultant force T

ð1Þ and resultant moment Mð1Þ are applied to the face 02;
the resultants Tð2Þ and M

ð2Þ act on the face 01; the resultants Tð1Þ þ ð@Tð1Þ=@	Þd	 and
M

ð1Þ þ ð@Mð1Þ=@	Þd	 are applied to the face 13; while the resultants Tð2Þ þ @T2=@
ð Þd

and M

ð2Þ þ ð@Mð2Þ=@
Þd
 act on the face 23. In addition, the differential element is
acted upon by the external surface load pABd	d
, where p is the vector of the
intensity of the surface load, i.e.,

p ¼ p1e1 þ p2e2 þ p3e3: ðE:3Þ
We now apply the equations of static equilibrium as follows:
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X
T ¼ 0; ðE:4ÞX
M ¼ 0: ðE:5Þ

Referring to Fig. E.1, the force equilibrium equation (E.4) becomes

�T
ð1Þ þ T

ð1Þ þ @T
ð1Þ

@	
d	� T

ð2Þ þ T
ð2Þ þ @T

ð2Þ

@

d
þ pABd	d
 ¼ 0;

from which

@Tð1Þ

@	
d	þ @T

ð2Þ

@

d
þ pABd	d
 ¼ 0: ðE:6Þ

Substituting Eqs (E.1)–(E.3) for the resultants into Eq. (E.6), utilizing the rules for
differentiating the unit vectors, Eqs (11.26), and canceling out the common term
d	d
, yields the following vector equation:

@

@	

�
ðN1BÞ þ

@

@

ðN21AÞ þN12

@A

@

�N2

@B

@	
�Q1

AB

R1

þ p1AB

�
e1

þ @

@

ðN2AÞ þ

@

@	
ðN12BÞ þN21

@B

@	
�N1

@A

@

�Q2

AB

R2

þ p2AB

� �
e2

þ N1

AB

R1

þN2

AB

R2

þ @

@	
ðQ1BÞ þ

@

@

ðQ2AÞ þ p3AB

� �
e3 ¼ 0:

ðE:7Þ

Since the unit vectors are independent, Eq. (E.7) can only be satisfied if the terms in
the square brackets are equal to zero, which gives the three scalar equations of the
force equilibrium in the form of Eqs (12.41).

The moment equilibrium equation (E.5) is evaluated about the axes through
point 0 in Fig. E.1. We obtain the following:

Fig. E.1
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M
ð1Þ þ @M

ð1Þ

@	
d	�M

ð1Þ þM
ð2Þ þ @M

ð2Þ

@

d
�M

ð2Þ þ Ad	 e1 	 T
ð1Þ

� �

þ Bd
 e2 	 T
ð2Þ

� �
¼ 0;

from which

@Mð1Þ

@	
d	þ @M

ð2Þ

@

d
þ Ad	 e1 	 T

ð1Þ
� �

þ Bd
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The third and fourth terms in Eq. (E.8) represent the contribution of the resultant
vectors TðiÞ ði ¼ 1; 2Þ to the moment equilibrium equation (E.5). It is easy to verify
that the in-plane shear forces N12 and N21 will contribute moments about the e3 axis,
while the transverse shear forces Q1 and Q2 will contribute moments about the e1
and e2 axes.

In setting up Eq. (E.8), only terms of the second differential order were
retained; terms of the third differential order were dropped out. Note that the
moments due to the surface load p and due to the increments of the forces T

ð1Þ

and T
ð2Þ also resulted in an appearance of the terms of the third differential order.
Substituting for M

ð1Þ; Mð2Þ; Tð1Þ; and T
ð2Þ from Eqs (E.1) and (E.2) into Eq.

(E.8), taking into account the relations (11.26) for the differentiation of the unit
vectors, and canceling out the common factor d	d
, we obtain the following vector
equation:
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This vector equation is equivalent to the three scalar equations (12.42).
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