Министерство общего образования Российской Федерации

Новосибирский государственный технический университет

КОНСТРУКЦИЯ И РАСЧЕТ ЭЛЕМЕНТОВ ПЛАНЕРА САМОЛЕТА НА ПРОЧНОСТЬ.

КРЫЛО.

Методические указания к выполнению курсовых и дипломных проектов для студентов III- V курсов (специальность 1301) факультета летательных аппаратов

Новосибирск 2000 Составители: В.А. Бернс канд.техн.наук, Е.Г. Подружин канд.техн.наук, Б.К. Смирнов, техн.наук. Рецензент: В.Л. Присекин, д-р.техн.наук, проф.

Работа выполнена на кафедре самолето- и вертолетостроения

© Новосибирский государственный технический университет, 2000 г.

ЗАДАЧИ, СОДЕРЖАНИЕ И ПОРЯДОК ВЫПОЛНЕНИЯ КУРСОВОГО ПРОЕКТА

Цель курсового проекта – более глубокое и детальное ознакомление студентов с особенностями конструкции самолета и овладение практическими приемами расчета на прочность элементов планера самолета.

Задание на курсовой проект предусматривает решение следующих задач:

- 1. Выбор прототипа самолета по его характеристикам, являющимися исходными данными к проекту.
- 2. Определение массовых и геометрических характеристик самолета, необходимых для расчета нагрузок, по выбранному прототипу, компоновка крыла.
- 3. Назначение эксплуатационной перегрузки и коэффициента безопасности для заданного расчетного случая.
- 4. Определение нагрузок, действующих на крыло при выполнении самолетом заданного маневра, построение эпюр.
- 5. выбор типа конструктивно-силовой схемы крыла (лонжеронное, кессонное, моноблочное) и подбор параметров сечения (расстояния от корня крыла до расчетного сечения задается преподавателем).
- 6. Расчет сечения крыла на изгиб.
- 7. Расчет сечения крыла на сдвиг.
- 8. расчет сечения крыла на кручение.
- 9. Проверка обшивки крыла и стенок лонжерона на прочность и устойчивость.
- 10. Расчет на прочность элементов крыла (по указанию преподавателя).

Примечания.

- 1. Все расчеты проводятся на ПЭВМ, в пояснительную записку вставляется распечатка результатов расчета.
- 2. Необходимый объем расчетов из перечисленных разделов проекта назначается преподавателем индивидуально.
- 3. Оформление расчетно-пояснительной записки производится в соответствии с ГОСТ 2.105-79.
- 4. Защита курсового проекта проводится публично, всеми студентами группы в одно время.

Обозначения:

L - размах крыла;

- *S* площадь крыла;
- λ- удлинение крыла;

η- сужение крыла;

с - относительная толщина профиля сечения крыла;

 $\bar{\mathbf{c}}_{\kappa oph.}$, $\bar{\mathbf{c}}_{\kappa ohu.}$ - относительная толщина профиля соответственно в корневом и

концевом сечениях крыла;

χ_{0,25} - стреловидность крыла по линии четвертей хорд;

G- взлетный вес самолета;

*G*_{кр.}- вес крыла;

b- текущая хорда крыла;

*b*_{корн.}- корневая хорда крыла;

*b*_{конц.}- концевая хорда крыла;

f- коэффициент безопасности;

 $n_{\rm v}^{\rm 9}$ - максимальная эксплуатационная перегрузка в направлении оси Y;

Р^э- эксплуатационная нагрузка;

P - расчетная нагрузка;

 $\tilde{\Gamma}_{n..}$ - относительная циркуляция прямого плоского крыла;

 $\tilde{\Gamma}_{\gamma}$ - относительная циркуляция крыла с учетом стреловидности;

 $q^{\text{аэр}}$ - погонная аэродинамическая нагрузка на крыло;

 $Q^{\text{аэр}}$ - перерезывающая сила в сечении крыла от аэродинамической нагрузки;

М^{аэр}- момент аэродинамической нагрузки в сечении крыла;

 $q^{\text{кр}}$ - погонная нагрузка от веса крыла;

 $Q^{\kappa p}$ - перерезывающая сила от веса крыла;

М^{кр}- момент силы веса в сечении крыла;

 $q^{\text{топл}}$ погонная нагрузка от веса баков с топливом;

*G*_{топл}- вес топлива в крыльевых баках;

 $Q^{\text{топл}}$ - перерезывающая сила от веса баков с топливом;

*G*_{агр} - вес агрегатов и сосредоточенных грузов;

 $M^{\text{топл}}$ - момент сил веса баков с топливом;

 $Q^{\text{соср}}$ - перерезывающая сила от сосредоточенных масс;

 $M^{\rm cocp}$ - момент сосредоточенных инерционных сил;

N – растягивающее усилие, действующее в панели крыла;

δ - толщина обшивки;

Н - высота лонжерона;

е - шаг стрингеров;

а - расстояние между нервюрами;

n - число стрингеров;

*F*_{стр} - площадь сечения стрингера;

*F*_{л-н} - площадь сечения полки лонжерона;

 δ_{ct} - толщина стенки лонжерона;

σ_в - напряжение предела прочности материала;

σ_{кр}, τ_{кр} - напряжения потери устойчивости соответственно при сжатии и сдвиге;

Е - модуль продольной упругости;

G - модуль сдвига;

v - коэффициент Пуассона.

ПОРЯДОК ПРОЧНОСТНОГО РАСЧЕТА НА ПЭВМ

Расчет крыла самолета производится на ПЭВМ . Расчет разбит на несколько этапов. На первом этапе определяются нагрузки, действующие на крыло. Необходимая для этого информация вводится в ПЭВМ в диалоговом режиме в ответ на запросы появляющиеся на экране компьютера после запуска программы **NAGR.EXE**. В дальнейшем создается файл данных **NAGR.DAT**, куда заносится вводимая информация и в последующих расчетах можно менять исходные данные в файле данных.

Прежде чем воспользоваться программой **NAGR.EXE**, необходимо подготовить исходные данные к расчету нагрузок, что включает в себя выбор прототипа самолета, установление массовых и геометрических характеристик самолета, компоновку крыла, назначение величин эксплуатационной перегрузки и коэффициента безопасности

При расчете нагрузок в ПЭВМ заносятся (бесформатный ввод) следующие параметры:

- корневая и концевая хорды [м];
- размах крыла [м];
- коэффициент безопасности [б/р];
- взлетный вес самолета [т];
- эксплуатационная перегрузка [б/р];
- относительная циркуляция (11 значений из табл. 2) [б/р];
- угол стреловидности по линии четвертей хорд крыла [град];
- относительная толщина профиля в корневом и концевом сечениях [б/р];
- вес крыла [т];
- количество топливных баков в крыле [б/р];
- удельный вес топлива [т/м³];
- относительные координаты начальных и концевых хорд баков [б/р];
- начальные хорды баков [м];
- концевые хорды баков [м];
- расстояние от условной оси (рис.1) до линии ц.т. топлива в корневом и концевом сечениях крыла [м];
- количество агрегатов [б/р];
- вес агрегатов [т];
- относительные координаты агрегатов [б/р];

- расстояние от условной оси до ц.т. агрегатов [м];
- расстояние от условной оси до линии ц. д. в корневом и концевом сечениях крыла [м];
- расстояние от условной оси до линии ц. ж. в корневом и концевом сечениях крыла [м];
- расстояние от условной оси до линии ц. т. в корневом и концевом сечениях крыла [м];

Результаты расчетов по программе **NAGR.EXE** заносятся в файл **NAGR.DAT**, в котором приведены с соответствующими комментариями введенные на первом этапе данные, а также выводятся рассчитанные программой площадь крыла, его сужение, удлинение, эксплуатационная и разрушающая нагрузки, действующие в крыле, и таблицы нагрузок, действующих в крыле от различных силовых факторов:

- таблица аэродинамических нагрузок (табл.1);
- таблица нагрузок от веса конструкции крыла (табл.2);
- таблица нагрузок от веса баков с топливом (табл.3);
- таблица нагрузок от сосредоточенных сил (табл.4)
- таблица суммарных перерезывающих сил и изгибающих моментов от всех силовых факторов (табл.5);
- таблица моментов всех сил, действующих на крыло, относительно оси *z*_{vсл.} (табл.б);
- таблица изгибающих и крутящих моментов, действующих в сечениях нормальных оси жесткости крыла (табл.7);

На втором этапе с помощью программы **REDUC.EXE** осуществляется расчет крыла на изгиб методом редукционных коэффициентов. Подготовка исходных данных для программы **REDUC.EXE** заключается в выборе типа силовой схемы крыла, подборе параметров расчетного сечения (см. п. 5.1-5.3). Методика расчета сечения крыла на изгиб методом редукционных коэффициентов изложена в п. 6.1.

