№ 3983
53
Ф 503

ФИЗИКА ТВЕРДОГО ТЕЛА ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Методическое руководство

ФИЗИКА ТВЕРДОГО ТЕЛА ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Методическое руководство к лабораторным работам № $40-44,48$

УДК 539.2+621.38:53](076.5)
Ф 503

Составители:

> | A.Н. Поддыцмников (введение, лаб. работа № 40); |
| :---: |
| А.В. Морозов, В.В. Христофоров, А.А. Шевченко |
| (лаб. работы № 41, 48); |
| В.В. Христофоров (лаб. работа № 42); |
| О.Ю. Рубчова (лаб. работа № 43); |
| А.М. Погорельский (лаб. работа № 44) |

Рецензенты: А.В. Баранов, В.В. Давыдков

Работа подготовлена на кафедре общей физики

ВВЕДЕНИЕ

1. ЭЛЕМЕНТЫ ЗОННОЙ ТЕОРИИ

Разнообразие электрофизических свойств кристаллических твердых тел удается объяснить с помощью зонной теории, квантовой статистической физики и кинетической теории.

Задача зонной теории - отыскание волновых функций электронов в твердом теле с учетом симметрии кристалла.

Статистическая физика рассматривает вопросы заполнения этих состояний электронами и позволяет получить термодинамические соотношения для электронного газа.

В кинетической теории исследуются механизмы рассеяния электронов на несовершенствах кристаллической структуры при наличии внешних полей, что позволяет вычислить различные кинетические эффекты: электропроводность, эффект Холла, термоЭДС и др.

Особенность состояний электронов в кристаллах объясняется зонной теорией. Свое название она получила оттого, что предсказывает наличие разрешенных и запрещенных зон энергии. Суть зонной теории сводится к решению уравнений Шрёдингера с учетом специфических свойств кристаллов. Теория эта достаточно сложна, однако ее результаты можно понять из довольно простых соображений.

Ниже будет рассмотрен подход, который в литературе известен как приближение слабой связи.

В первую очередь необходимо обратить внимание на симметрию кристаллов, а точнее, лишь на трансляционную симметрию. На основе трех базисных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ можно построить семейство векторов $\mathbf{T}=n_{1} \mathbf{a}+n_{2} \mathbf{b}+n_{3} \mathbf{c}$, где n_{1}, n_{2}, n_{3} - целые числа, включая ноль.

На рис. 1 показан пример двумерной решетки, для которой изображены три вектора $\mathbf{T}_{1}\left(n_{1}=1, n_{2}=1\right), \mathbf{T}_{2}\left(n_{1}=1, n_{2}=3\right), \mathbf{T}_{3}\left(n_{1}=1, n_{2}=-1\right)$. Если представить, что кристалл бесконечный, то нетрудно догадаться,

что вектор трансляции разделяет физические эквивалентные точки (например, точки α и β на рис. 1). Это свойство носит название трансляционной симметрии.

Puc. 1
В силу периодичности атомов в кристалле потенциальная энергия электрона также периодическая и, следовательно, удовлетворяет трансляционной симметрии.

Теперь поставим вопрос о волновой функции. Для простоты рассмотрим одномерную цепочку из ($N+1$) атомов (одномерный кристалл (рис. 2)) с межатомным расстоянием a.

Puc. 2
Поток свободных электронов, не взаимодействующих с кристаллической решеткой, описывается волновой функцией вида

$$
\begin{equation*}
\Psi(x)=\Psi_{0} e^{(\pm i k x)} \tag{1}
\end{equation*}
$$

где Ψ_{0} - постоянная амплитуда; k - волновое число; знак «+» относится к волне, распространяющейся вправо по оси x; знак «-»- к волне, распространяющейся влево. Подстановка такой волны в уравнение Шрёдингера $\frac{\hbar^{2}}{2 m} \frac{\partial^{2} \psi}{\partial x^{2}}+\varepsilon \psi=0$ дает дисперсионное соотношение $\varepsilon=\frac{\hbar^{2} k^{2}}{2 m}$ (закон дисперсии). В случае кристалла волновой множитель
$e^{(\pm i k x)}$, описывающий бегущие волны, должен также присутствовать в волновой функции. Однако амплитуда не может быть просто константой. Причина этого очевидна. Запишем волновую функцию в виде