Исходными данными для программы **REDUC.EXE** (для программы реализован ввод исходных данных в двух режимах – диалоговом и файловом) являются:

- число стрингеров на верхней панели крыла [б/р];
- число стрингеров на нижней панели крыла [б/р];
- высоты и толщины свободных полок стрингеров в сжатой (верхней) панели крыла [см];
- площади поперечных сечений стрингеров [см²];
- моменты инерции стрингеров верхней панели [см⁴];
- координаты *x*, *y* центров тяжести стрингеров [см];
- модули упругости материалов стрингеров и лонжеронов [кг/см²];
- толщины обшивки на верхней и нижней панелях крыла [см];
- число лонжеронов [б/р];
- площади поперечных сечений лонжеронов [см²];
- координаты *x*, *y* центров тяжести полок лонжеронов [см];

- высоты лонжеронов [см];
- напряжения предела прочности для материалов лонжеронов и стрингеров [кг/см²];
- изгибающий момент [кг·см];
- шаг нервюр [см];
- шаг стрингеров в сжатой и растянутой панелях крыла[см];

Результаты расчета программы **REDUC.EXE** являются таблицы помещаемые в файл **REZ.DAT**, в которых для каждой итерации приводятся следующие величины:

- номера стрингеров и лонжеронов;
- площади сечений стрингеров и лонжеронов;
- суммарная площадь сечений подкрепляющих элементов с присоединенной обшивкой;
- величины редукционных коэффициентов;
- критические напряжения в стрингерах при общей потере устойчивости;
- критические напряжения в стрингерах при местной потере устойчивости;
- допускаемые напряжения в стрингерах и лонжеронах;
- действительные напряжения в стрингерах и лонжеронах.

Кроме перечисленной информации формируются два файла данных **CORD.DAT** и **DAN.DAT**. В первый из этих файлов заносятся координаты *x*, *y* центров тяжести стрингеров, а во второй остальная информация, вводимая в диалоговом режиме при первом обращении к программе, что позволяет при дальнейшей работе с программой корректировать вводимую информацию более эффективно.

На третьем этапе производится расчет сечения крыла на сдвиг и кручение. Методика расчета сечения крыла на сдвиг и кручение изложена в п. 7.1, 8.1, 8.2. Программы для этих расчетов составляются самостоятельно.

На четвертом этапе производится подготовка заключения о прочности крыла. Подготовка данного заключения производится в соответствии с п. 9.

На пятом этапе производится проектирование и расчет на прочность элемента крыла. Проектированию подлежит элемент, указанный преподавателем.

Расчет на прочность элемента крыла подразумевает разработку расчетной схемы; определение нагрузок, действующих на данный элемент; расчет напряжений; подбор характеристик элемента из условия его прочности.

МЕТОДИКА РЕШЕНИЯ ЗАДАЧ КУРСОВОГО ПРОЕКТА

I. Выбор прототипа самолета по его характеристикам

Исходными данными к проекту являются следующие характеристики: размах крыла *L*, площадь крыла *S*, сужение крыла η , относительная толщина профиля \bar{c} в корневом и концевом сечениях крыла, стреловидность крыла по линии четвертей хорд $\chi_{0,25}$, взлетный вес самолета *G*, расчетный случай (**A**, **A**['], **B** и т.д.). По геометрическим и массовым характеристикам самолета определяется его прототип, например, по работам [9-13].

2. Установление массовых и геометрических характеристик самолета, компоновка крыла

Для найденного прототипа выясняются особенности компоновки крыла (количество и расположение двигателей, шасси, топливных баков, органов управления, механизации, сосредоточенных грузов на узлах внешней подвески), вес топлива и агрегатов, расположенных на крыле. В случае, если массовые характеристики агрегатов не удается найти в литературе, то их величины определяются (по согласованию с преподавателем) с использованием статистических данных для рассматриваемого типа самолетов [1].

С использованием найденных геометрических характеристик выполняется эскиз крыла в масштабе 1:5, 1:6, 1:10, 1:25, производится его компоновка (размещение лонжеронов, топливных баков, шасси, двигательных установок, различных грузов и т.д.). Геометрические характеристики крыла, необходимые для его построения, определяются по формулам:

$$\eta = \frac{b_{\kappa o p \mu.}}{b_{\kappa o \mu \mu.}}, \quad S = \frac{b_{\kappa o p \mu.} + b_{\kappa o \mu \mu.}}{2} \cdot L , \quad \lambda = \frac{L^2}{S}$$

$$b_{\kappa o h \eta} = \frac{2}{L \cdot (1+\eta)}$$

Угол стреловидности крыла χ задан по линии, проходящей через четверти хорд (рис. 1). На крыле, вычерченном в масштабе, необходимо нанести линию центров тяжести, линию, проходящую через четверти хорд, линию центров давления, условные оси координат и разбить крыло на сечения $\bar{z} = 0;0,1;0,2;...0,9;0,95;1,0;$. Здесь $\bar{z} = 2 \cdot z/L$.

3. Назначение эксплуатационной перегрузки и коэффициента безопасности

Величина эксплуатационной перегрузки и коэффициент безопасности для заданного самолета и расчетного случая назначается с использованием работ [2,3,5,6,7] и лекционного материала. В тексте пояснительной записке необходимо обосновать выбор числовых значений этих параметров. В зависимости от степени потребной маневренности все самолеты делятся на три класса

Класс А - маневренные самолеты, к которым относятся самолеты, совершающие резкие маневры, например истребители $(9 \ge n_{y max}^{3} \ge 5)$. Кратковременно перегрузка для таких самолетов может достигать 10÷11 единиц.

Класс Б – ограниченно маневренные самолеты, которые совершают маневр, в основном, в горизонтальной плоскости ($n_{y max}^{9} = 3 \div 4$).

Класс В – неманевренные самолеты, не совершающие сколь-нибудь резкого маневра ($n_{y max}^3 = 2 \div 3$).

Транспортные и пассажирские самолеты относятся к классу В, бомбардировщики к классу Б или В. Истребители относятся к классу А.

Все разнообразие нагрузок, действующих на самолет, сводится к расчетным режимам или расчетным случаям, которые сведены в специальный документ [6]. Обозначаются расчетные случаи буквами латинского алфавита с индексами. В таблице 1 приведены некоторые расчетные случаи нагружения самолета в полете.

Коэффициент безопасности *f* назначается от 1,5 до 2,0 в зависимости от продолжительности действия нагрузки и повторяемости ее в процессе эксплуатации.