$$
\begin{equation*}
\Psi(x)=U(x) e^{(\pm i k x)} . \tag{2}
\end{equation*}
$$

Плотность вероятности обнаружения электрона в точке x

$$
\begin{equation*}
\Psi(x) \Psi^{*}(x)=U^{2}(x) \tag{3}
\end{equation*}
$$

должна, очевидно, обладать той же трансляционной симметрией, что и потенциальная энергия. Ведь плотность электронного облака определяется потенциальной энергией решетки. Таким образом,

$$
\begin{equation*}
U^{2}(x+a)=U^{2}(x+n a)=U^{2}(x) \tag{4}
\end{equation*}
$$

Это справедливо и для самой амплитуды: $U(x+a)=U(x)$. Теперь можно сделать вывод о том, что волновая функция должна иметь вид (2) при условии, что амплитуда $U(x)$ обладает периодичностью решетки. Такие волновые функции носят название функций Блоха. Если мысленно представить себе, что потенциал решетки стремится к нулю или к постоянной величине, то волновая функция (2) переходит в волновую функцию (1).

Обсудим теперь вопрос о волновых числах k. Электрон в твердом теле находится в потенциальной яме. Поэтому, как и для бесконечно глубокой потенциальной ямы, половина волны должна укладываться целое число раз на размере ямы $l: \lambda / 2=l / j$. Соответственно $k=2 \pi / \lambda=$ $=(\pi / l) j, \quad j=1,2, \ldots$ Для решетки размер потенциальной ямы $l=N a$ и $k=(\pi / N a) j$. Из всех чисел j только числа в интервале от 1 до N имеют смысл, так как при $j>N$ число j может быть представлено как $j=n+j^{\prime}$. Тогда

$$
\begin{aligned}
\exp (i k x)= & \exp \left(i \frac{\pi N}{N a} j x\right)=\exp \left(i \frac{\pi N}{N a} x+i \frac{\pi}{N a} j^{\prime} x\right)= \\
= & \exp \left(i \frac{\pi}{a} x\right) \exp \left(i \frac{\pi}{N a} j^{\prime} x\right)
\end{aligned}
$$

Экспонента $\exp \left(i \frac{\pi}{a} x\right)$ обладает той же периодичностью, что и решетка:

$$
\exp \left(i \frac{\pi}{a}(x+n a)\right)=\exp (i \pi n) \exp \left(i \frac{\pi}{a} x\right)= \pm \exp \left(i \frac{\pi}{a} x\right)
$$

Величину $\exp \left(i \frac{\pi}{a} x\right)$ можно внести в амплитуду $U(x)$, что не меняет соотношений (3) и (4), так как $\left|\exp \left(i \frac{\pi}{a} x\right)\right|=1$. Если еще учесть, что существуют волны, распространяющиеся вправо и влево вдоль оси x, то физически различимые состояния лежат в интервале волновых чисел k от $-\pi / a$ до π / a. Этот интервал носит название первой зоны Бриллюэна.

Рассмотрим вопрос об особенностях закона дисперсии электронов в кристалле. Для начала можно представить себе, что решетка есть, но потенциал, создаваемый ей, равен нулю. Таким образом, осуществлен переход к потенциальной яме размером $l=N a$ с нулевым потенциалом внутри. В этом случае закон дисперсии представляет собой квадратичную параболу $\varepsilon=\frac{\hbar^{2} k^{2}}{2 m}$ (рис. 3) без особенностей в точках $\pm \frac{\pi}{a} j$. Волновые числа принимают дискретный ряд с шагом $\Delta k=\frac{\pi}{N a}$.