				T	аблица 1.
Расчетный случай	Характеристика полета	n _y	q	c _y	f
A	Криволинейный полет, соответствующий выходу самолета из пикирования или полету в неспокойном воздухе (для тяжелых само- летов)	n ³ _{y max}		y max	1,5
Α'	Криволинейный полет, соответствующий максимальному скоростному напору пикирования или планирования	n ⁹ y max	l _{max}		1,5
В	Маневр самолета с отклоненными элеронами	$0,5 \cdot n_{y \max}^{9}$	l max		2,0
С	Вертикальное пикирование самолета	0	l _{max}	0	2,0
D	Вход самолета в пикирование	- $0,5 \cdot n_{y \max}^{\vartheta}$		c _{ymin}	1,5
D'	Полет на отрицательных углах атаки с большой скоростью	$-0,5 \cdot n_{y \max}^{9}$	l max		1,5

Максимальную эксплуатационную перегрузку при маневре самолета с убранной взлетно-посадочной механизацией определяют следующим образом

$$n_{y max}^{3} = 3,8$$
 при $m \le 8000$ кг
 $n_{y max}^{3} = 2,5$ при $m > 27500$ кг

Для промежуточных значений полетной массы перегрузка определяется по формуле

4. Определение нагрузок, действующих на крыло

Конструкция крыла рассчитывается по разрушающим нагрузкам

$$P_{\text{pasp.}} = P^{\mathfrak{I}} \cdot f , \quad P^{\mathfrak{I}} = G \cdot n_{y}^{\mathfrak{I}}$$

4.1 Определение аэродинамических нагрузок

Аэродинамическая нагрузка распределяется по размаху крыла в соответствии с изменением относительной циркуляции $\tilde{\Gamma}_{nn}$ (при вычислении $\tilde{\Gamma}_{nn}$ коэффициента влиянием фюзеляжа и мотогондол можно пренебречь). Значения $\tilde{\Gamma}_{nn}$ следует брать из работы [4], где они задаются в виде графиков или таблиц для различных сечений крыла в зависимости от его характеристик (удлинения, сужения, длины центроплана и т.д.). Можно воспользоваться данными приведенными в таблице 2.

Распределение циркуляции по сечениям для транецевидных крыльев					
7	Γ̃ _{пл.} при 2 ≤ л ≤ 5				
L	η=2	η=3	η=4	η=5	
0	1,2604	1,321	1,3553	1,3792	
0,1	1,254	1,3124	1,3454	1,3669	
0,2	1,2242	1,2858	1,3152	1,3413	
0,3	1,1989	1,2395	1,2625	1,2794	
0,4	1,1463	1,1713	1,1857	1,198	
0,5	1,0763	1,0811	1,0845	1,0884	
0,6	0,9911	0,9727	0,9631	0,9577	
0,7	0,8946	0,8622	0,8287	0,8137	
0,8	0,7865	0,7241	0,6875	0,6624	
0,9	0,6345	0,5664	0,5236	0,4669	
0,95	0,4933	0,447	0,3979	0,3817	
1,0	0,0	0,0	0,0	0,0	

Таблица 2

Расчетная погонная аэродинамическая нагрузка (направление $q^{aэp.}$ приближенно можно считать перпендикулярным плоскости хорд крыла) для плоского крыла при $0^{\circ} \le \chi_{0,25} \le 10^{\circ}$

$$q^{\text{app.}} = \frac{P_{\text{pasp.}}}{L} \cdot \widetilde{\Gamma}_{\text{пл.}} \quad (1)$$

Для крыльев со стреловидностью $10^{\circ} \le \chi_{0.25} \le 35^{\circ}$

$$q^{\text{app.}} = \frac{P_{\text{pasp.}}}{L} \cdot \widetilde{\Gamma}_{\text{q}}, \quad (2)$$

где

$$\widetilde{\Gamma}_{\rm q} = \left[\widetilde{\Gamma}_{\rm III.} - 2 \cdot \left(1 - \overline{z}\right) \cdot \left(1 - \cos q\right)\right] \cdot \frac{1}{\cos q} \qquad (3)$$

При учете стреловидности не принимается во внимание крутка крыла. Для крыльев со стреловидностью $\chi > 35^{\circ}$ формула (3) дает ошибку в значениях циркуляции до 20 %.

Методика расчета для неплоских крыльев любой формы изложена в работе [1].

По эпюре распределенных нагрузок $q^{a^{3p}}$, вычисленных для 12 сечений по формулам (1) или (2), строятся последовательно эпюры $Q^{a^{3p}}$ и $M^{a^{3p}}$. Используя известные дифференциальные зависимости, находим

$$Q^{\text{asp.}} = \int_{L/2}^{z} q^{\text{asp.}} dz$$
$$M^{\text{asp.}} = \int_{0}^{z} Q^{\text{asp.}} dz$$

$$M^{\text{app.}} = \int_{L/2}^{z} Q dz$$

Интегрирование проводится численно, используя метод трапеций (рис.2). По результатам вычислений строятся эпюры изгибающих моментов и перерезывающих сил.

4.2 Определение массовых и инерционных сил

4.2.1 Определение распределенных сил от собственного веса конструкции крыла. Распределение массовых сил по размаху крыла с незначительной погрешностью можно считать пропорциональным аэродинамической нагрузке

$$q^{\mathrm{Kp.}} = \frac{G_{\mathrm{Kp.}}}{G} \cdot q^{\mathrm{app.}},$$

или пропорционально хордам

$$q^{\mathrm{Kp.}} = \frac{G_{\mathrm{Kp.}} \cdot n_y^{\mathfrak{I}} \cdot f}{S} \cdot b$$

Погонная массовая нагрузка приложена по линии центров тяжести сечений, расположенной, обычно, на 40-50% хорды от носка. По аналогии с аэродинамическими силами определяются $Q^{\text{кр.}}$ и $M^{\text{кр.}}$. По результатам вычислений строят эпюры.

4.2.2. Определение распределенных массовых сил от веса баков с топливом. Распределенная погонная массовая нагрузка от баков с топливом

$$q^{\text{топл.}} = \overline{c} \cdot b \cdot B \cdot \gamma \cdot n_v^{\mathfrak{I}} \cdot f,$$

где γ – удельный вес топлива; *В* – расстояние между лонжеронами, являющимися стенками бака (рис.3).

Относительная толщина профиля в сечении

$$\overline{c} = \overline{c}_{\text{корн.}} - \left(\overline{c}_{\text{корн.}} - \overline{c}_{\text{конц.}}\right) \cdot \overline{z} \quad (4)$$

Центр тяжести условно можно считать расположенным на середине между передним и задним лонжеронами. В целях упрощения расчетов пренебрегаем кривизной крыла, то есть форму баков принимаем в виде усеченных пирамид (рис. 4).

Далее находятся $Q^{\text{топл.}}$ и $M^{\text{топл.}}$ и строятся их эпюры. При вычислении $Q^{\text{топл.}}$ и $M^{\text{топл.}}$ следует вводить дополнительные сечения границ расположения

топлива, если они не совпадают с координатами таблицы 1.

4.2.3. Построение эпюр от сосредоточенных сил. Сосредоточенные инерционные силы от агрегатов и грузов, расположенных в крыле и присоединенных к крылу, приложены в их центрах тяжести и принимаются направленными параллельно аэродинамическим силам. Расчетная сосредоточенная нагрузка

$$P^{\text{cocp.}} = G_{\text{cocp.}} \cdot n_y^{\mathfrak{I}} \cdot f$$

Рис.4

Результаты приводятся в виде эпюр $Q^{\text{соср.}}$ и $M^{\text{соср.}}$. Строятся суммарные эпюры Q_{Σ} и $M_{x\Sigma}$ от всех сил, приложенных к крылу с учетом их знаков:

$$Q_{\Sigma} = Q^{\text{аэр.}} + Q^{\text{кр.}} + Q^{\text{топл.}} + Q^{\text{соср.}}$$

 $M_{x\Sigma} = M^{\text{аэр.}} + M^{\text{кр.}} + M^{\text{топл.}} + M^{\text{соср.}}$

4.3 Вычисление моментов, действующих относително условной оси

4.3.1. Определение $M_{z_{ycn.}}^{a \operatorname{sp.}}$ от аэродинамических сил. Аэродинамические силы действуют по линии центров давления, положение которой считается известным. Вычертив крыло в плане, отметим положение $\Delta Q^{\operatorname{asp}}_{i}$ на линии центров давления и по чертежу определим $h^{\operatorname{asp}}_{i}$ (рис.5).

Далее вычисляем $\Delta M_{Zycn,i}^{app} \bowtie M_{Zycn,i}^{app}$ по формулам $\Delta M_{Zycn,i}^{app} = \Delta Q_i^{app} \cdot h_i^{app}$ $M_{Zycn,i}^{app} = \sum_{i=1}^n \Delta M_{Zycn,i}^{app}$

и строим эпюру $M_{Zycn.}^{a ext{app}}$.

4.3.2. Определение $M_{Zycn.}$ от распределенных массовых сил крыла $(M_{Zycn.}^{\text{кр.}}$ и $M_{Zycn.}^{\text{топл.}})$. Массовые силы, распределенные по размаху крыла, действуют по линии центров тяжести его конструкции (см. рис. 5).

$$\Delta M_{Zycn.}^{\text{ Kp.}} = \Delta Q_i^{\text{ Kp.}} \cdot h_i^{\text{ Kp.}},$$

где $\Delta Q_i^{\text{кр.}}$ - расчетная сосредоточенная сила от веса части крыла между двумя соседними сечениями; $h_i^{\text{кр.}}$ - плечо от точки приложения силы $\Delta Q_i^{\text{кр.}}$ до оси $z_{\text{vcn.}}$.

Аналогично вычисляются значения $\Delta M_{Zycn.}^{\text{топл.}}$. По расчетам строятся эпюры $M_{Zycn.}^{\text{кр.}}$ и $M_{Zycn.}^{\text{топл.}}$.

4.3.3. Определение $M_{Zycn.}$ от сосредоточенных сил.

$$M_{Zycn.i}^{\text{cocp.}} = P_i^{\text{cocp.}} \cdot h_i^{\text{cocp.}},$$

где $P_i^{\text{cocp.}} = P_i \cdot n_y^3 \cdot f$, расчетный вес каждого агрегата или груза; $h_i^{\text{cocp.}}$ -расстояние от центра тяжести каждого агрегата или груза до оси.

После вычисления $M_{Zycn.i}^{cocp.}$ определяется суммарный момент $M_{Zycn.}^{\Sigma}$ от всех сил, действующих на крыло, и строится эпюра $M_{Zycn.}^{\Sigma}$ (имеется ввиду ал-гебраическая сумма).

$$M_{Zycл.}^{\Sigma} = M_{Zycл.}^{\text{аэр.}} + M_{Zycлc}^{\text{кр.}} + M_{Zycлc}^{\text{топл.}} + M_{Zycл.}^{\text{соср.}}$$

4.4. Определение расчетных значений $M_{\rm изг.}$ и $M_{\rm кр.}$ для заданного сечения крыла

Для определения $M_{\rm изг.}$ и $M_{\rm кр.}$ следует:

- найти приближенное положение центра жесткости (рис. 6)

$$x_{\text{II,W.}} = \frac{\sum_{i=1}^{m} H_i^2 \cdot l_i}{\sum_{i=1}^{m} H_i^2},$$

где H_i - высота *i*-го лонжерона; l_i - расстояние от выбранного полюса A до стенки *i*-го лонжерона; m – количество лонжеронов;

- вычислить момент относительно оси Z, проходящей через приближенное положение центра жесткости и параллельной оси Z_{усл.}

- для стреловидного крыла сделать поправку на стреловидность (рис.7) по формулам

5. Выбор конструктивно-силовой схемы крыла, подбор параметров расчетного сечения

5.1. Выбор конструктивно- силовой схемы крыла

Тип конструктивно-силовой схемы крыла выбирается с использованием рекомендаций, изложенных в лекциях и работах [1,2,3,7].

5.2. Выбор профиля расчетного сечения крыла

Относительная толщина профиля расчетного сечения определяется по формуле (4). Из работы [9] выбирается симметричный (для простоты) профиль, соответствующий по толщине \overline{c} рассматриваемому типу самолета и составляется таблица 3. Подобранный профиль вычерчивается на миллиметровой бумаге в масштабе (1:10, 1:25). В случае отсутствия в справочнике профиля необходимой толщины можно взять из справочника наиболее близкий по толщине профиль и все данные пересчитать по формуле

Таблица 3.

x%	У _в %	у _н %	У _В ^(см)	У _Н ^(см)	$h = y_{B}^{(CM)} + y_{H}^{(CM)}$
0					
10					
100					

 $y = y_{\text{справ.}} \cdot \frac{\overline{c}}{\overline{c}_{\text{справ.}}},$

где y – расчетное значение ординаты; $y_{cправ.}$ - табличное значение ординаты; $\overline{c}_{cправ.}$ - таб-

личное значение относительной толщины профиля крыла.

Для стреловидного крыла следует сделать поправку на стреловидность по формулам

$$b' = b \cdot \cos \chi,$$
$$\overline{c}' = \frac{\overline{c}}{\cos \chi}$$

5.3. Подбор параметров сечения (ориентировочный расчет)

5.3.1. Определение нормальных усилий, действующих на панели крыла.

Для последующих расчетов будем считать положительными направления $M_{_{\rm ИЗГ.}}$, и Q_{Σ} в расчетном сечении (рис. 8). Пояса лонжеронов и стрингеры с присоединенной обшивкой воспринимают изгибающий момент $M_{_{\rm ИЗГ.}}$. Усилия, нагружающие панели, можно определить из выражения

Рис. 8

$$N = \pm \frac{M_{\text{изг.}}}{H_{\text{cp.}}},$$

где $H_{cp.} = \frac{F}{B}$; *F* – площадь поперечного сечения крыла, ограниченная крайними

лонжеронами; В - расстояние между крайними лонжеронами; (рис. 9).

Для растянутой панели усилие *N* принять со знаком плюс, для сжатой - со знаком минус.

На основе статистических данных в расчете следует принять усилия, воспринимаемые полками лонжеронов - $N_{n-Ha} = \alpha \cdot N$, $N_{cmp.} = \beta \cdot N$, $N_{o \delta u.} = \gamma \cdot N$.

Значения коэффициентов α , β , γ даны в таблице 4 и зависят от типа крыла.

Таблица 4.

Типкрило	Значения коэффициента				
типкрыла	α	β	γ		
Кессонное	0,70	0,20	0,1		
моноблочное	0,30	0,45	0,25		

5.3.2. Определение толщины обшивки. Толщину обшивки δ для растянутой зоны определяют по 4-ой теории прочности:

$$\delta_{pacm.} = \frac{1}{\sigma_{e}} \cdot \sqrt{\left(\frac{M_{u32.} \cdot \gamma}{H_{cp.} \cdot B}\right)^{2} + 3 \cdot \left(\frac{M_{\kappa p.}}{2 \cdot H_{cp.} \cdot B}\right)^{2}},$$

где σ_{e} - напряжение предела прочности материала обшивки; γ - коэффициент, значение которого приведено в таблице 4. Для сжатой зоны толщину обшивки следует принять равной $\delta_{cxe} = 1,3 \cdot \delta_{pacm}$.

5.3.3. Определение шага стрингеров и нервюр. Шаг стрингеров ℓ и нервюр *а* выбирают с таким расчетом, чтобы поверхность крыла не имела недопустимой волнистости.