Рассмотрим ситуацию, когда потенциал, создаваемый атомами, отличен от нуля. В этой ситуации распространяющиеся волны становятся волнами Блоха и взаимодействуют с кристаллом тем больше, чем больше потенциал. Взаимодействие приводит к особенностям в законе дисперсии в точках $\pm \frac{\pi}{a} j$. Для волн с такими волновыми числами, распространяющихся вдоль цепочки атомов, выполняется условие дифракции Вульфа-Брегга: $2 a \sin \theta=j \lambda$ при $\theta=0$ (наш случай), $\lambda=\frac{2 a}{j}$ или для k выполняется условие $k=\frac{2 \pi}{\lambda}=\frac{\pi}{a} j$.

Это означает следующее. Волна, соответствующая, например, состоянию 1 (рис. 4), последовательно отражаясь от атомной цепочки, переходит в волну 1'. Та в свою очередь переходит в 1 и т. д. Иначе говоря, состояния 1 и 1^{\prime} не могут существовать независимо, а только в паре $\left(k= \pm \frac{\pi}{a}\right)$, что соответствует стоячей волне. Следовательно, состояния 1 и 1' представляют собой одно единственное состояние

в отличие от любой произвольной пары состояний с k и $-k$, которые независимы и реализуются тогда, когда они заполнены.

Pис. 3

Puc. 4

Однако и для состояний с $k= \pm \frac{\pi}{a}$ существует два варианта образования стоячих волн, связанных с отражением в фазе и противофазе:

$$
\begin{align*}
& \Psi_{1}=U_{1}(x) \exp \left(i \frac{\pi}{a} x\right)+U_{1}(x) \exp \left(-i \frac{\pi}{a} x\right)=2 U_{1}(x) \cos \left(\frac{\pi}{a} x\right) \tag{5}\\
& \Psi_{2}=U_{1}(x) \exp \left(i \frac{\pi}{a} x\right)-U_{1}(x) \exp \left(-i \frac{\pi}{a} x\right)=i 2 U_{1}(x) \sin \left(\frac{\pi}{a} x\right) \tag{6}
\end{align*}
$$

Соответственно плотности вероятностей этих двух состояний имеют вид

$$
\begin{align*}
& \Psi_{1} \Psi_{1}^{*}=4 U_{1}^{2}(x) \cos ^{2}\left(\frac{\pi}{a} x\right) \tag{7}\\
& \Psi_{2} \Psi_{2}^{*}=4 U_{2}^{2}(x) \sin ^{2}\left(\frac{\pi}{a} x\right) \tag{8}
\end{align*}
$$

Из последних формул видно, что волновая функция Ψ_{1} соответствует максимуму вблизи атомов решетки, а Ψ_{2} - максимуму в промежутке между атомами (рис. 5). Так как атомы заряжены положительно, то энергия первого состояния будет меньше энергии второго состояния. Таким образом, в точках, где волновые числа k равны $\pm \frac{\pi}{a}, \pm \frac{2 \pi}{a}$

Потенциальная энергия

Puc. 5

и т.д., образуется энергетические щели, или, как их принято называть, запрещенные зоны энергий.

Отметим еще одну особенность в законе дисперсии. Как известно, стоячие волны не переносят ни энергии, ни импульса и их групповая скорость $v_{\text {г }}=\frac{d w}{d k}=\frac{1}{\hbar} \frac{d \varepsilon}{d k}=0$. Следовательно, в точках $\pm \frac{\pi}{a} j$ производные $\frac{d \varepsilon}{d k}$ должны быть равны нулю, что соответствует экстремумам в законе дисперсии. Необходимо отметить последнюю деталь закона дисперсии. Детальный анализ показывает, что в зонах разрешенных энергий состояния, разделенные интервалом $\frac{2 \pi}{a}, \frac{4 \pi}{a}$ и т. д., эквивалентны. На рис. 4 они отмечены цифрами. Это обстоятельство позволяет проделать операцию приведения закона дисперсии к первой зоне Бриллюэна. Так кривая 2, 3, 4 перейдет в кривую $2^{\prime}, 3^{\prime}, 4^{\prime}$, а кривая 2^{\prime}, $3^{\prime \prime}$ перейдет в кривую $2,3^{\prime}$.

2. МЕХАНИЗМ ПЕРЕНОСА ЗАРЯДА

В зависимости от того, как заполнены зоны электронами, кристаллы разделяют на диэлектрики, полупроводники и металлы. Рассмотрим сначала полностью заполненную зону (рис. 6). Под действием электрического поля \mathbf{E} за промежуток времени Δt волновое число электронов меняется на величину $\Delta k=-\frac{e E \Delta t}{\hbar}$. При этом электроны переходят по состояниям (направление переходов указано стрелкой на рис. 6), оставляя состояния заполненными, как и в случае отсутствия поля. Для каждого заполненного состояния с волновым числом k есть симметричное ему состояние с $-k$. Два состояния с k и $-k$ интерферируют и дают стоячую волну. Это справедливо для всей зоны. Поэтому полностью заполненная зона не дает вклада в перенос заряда (ток).

Рассмотрим теперь зону, заполненную частично так, как показано на рис. 7, a. В отсутствие электрического поля (рис. 7, a) состояния заполнены симметрично и описываются стоячими волнами. Электрическое поле, увеличивая волновые числа, создает асимметрию в заполнении состояний (рис. 7, б). В этом случае для некоторых состояний нет состояний с отрицательными волновыми числами. Поэтому эти состояния будут описываться бегущими волнами и,

Puc. 6
 в направлении, противоположном полю. Таким образом, не полностью заполненная зона при наличии электрического поля дает вклад в перенос заряда. (Отклонение заполнения состояний в зоне за счет тепловых возбуждений от симметричного заполнения приводит к появлению случайных токов (шумы).)

Puc. 7
Определенный интерес представляет рассмотрение поведения электронов почти заполненной зоны. Будем считать, что все состояния, кроме малой доли, вблизи потолка зоны, заполнены электронами. Эту ситуацию можно проанализировать, исходя из двух законов дисперсии (рис. 8, a и $9, a$).

Как видно из рисунков, под действием электрического поля электроны заполняют состояния, смещаясь вправо в сторону увеличения

волнового числа k. (Напомним, что волнистыми стрелками указано направление распространения волн, соответствующее направлению групповой скорости $v_{\text {г }}=\frac{1}{\hbar} \frac{d \varepsilon}{d k}$, а стрелки, соединяющие состояния в точках $\pm \frac{\pi}{a}$, означают, что это одно и то же состояние.)

Результат асимметрии заполнения состояний (рис. 8, б и 9, б) - бегущие волны в положительном направлении оси x, что соответствует электрическому току в направлении электрического поля и полностью совпадает с ранее рассмотренной ситуацией для частично заполненной зоны вблизи ее дна.

Если вспомнить исходный момент рассмотрения, то возникает вполне естественное желание перейти от описания через большое число электронов (тем более что бо́льшая их часть заполняет состояния,

Puc. 9

соответствующие стоячим волнам) к малому числу незаполненных состояний. Как видно из рис. 8 , б и $9, ~ б$, перенос осуществляют только те электронные волны, для которых состояния, противоположные по волновому числу k, не заполнены. Если представить себе, что незаполненные состояния заполнены «электронами» с положительным зарядом и им приписаны соответствующие электронные волны, а в остальных состояниях электроны отсутствуют (см. рис. 8, в и 9, в), то результат совпадает с исходной кривой (рис. $8, \sigma$ и $9, б$).