Для расчета прогибов обшивки считаем ее свободно опертой на стринге-

ры и нервюры (рис. 10). Наибольшее значение прогиба достигается в центре рассматриваемой пластины:

$$w = d \cdot \frac{p \cdot \ell^4}{D},$$

где $p = \frac{P}{S}$ -удельная нагрузка на крыло; $D = \frac{E \cdot \delta^3}{12 \cdot (1 - \nu^2)}$ -цилиндрическая же-

сткость обшивки. Значения коэффициентов d в зависимости от a_{ℓ} приведены в работе [8]. Обычно это отношение равно 3.

Расстояние между стрингерами и нервюрами следует выбирать так, чтобы $\frac{W}{\ell} \le 0.02 \div 0.002$.

Число стрингеров в сжатой панели

$$n_{c \to c.} = \frac{B_o}{\ell},$$

где В_о - длина дуги обшивки сжатой панели.

Количество стрингеров в растянутой панели следует уменьшить на 20%. Как отмечалось выше, расстояние между нервюрами $a = 3 \cdot l$.

5.3.4. Определение площади сечения стрингеров. Площадь сечения стрингера в сжатой зоне в первом приближении

$$F_{cmp.cmc.} = \frac{N_{cmp.}}{\sigma_{\kappa p.cmp.} \cdot n_{cmc.}}$$

где $\sigma_{\kappa p.cmp.}$ - критическое напряжение стрингеров в сжатой зоне (в первом приближении $\sigma_{\kappa p.cmp.} = 0.5 \div 0.6 \sigma_{e}$).

Площадь сечения стрингеров в растянутой зоне

$$F_{cmp.pacm.} = \frac{N_{cmp.}}{\sigma_{e} \cdot 0.9n_{pacm.}},$$

где σ_{e} - предел прочности материала стрингера при растяжении.

5.3.5. Определение площади сечения лонжеронов. Площадь полок лонжеронов в сжатой зоне

$$F_{\pi.\,\mathrm{cx.}} = \frac{N_{\pi-H}}{\sigma_{\kappa p.\,\pi-H}},$$

где $\sigma_{\kappa p.\, n-H}$ - критическое напряжение при потере устойчивости полки лонжерона. $\sigma_{\kappa p.\, n-H} \approx 0.8 \sigma_{e}$ (берется предел прочности материала лонжерона).

Площадь каждой полки двухлонжеронного крыла находится из условий

$$\frac{F_{\pi-\mu1}}{F_{\pi-\mu2}} = \frac{H_1^2}{H_2^2}, \ F_{\pi-\mu\,c\mathcal{H}} = F_{\pi-\mu1} + F_{\pi-\mu2} \ , \ (5)$$

а для трехлонжеронного крыла

$$\frac{F_{n-H1}}{F_{n-H2}} = \frac{H_1^2}{H_2^2}, \frac{F_{n-H2}}{F_{n-H3}} = \frac{H_2^2}{H_3^2}, F_{n-HCMC} = F_{n-H1} + F_{n-H2} + F_{n-H3}$$
(6)

Площадь лонжеронов в растянутой зоне

$$F_{n-\mu \text{ pact.}} = \frac{N_{n-\mu}}{\sigma_{\theta} \cdot k},$$

где k – коэффициент, учитывающий ослабление поясов лонжеронов крепежными отверстиями; при заклепочном соединении $k = 0.9 \div 0.95$.

Площадь каждой полки находится аналогично площади в сжатой зоне из условий (5) или (6).

5.3.6. Определение толщины стенок лонжеронов. Предполагаем, что вся перерезывающая сила воспринимается стенками лонжеронов

$$Q_{\Sigma} = \sum_{i=1}^{n} Q_i ,$$

где Q_i - сила, воспринимаемая стенкой *i*-го лонжерона. Для трехлонжеронного крыла (*n*=3)

$$\frac{Q_1}{Q_2} = \frac{H_1^2}{H_2^2}, \ \frac{Q_2}{Q_3} = \frac{H_2^2}{H_3^2},$$

где H_1, H_2, H_3 - высоты стенок лонжеронов в расчетном сечении крыла.

Толщина стенки

$$\delta_{cm.i} = \frac{Q_i}{H_i \cdot \tau_{\text{Kp}.i}}.$$
 (7)

Здесь $\tau_{\text{кр.i}}$ - критическое напряжение потери ус-

тойчивости стенки лонжерона крыла от сдвига (рис. 11). Для вычислений $\tau_{\rm kp.\,i}$ следует принять все четыре стороны стенки свободно опертыми:

$$\tau_{\rm \kappa p.\,i} = k_{\tau_i} \cdot 0.9 \cdot E \cdot \left(\frac{\delta_{cm.\,i}}{H_i}\right)^2,\tag{8}$$

где $k_{\tau_i} = 5,60 + 3,78 \cdot \left(\frac{H_i}{a}\right)^2$ при $a > H_i$, при $a < H_i$ следует заменить в (8) H_i на a, а в формуле для $k_{\tau_i} - \left(\frac{H_i}{a}\right)$ на $\left(\frac{a}{H_i}\right)$. Формула (8) справедлива для $\tau_{\kappa p_i} \le \tau_{nq.}$

Подставляя значения $\tau_{\kappa p_{\cdot i}}$ из (8) в (7), находим толщину стенки *i*-го лонжерона

$$\delta_{\mathrm{cT}_{i}} = \sqrt[3]{\frac{Q_{i} \cdot H_{i}}{0, 9 \cdot k_{\tau_{i}} \cdot E}}$$

6. Расчет сечения крыла на изгиб

Для расчета сечения крыла на изгиб вычерчивается профиль расчетного сечения крыла, на котором размещаются пронумерованные стрингеры и лонжероны (рис.12). В носике и хвостике профиля следует располагать стрингеры с большим шагом, чем между лонжеронами. Расчет сечения крыла на изгиб проводится методом редукционных коэффициентов и последовательных приближений.

Рис. 12

6.1. Порядок расчета первого приближения

Определяются в первом приближении приведенные площади поперечного сечения продольных ребер (стрингеров, поясов лонжеронов) с присоединенной обшивкой

$$F_i^{\text{np.}} = F_{i\Sigma} \cdot \varphi_i^1, \ F_{i\Sigma} = F_i + F_{i\text{ npuc.}}^{\text{ofm.}}, \ (9)$$

где F_i - действительная площадь сечения *i*-го ребра; $F_{i \text{ прис.}}^{\text{обш.}}$ - присоединенная площадь обшивки ($F_{i \text{ прис.}}^{\text{обш.}} = 0,8 \cdot \delta \cdot \ell$ - для растянутой панели, $F_{i \text{ прис.}}^{\text{обш.}} = 30 \cdot \delta^2$ - для сжатой панели); ϕ_i^1 - редукционный коэффициент первого приближения.

Если материал полок лонжеронов и стрингеров разный, то следует сделать приведение к одному материалу через редукционный коэффициент по модулю упругости

$$\varphi_{iE} = \frac{E_i}{E_o},$$

где E_i - модуль материала *i*-го элемента; E_o - модуль материала, к которому приводится конструкция (как правило, это материал пояса самого нагруженно-го лонжерона). Тогда

$$\varphi_{i\,\Sigma}^{1} = \varphi_{i}^{1} \cdot \varphi_{i\,E}$$

В случае разных материалов поясов лонжеронов и стрингеров в формулу (9) вместо φ_i^1 подставляется $\varphi_{i\Sigma}^1$.

Определяем координаты x_i и y_i центров тяжести сечений продольных элементов профиля относительно произвольно выбранных осей x и y (рис. 12) и вычисляем статические моменты элементов $F_i^{\text{пр.}} \cdot x_i$ и $F_i^{\text{пр.}} \cdot y_i$.