С другой стороны, рассмотренная ситуация эквивалентна показанной на рис. 10. На этом рисунке рассмотрены те же законы дисперсии, только перевернутые по энергии (верхний график рис. 10 соответствует рис. $8, \boldsymbol{\varepsilon}$; нижний график рис. 10 - рис. 9, в) и заполненные положительными частицами. Нетрудно убедиться в том, что, например, ситуации на рис. 8 , в и 9 , в и рис. 10 фактически не различимы. Другими словами, движение электронов почти заполненной зоны может быть заменено эквивалентным им «движением» незаполненных состояний как положительно заряженных частиц. Таким образом, подходят к понятию дырки.

Рассмотренные особенности поведения электронов в зонах позволяют разделить твердые тела на металлы, диэлектрики и полупроводники. С этой точки зрения последняя зона для металлов должна быть заполнена частично, что обусловливает проводимость металлов вплоть до абсолютного нуля температуры. В полупроводниках и диэлектриках должны существовать две разрешенные зоны, разделенные между собой запрещенной зоной, причем нижняя зона при абсолютном нуле температуры должна быть, как и ниже расположенные разрешенные зоны, полностью заполнена, а верхняя - пуста. В такой ситуации проводимость при $T=0$ К отсутствует. С ростом температуры в полупроводниках электроны последней заполненной зоны, называемой валентной, переходят в верхнюю (зону проводимости) за счет термического возбуждения при относительно малой ширине

Puc. 10

запрещенной зоны ($\Delta \varepsilon \sim 1$ эВ). При этом перенос заряда осуществляется как электронами зоны проводимости, так и дырками валентной зоны. Отличие диэлектриков от полупроводников - только в наличии более широкой запрещенной зоны, что практически исключает тепловое возбуждение носителей заряда.

3. ПРИБЛИЖЕНИЕ СИЛЬНОЙ СВЯЗИ

В рассмотренном приближении слабой связи предполагается, что периодический потенциал кристалла является слабым возмущением движения свободного электрона.

Возможен другой подход к описанию движения электрона в твердом теле. В основу описания можно взять волновые функции изолированных атомов и предположить, что при образовании кристалла эти функции слабо меняются. Такой подход к описанию движения электронов называется приближением сильной связи. Очевидно, такое приближение должно лучше описывать поведение электронов относительно глубоких энергетических состояний.

Конкретных методов расчета достаточно много. Однако в основе всех методов заложен принцип - волновая функция электрона в кристалле строится как линейная комбинация волновых функций изолированных атомов, причем построенная волновая функция должна удовлетворять как трансляционной симметрии кристалла, так и всем другим симметриям кристалла. Как и в приближении слабой связи, метод сильной связи показывает, что отдельные уровни энергий изолированных атомов преобразуются при сближении атомов в зоны разрешенных и запрещенных энергий.

К такому выводу можно прийти исходя из довольно простых соображений. При сближении атомов, образующих кристалл, до расстояний порядка $\Delta r=10^{-10}$ м волновые функции электрона с энергией ε_{i} изолированного атома начинают перекрываться, что приводит к обобществлению электронов.

В изолированном атоме электрон в состоянии с энергией ε_{i} находится неограниченно долго. При обобществлении электронов каждый электрон, переходя от одного атома к другому, находится вблизи атома некоторое время Δt. Из соотношения неопределенностей следует, что уровень с энергией ε_{i} размывается в зону с шириной $\Delta \varepsilon_{i}=\frac{\hbar}{\Delta t}$. Оценку

ширины зоны можно сделать из простых соображений. Скорость электрона в атоме можно оценить из соотношения неопределенностей $\Delta r \Delta p \approx \hbar$, где $\Delta r \approx 10^{-10} \mathrm{~m}, \Delta p=p-0=m v$. Отсюда $v=10^{6} \mathrm{~m} / \mathrm{c}$. Время прохождения электроном атомного пространства равно по порядку величины $\tau \approx \frac{\Delta r}{v}=10^{-16}$ с. Двигаясь вблизи ядра атома, электрон совершает 10^{16} колебательных движений в 1 с.

В кристалле электроны туннелируют от одного атома к другому. Оценить вероятность туннелирования можно по известной формуле потенциального барьера $\exp \left(-\frac{2}{\hbar} \sqrt{2 m(U-\varepsilon)^{\prime}}\right)$, где $U-\varepsilon \approx 10$ эВ, что соответствует по порядку величины энергии ионизации атомов. Из формул следует, что вероятность туннелирования примерно 0,04 . Следовательно, из 10^{16} колебательных движений $10^{16} \cdot 0,04=4 \cdot 10^{14}$ раз в 1 с электрон покидает атом. Это означает, что через время $\Delta t=$ $=1 / 4 \cdot 10^{14}=2,5 \cdot 10^{-15}$ с электрон покидает атом. Отсюда ширина зоны по порядку величины равна $\Delta \varepsilon=\frac{\hbar}{\Delta t} \approx 0,26$ эВ.

Даже такая грубая оценка показывает, что уровень расщепляется в достаточно широкую зону для валентных электронов.

Что касается электронов внутренних оболочек, то расщепление этих уровней несущественно из-за малой вероятности туннелирования.

Расщепление атомарного уровня в зону также должно удовлетворять принципу Паули. В случае, если уровень ε_{i} в атоме не вырожден, он должен расщепляться на N уровней в кристалле, содержащем N атомов. (Заметим, что расстояние между отдельными уровнями в зоне $\Delta \varepsilon / N$ очень мало, если $N \sim N_{\mathrm{A}} \sim 10^{26}$.) Так s-состояние должно расщепляться на N уровней, p-состояние - на $3 N$ уровней и т.д. С учетом спина, в s-состояниях может находиться $2 N$ электронов, в p-состояниях $6 N$ электронов. (Здесь $N_{\mathrm{A}} \approx 6,0 \cdot 10^{26}$ кмоль - число Авогадро.)

Расчеты для реальных кристаллов показывают, что, например, возможно как перекрытие зон, так и перемешивание. Так, натрий ($\mathrm{Na}=$ $=\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{1}$) с внутренней конфигурацией неона имеет один валентный электрон в $3 s$-состоянии. Это состояние расщепляется на N уровней в зону. Чтобы полностью заполнить зону, необходимо $2 N$ электронов с учетом спина. Таким образом, $3 s$-зона заполнена электронами наполовину и натрий является металлом. Казалось бы, что сле-

дующий элемент в таблице Менделеева - магний $\left(\mathrm{Mg}=\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2}\right)$, имеющий два электрона в $3 s$-состоянии, должен быть диэлектриком. Однако известно, что магний - металл. Это объясняется тем, что более высокая по энергии зона, образованная из $3 p$-состояний, перекрывается с зоной из $3 s$-состояний, образуя общую зону, которая полностью не заполнена электронами.

В этом периоде таблицы Менделеева за алюминием следует кремний ($\mathrm{Si}=\left[1 s^{2} 2 s^{2} 2 p^{6}\right] 3 s^{2} 3 p^{6}$), который является полупроводником. Расчеты показывают, что в кремнии $3 s$ - и $2 p$-состояния перемешаны и образуют две зоны энергий, разделенных запрещенной зоной примерно 1,1 эВ. Нижняя зона, содержащая четыре состояния на атом, при температуре абсолютного нуля оказывается полностью заполненной. При относительно малой ширине запрещенной зоны кремния с ростом температуры часть электронов переходит в более высокую по энергии зону, обеспечивая проводимость двумя зонами (дырками и электронами).