Определяем координаты центра тяжести сечения первого приближения по формулам

$$x_{c}^{1} = \frac{\sum_{i=1}^{n} F_{i}^{\text{np.}} \cdot x_{i}}{\sum_{i=1}^{n} F_{i}^{\text{np.}}}, \qquad y_{c}^{1} = \frac{\sum_{i=1}^{n} F_{i}^{\text{np.}} \cdot y_{i}}{\sum_{i=1}^{n} F_{i}^{\text{np.}}}$$

Через найденный центр тяжести проводим оси x^1 и y^1 (ось x^1 удобно выбрать параллельной хорде сечения) и определяем координаты центров тяжести всех элементов сечения относительно новых осей.

Вычисляем моменты инерции (осевые и центробежный) приведенного сечения относительно осей x^1 и y^1 :

$$\mathbf{I}_{x^{1}}^{\text{ np.}} = \sum_{i=1}^{n} F_{i}^{\text{ np.}} \cdot y_{i}^{1^{2}}, \quad \mathbf{I}_{y^{1}}^{\text{ np.}} = \sum_{i=1}^{n} F_{i}^{\text{ np.}} \cdot x_{i}^{1^{2}}, \quad \mathbf{I}_{x^{1}y^{1}}^{\text{ np.}} = \sum_{i=1}^{n} F_{i}^{\text{ np.}} \cdot x_{i}^{1} \cdot y_{i}^{1}.$$

Определяем угол поворота главных центральных осей сечения:

$$tg \ 2\alpha = \frac{2 \cdot |_{x^{1}y^{1}}^{\text{mp.}}}{|_{y^{1}}^{\text{mp.}} - |_{x^{1}}^{\text{mp.}}}$$

Если угол а будет больше 5°, то оси x^1 и y^1 следует повернуть на этот угол (положительное значение угла соответствует вращению осей по часовой стрелке) и далее вести расчет относительно главных центральных осей. В целях упрощения расчета угол а рекомендуется вычислять только при расчетах последнего приближения. Обычно, если ось x^1 выбрана параллельно хорде сечения, угол а оказывается незначительным и им можно пренебречь.

Определяем напряжения в элементах сечения в первом приближении

$$\sigma_i^1 = \frac{M_{_{\text{H3F.}}}}{\prod_{x^1}^{\text{TD.}}} \cdot y_i^1 \cdot \varphi_i^1 \cdot \varphi_E \ .$$

Полученные напряжения σ_i^1 сравниваем с $\sigma_{\text{кр.л-н}}$ и $\sigma_{\text{кр.стр.}}$ для сжатой панели и с $\sigma_{\text{в.л-н}}$ и $\sigma_{\text{в.стр.}}$ - для растянутой панели.

6.2. Определение критических напряжений стрингеров

Критическое напряжение стрингера $\sigma_{\rm kp.crp.}$ вычисляется из условия общей и местной форм потери устойчивости. Для вычисления $\sigma_{\rm kp.crp.}$ общей формы потери устойчивости используем выражение

$$\sigma_{\rm kp.crp.} = \sigma_{\rm B} \cdot \frac{1+\nu}{1+\nu+\nu^2}, \quad (10)$$

где H = $\frac{y_{B}}{y_{kp.9}}$. Здесь $\sigma_{kp.9}$ - критическое напряжение, вычисленное по формуле Эйлера:

$$\sigma_{\text{kp.}9} = \frac{\pi^2 \cdot E}{\lambda^2}, \ \lambda = \frac{\nu \cdot a}{i_x}, \ (11)$$

где μ - коэффициент, зависящий от условий опирания концов стрингера; *a* - шаг нервюр; λ - гибкость стрингера с присоединенной обшивкой; i_x - радиус инерции относительно центральной оси сечения.

В формуле (11) под i_x следует понимать i_{min} , но в целях упрощения положение главной инерциальной оси считаем совпадающим с осью x.

В свою очередь

$$\boldsymbol{i}_{x} = \sqrt{\frac{\mathbf{I}_{x}}{F_{\text{ctp.}}^{\text{np.}}}}$$

где I_x - момент инерции стрингера с присоединенной обшивкой относительно оси *x* (рис.13); $F_{\text{стр.}}^{\text{пр.}}$ - площадь сечения стрингера с присоединенной обшивкой. Ширина присоединенной обшивки берется равной 30 δ (рис.13).

$$F_{\text{стр.}}^{\text{пр.}} = F_{\text{стр.}} + F_{\text{обш.}}^{\text{прис.}}$$

При этом

$$\mathbf{I}_{x} = \mathbf{I}_{x_{1}} + F_{o \delta u.}^{n p u c.} \cdot a_{1}^{2} + \mathbf{I}_{x_{2}} + F_{c m p.} \cdot a_{2}^{2} ,$$

где $|_{x_1}$ - момент инерции присоединенной обшивки относительно собственной центральной оси x_1 (обычно значения $|_{x_1}$ -малы); $|_{x_2}$ - момент инерции стрингера относительно собственной центральной оси x_2 .

Для вычисления $\sigma_{\text{кр.стр.}}$ местной формы потери устойчивости рассмотрим потерю устойчивости свободной полки стрингера как пластины, шарнирно опертой по трем сторонам (рис.14). На рис. 14 обозначено: *а* – шаг нервюр; *b*₁ – высота свободной полки стрингера (рис.13). Для рассматриваемой пластинки $\sigma_{\text{кр.}}$ вычисляется по асимптотической формуле (10), в которой

$$\sigma_{\rm kp.9} = 0,9 \cdot k_{\rm s} \cdot E\left(\frac{\delta_{\rm c}}{b_{\rm f}}\right)^2,$$

где k_{σ} – коэффициент, зависящий от условий нагружения и опирания пластины, δ_{c} – толщина свободной полки стрингера.

Для рассматриваемого случая

$$k_{\sigma} = 0,425 + \left(\frac{b_{1}}{a}\right)^{2}$$

Для сравнения с действительными напряжениями, полученными в результате редуцирования, выбирается меньшее напряжение, найденное из расчетов общей и местной потери устойчивости.

В процессе редуцирования необходимо обратить внимание на следующее: если напряжения в сжатой полке лонжерона окажутся больше или равными разрушающим в любом из приближений, то конструкция крыла не способна выдержать расчетную нагрузку и ее надо усилить. Дальнейшие приближения в этом случае делать не следует. Если в каком-либо сжатом стрингере с номером

едует. Если в каком-либо сжатом стрингере с номером "k" (с присоединенной обшивкой) напряжение σ_k^i окажется меньше $\sigma_{\text{кр.стр. }k}$, то редукционный коэффициент для него и в последующем приближении следует оставить прежним $\varphi_k^{i+1} = \varphi_k^i$; если в каком-либо сжатом стрингере (с присоединенной обшивкой) с номером "m" напряжение σ_m^i окажется больше $\sigma_{\text{кр.стр. }m}$ то в последующем приближении редукционный коэффициент следует вычислять по формуле

$$\varphi_m^{i+1} = \frac{\sigma_{\text{Kp.ctp.}m} \cdot y_{\pi-\text{Ha}}^i}{\sigma_{\pi-\text{Ha}}^i \cdot y_m^i};$$

если ни в одном стрингере напряжение σ_{j}^{i} не превысит $\sigma_{\text{кр.стр. }j}$, то конструкция явно перетяже-

лена и требует облегчения.

В растянутой зоне уточнение редукционных коэффициентов в процессе последовательных приближений ведется так же, но сравнение расчетных напряжений ведется не с $\sigma_{\rm kp.crp.}$, а с $\sigma_{\rm g}$.

В результате мы получаем новые уточненные редукционные коэффициенты последующего приближения ϕ_j^{i+1} . Далее рассчитываем следующее приближение в том же порядке и снова уточняем редукционные коэффициенты. Расчет продолжается до тех пор, пока редукционные коэффициенты двух последующих приближений практически совпадут (в пределах 5%).

7. Расчет сечения крыла на сдвиг.

Расчет сечения крыла на сдвиг ведется без учета влияния кручения (поперечная сила Q_{Σ} считается приложенной в центре жесткости сечения, полагая, что на сдвиг работают стенки лонжеронов и общивка).

7.1. Порядок расчета

Для расчета многоконтурного сечения на сдвиг делаются продольные разрезы в панелях таким образом, чтобы контур стал открытым. Для сечения крыла разрезы удобно делать в плоскости хорд в носке крыла и в стенках лонжеронов (рис. 15). В местах разрезов прикладываются неизвестные замыкающие погонные касательные усилия q_1, q_2 .

Погонные касательные усилия q_i в общивке панелей сечения крыла определяются как сумма погонных касательных усилий q_{oi} в незамкнутом контуре и замыкающих усилий q_i, q_u, q_w . Усилия q_{oi} определяются формулой

$$q_{oi} = -\frac{Q_{\Sigma} \cdot S_{1,i-1}^{\text{orc.}}}{|_{X}^{\text{pea.}}}, \qquad (12)$$

где Q_{Σ} -расчетная перерезывающая сила; $S_{i,i-1}^{omc.} = \sum_{k=1}^{k=i-1} y_k \cdot F_{k \text{ ред.}}^{\text{пр.}}$ -

статический момент площади части сечения, ограниченного 1-м и (*i*-1) – м ребрами (принятый порядок нумерации ребер очевиден из рис. 14); $I_x^{\text{ред}}$ - главный момент инерции всего сечения, причем положение центра тяжести берется

из последнего приближения расчета на изгиб.

В формуле (12) направление поперечной силы Q_{Σ} считается положительным при его совпадении с положительным направлением оси *y*, т.е. вверх. Положительные направления потоков касательных усилий совпадают с направлением обхода начала координат по часовой стрелке.

Для определения замыкающих потоков погонных касательных усилий $q_{_{I}}, q_{_{II}}, q_{_{III}}$ составляем канонические уравнения

$$[A] \cdot \{q\} + \{A_o\} = \{0\}$$

Коэффициенты канонических уравнений (элементы матрицы [A]и вектора $\{A_{o}\}$) определяются выражениями:

$$\boldsymbol{a}_{11} = \frac{1}{G_o} \cdot \sum_{\text{ABCDEFA}} \frac{I_i}{\delta_{i\text{peq.}}}, \quad \boldsymbol{a}_{22} = \frac{1}{G_o} \cdot \sum_{\text{BCDEFB}} \frac{I_i}{\delta_{i\text{peq.}}}, \quad \boldsymbol{a}_{33} = \frac{1}{G_o} \cdot \sum_{\text{CDEC}} \frac{I_i}{\delta_{i\text{peq.}}},$$

(здесь суммирование ведется по панелям, где q_I, q_{II}, q_{III} не равны нулю соответственно),

$$a_{12} = a_{21} = \frac{1}{G_o} \cdot \sum_{\text{BCDEF}} \frac{I_i}{\delta_{i \text{ peg.}}}, \quad a_{23} = a_{32} = \frac{1}{G_o} \cdot \sum_{\text{CDE}} \frac{I_i}{\delta_{i \text{ peg.}}},$$

$$a_{13} = a_{31} = \frac{1}{G_o} \cdot \sum_{\text{CDE}} \frac{I_i}{\delta_{i \text{ peg.}}}$$

(здесь суммирование ведется по панелям, где $q_I, q_{II}; q_{II}, q_{III}; q_I, q_{III}$ - соответственно не равны нулю),

$$\boldsymbol{a}_{10} = \frac{1}{G_o} \cdot \sum_{\text{ABCDEFA}} \frac{I_i \cdot q_{oi}}{\delta_{i \text{ peq.}}} , \quad \boldsymbol{a}_{20} = \frac{1}{G_o} \cdot \sum_{\text{BCDEF}} \frac{I_i \cdot q_{oi}}{\delta_{i \text{ peq.}}} , \quad \boldsymbol{a}_{30} = \frac{1}{G_o} \cdot \sum_{\text{CDE}} \frac{I_i \cdot q_{oi}}{\delta_{i \text{ peq.}}} ,$$

(здесь суммирование ведется по панелям, где $q_I, q_{0i}; q_{II}, q_{0i}; q_{III}, q_{0i}$ - соответственно не равны нулю). Здесь I_i -длина *i*-той панели; G_o - приведенный модуль сдвига (для общивки из дюраля $G_o = 10^5 \,\mathrm{kr} \cdot \mathrm{cm}^{-2}$); $\delta_{i_{ped}}$ - редуцированная тол-

щина обшивки $\delta_{i_{ped.}} = \delta_i \cdot \Psi;$ Ψ - редукционный коэффициент обшивки.

Модуль сдвига обшивки панели крыла не равен модулю сдвига материала обшивки, а зависит еще от ее кривизны, толщины, шага нервюр и стрингеров (размеров подкрепляющей клетки), подкрепля-

ющих профилей, характера нагружения пластины. Значения модуля сдвига бо-

лее или менее точно определяются опытным путем для данной конструкции. В расчете приходится большей частью пользоваться средними величинами *G*, полученными из испытаний аналогичных конструкций. Так как

$$\Psi = \frac{G}{G_o},$$

то при вычислении мы будем пользоваться значениями редукционных коэффициентов, приведенными на рис. 15. Значения коэффициента Ψ для обшивки из другого материала следует умножить на $\varphi_{\rm E}$.

Определяем погонные сдвиги в панелях как соответствующую сумму погонных касательных усилий в открытом контуре и замыкающих интенсивностей:

$$q_{\Sigma}^{\text{сдв.}} = q_{oi} + q_I + q_{II} + q_{III}$$

По результатам расчета строим схему потоков погонных касательных усилий по контуру сечения.

8. Расчет сечения крыла на кручение

8.1. Определение положения центра жесткости сечения крыла

Положение центра жесткости определяется по формуле

$$x_{\text{II.}\text{ж.}}^{\text{уточн.}} = \frac{2}{Q_{\Sigma}} \cdot (q_I \cdot F_I + q_{II} \cdot F_{II} + q_{III} \cdot F_{III} + \sum_{i=1}^n q_{oi} \cdot \omega_i),$$

где F_1, F_2, F_3 - площади контуров ABCDEFA, BCDEFB, CDEC соответственно

Рис. 16

(рис. 15), которые подсчитываются по чертежу сечения крыла; q_1, q_n, q_m - потоки погонных касательных усилий, полученные в результате расчета сечения на сдвиг от силы Q_{Σ} ; q_{α} - потоки погонных касательных усилий в открытом контуре сечения крыла от сдвига; ω_i - секториальная площадь, соответствующая i – той панели (рис. 16). Приближенно значения ω_i

можно вычислить как площадь треугольника

$$\boldsymbol{\omega}_{i} \approx \frac{1}{2} \cdot \boldsymbol{\ell}_{i} \cdot \boldsymbol{r}_{i},$$

где r_i - длина перпендикуляра, опущенного из произвольно выбранного полюса *A* (в качестве такого полюса можно взять координату предварительно определенного центра жесткости) на хорду дуги элемента контура сечения ℓ_i .

8.2. Определение потока касательных усилий от кручения

При расчете на кручение замыкающие потоки касательных усилий $q_{I}^{\text{кр.}}, q_{II}^{\text{кр.}}, q_{II}^{\text{кр.}}$ определяются из системы уравнений

$$[A] \cdot \{q\} = 2 \cdot \xi\{F\},$$

$$(13)$$

$$2 \cdot \{F\}^{\mathrm{T}} \cdot \{q\} = M_{\mathrm{KP}, \mathrm{YTOYH}.}$$

Здесь компоненты вектора $\{F\}$ - F_{I}, F_{II}, F_{III} - площади контуров ABCDEFA, BCDEFB, CDEC (см. рис. 15); ξ - относительный угол закручивания сечения; $M_{\rm кр.уточн.}$ - крутящий момент относительно уточненного положения центра же-сткости сечения, определяемый из выражения

$$M_{\rm KP. yTO4H.} = M_{\rm KP.} \pm Q_{\Sigma} \cdot d$$

Здесь *d* – расстояние между приближенным и уточненным положениями центров жесткости сечения крыла.

Значения коэффициентов \mathbf{a}_{j} канонических уравнений (13) те же, что при расчете на сдвиг. После определения потоков замыкающих касательных усилий $q_{i}^{\text{кр.}}, q_{u}^{\text{кр.}}, q_{u}^{\text{кр.}}, q_{u}^{\text{кр.}}$ при кручении, суммарные погонные сдвиговые усилия находим подобно расчету на сдвиг, положив $q_{oi} = 0$, т.е.

$$q_{i\Sigma}^{\mathrm{Kp.}} = q_{I}^{\mathrm{Kp.}} + q_{II}^{\mathrm{Kp.}} + q_{III}^{\mathrm{Kp.}}$$

По результатам расчета строим суммарную эпюру потоков погонных касательных усилий от сдвига и кручения $q_{i\Sigma}^{cdB+\kappa p}$ по контуру расчетного сечения крыла. При построении суммарной эпюры положительные значения потоков откладываем внутрь контура сечения.

9. Проверка обшивки и стенок лонжеронов на прочность

и устойчивость

В результате проверочного расчета должно быть дано заключение о прочности подобранного сечения крыла. Для этого обшивка и стенки лонжеронов проверяются на прочность и устойчивость.

Максимальные нормальные напряжения, действующие на соответствующую панель обшивки (или стенки лонжерона) с учетом $\phi_{\rm F}$

$$\sigma_{\max} = \sigma_{i \max} \cdot \frac{E}{E_{\text{crp}}},$$

а значения редукционного коэффициента обшивки находятся по выражению

$$\phi_{\text{обш}} = \frac{b_{\text{прис.}}}{b}$$

где $b_{npuc.} = 30 \cdot \delta$ - для сжатой зоны; $b_{npuc.} = 0,8 \cdot \ell$ - для растянутой зоны; ℓ - ширина рассматриваемой панели обшивки (шаг стрингеров). Тогда средние нормальные напряжения в панелях общивки

$$\boldsymbol{\sigma}_{_{cp.\,obm.}}=\boldsymbol{\phi}_{_{obm}}\cdot\boldsymbol{\sigma}_{_{max}}$$

Касательные напряжения, действующие в обшивке (или стенке лонжерона) от сдвига и кручения, вычисляются как

$$\tau_{i\Sigma} = \frac{q_{i\Sigma}^{\rm CDB+\kappa p}}{\delta_i} \,.$$

Критические касательные напряжения $\tau_{_{\kappa p}}$ вычисляются аналогично $\sigma_{_{\kappa p}}$ по формуле

$$\tau_{\rm kp} = \tau_{\rm b} \cdot \frac{1+\nu}{1+\nu^*+\nu^{*2}},$$

где $\tau_{\rm b} = 0, 7 \cdot \sigma_{\rm b}, \nu^* = \frac{\tau_{\rm b}}{\tau_{\rm kp,3}}$

$$\tau_{\mathrm{\kappa p.9}} = 0.9 \cdot E \cdot k_{\tau} \cdot \left(\frac{\delta_i}{b}\right)^2.$$

Значения коэффициента k_{τ} берется из работы [8] для пластины шарнирно опертой по контуру.

Для оценки устойчивости элементов кры-

$$k_{\rm kp} = \left(\frac{\sigma_{\rm cp.odiii.}}{\sigma_{\rm kp}}\right) + \left(\frac{\tau_{i\Sigma}}{\tau_{\rm kp}}\right)^2.$$

Значения коэффициента $k_{\rm kp}$ позволяют судить о работе обшивки (стенки лонжерона) на устойчивость при одновременном действии сжатия и сдвига (рис. 17). Растянутая панель находится в этом случае в облегченных условиях и в данном случае не рассматривается. Если $k_{\rm kp} < 1$, то потери устойчивости не произойдет, при $k_{\rm kp} > 1$ пластинка потеряет устойчивость. Потеря устойчивости не является критерием потери несущей способности конструкции.

При проверке обшивки на прочность вычисляются значения коэффициента $k_{\rm np}$ с использованием четвертой теории прочности:

$$k_{\rm np} = \frac{\sqrt{\sigma_{\rm max}^2 + 3 \cdot \tau_{i\Sigma}^2}}{\sigma_{\rm B}} \le 1 \quad , \tag{14}$$

где $\sqrt{\sigma_{\max}^2 + 3 \cdot \tau_{i\Sigma}^2} = \sigma_{{}_{3KB.}}^{IV}$.

Для стенок лонжеронов $\sigma_{\text{max}} = 0$ (чистый сдвиг) коэффициент $k_{\text{пр}}$ вычисляется по формуле (14) до потери устойчивости и, если стенка потеряла устойчивость, то по выражению

$$k_{\rm np} = \frac{2 \cdot \tau_{\Sigma}}{\sigma_{\rm B}} \le 1.$$

Значения коэффициента $k_{\rm np} < 1$ позволяют сделать вывод о том, что условие прочности соблюдается.

Литература

- 1. Бадягин А.А., Егер С.М. и др. Проектирование самолетов. М.: Машиностроение, 1972. 516с.
- 2. Зайцев В.Н. Рудаков В.Л. Конструкция и прочность самолетов. Киев: Вища школа, 1976. 400с.
- 3. Шульженко М.Н. Конструкция самолетов. М.: Машиностроение, 1971.
- 4. Кравец А.С. Характеристики авиационных профилей. М.: Оборонгиз, 1939.
- 5. Макаревский А.И., Корчемкин Н.Н., Француз Т.А., Чижов В.М. Прочность самолета. М.: Машиностроение, 1975. 280с.

- 6. Единые нормы летной годности гражданских транспортных самолетов стран членов СЭВ. М.: Изд-во ЦАГИ, 1985. 470с.
- 7. Одиноков Ю.Г. Расчет самолета на прочность. М.: Машиностроение, 1973. 392с.
- 8. Прочность, устойчивость, колебания: Справочник в 3-х т./ Под ред. Биргера И.А., Пановко Я.Г. М: Машиностроение, 1971.
- 9. Авиация. Энциклопедия. Под ред. Свищева Г. П. М: Изд-во большая Российская энциклопедия, 1994. 736с.
- 10.Heinz A.F. Schmidt. Flieger Jahrbuch. Berlin: Transpress VEB Verlag für Verkehrswesen, 1968 1972. 168S.
- 11.Heinz A.F. Schmidt. Flieger Jahrbuch. Berlin: Transpress VEB Verlag für Verkehrswesen, 1973. 168S.
- 12.Heinz A.F. Schmidt. Flieger Jahrbuch. Berlin: Transpress VEB Verlag für Verkehrswesen, 1980. 168S.
- 13.Heinz A.F. Schmidt. Flügzeuge aus aller Welt. V. 1 4. Berlin: Transpress VEB Verlag für Verkehrswesen, 1972 1973.