Puc. 11
Наибольшие трудности в приближении сильной связи представляет расчет закона дисперсии электронов в зонах для реальных кристаллов. Однако необходимо отметить, что состояния электронов, соответствующие границе зоны Бриллюэна, как и в приближении слабой связи, испытывают брегговское отражение. Таким образом, в экстремальных точках, таких как $k=0, k=\frac{\pi}{a}$ и др., состояния описываются стоячими

волнами, а производная $\frac{d \varepsilon}{d k}=0$. В качестве примера на рис. 11 представлены законы дисперсии германия и арсенида галлия. Из закона дисперсии видно, что потолок валентной зоны германия и арсенида галлия находится в центре зоны Бриллюэна. Однако зоны проводимости имеют существенное различие. Дно зоны проводимости арсенида галлия находится в центре зоны Бриллюэна, а у германия дно зоны проводимости находится на границе зоны Бриллюэна.

4. КОНЦЕНТРАЦИЯ ЭЛЕКТРОНОВ И ДЫРОК В ПОЛУПРОВОДНИКАХ

Для анализа поведения полупроводников обычно пользуются двухзонной моделью (рис. 12). В литературе часто вместо закона дисперсии приводят соответствующие ему энергетические диаграммы (рис. 13) собственного полупроводника (a), примесного n-типа (б), примесного p-типа (в), где $\Delta \varepsilon_{\mathrm{A}}$ - энергия активизации примеси.

Заполненная зона от $\varepsilon_{\mathrm{v}}^{\prime}$ до ε_{v} называется валентной. Зона от ε_{c} до $\varepsilon_{\mathrm{c}}^{\prime}$ называется зоной проводимости. Обычно различают собственные и примесные полупроводники. Собственным полупроводником называют абсолютно чистый полупроводник, зонная структура которого показана на рис. 12 и на энергетической диаграмме рис. 13, a. Наличие примесей приводит к появлению дополнительных уровней энергии для

Puc. 12

Puc. 13

электронов. Полупроводники, у которых примесный уровень лежит в запрещенной зоне вблизи дна зоны проводимости (рис. 13, б), называются донорными. Те, у которых примесный уровень лежит вблизи потолка валентной зоны (рис. 13, в), называют акцепторными. Например, для четырехвалентного германия донорной примесью будут атомы пятивалентных элементов (мышьяк, фосфор), а акцепторной примесью атомы трехвалентных элементов (индий, бор).

В силу того, что примесь в кристалле распределяется случайно, примесные состояния не образуют зоны, т. е. электроны этих состояний не могут двигаться в кристалле, оставаясь связанными с примесными атомами. Однако если электроны донорных уровней перейдут в зону проводимости, например, при фотоэффекте или при термическом возбуждении, они будут участвовать в переносе заряда так, как это описано в пункте 2 .

Переход электронов на акцепторный уровень из валентной зоны приводит к появлению в валентной зоне дырок, которые также могут участвовать в переносе заряда.

Для таких полупроводников, как германий и кремний, с достаточно хорошей точностью выполняются условия: $\Delta \varepsilon \gg k_{\mathrm{b}} T, \varepsilon_{\mathrm{c}}^{\prime}-\varepsilon_{\mathrm{c}} \gg k_{\mathrm{b}} T$, $\varepsilon_{\mathrm{v}}-\varepsilon_{\mathrm{v}}^{\prime} \gg k_{\mathrm{b}} T$ для широкого интервала температур (заметим, что $k_{\mathrm{Б}} T=$ $=1$ эВ соответствует $T \cong 11000$ К. Здесь $k_{\text {Б }}$ - постоянная Больцмана). Благодаря этому количество термически возбужденных электронов и дырок будет мало по сравнению с числом состояний в соответствующей зоне, т.е. электроны и дырки будут находиться вблизи экстремальных точек ε_{v} и ε_{c} (см. рис. 12). Вблизи этих точек закон дисперсии можно представить квадратичными параболами $\varepsilon=\varepsilon_{\mathrm{c}}+\frac{\hbar^{2} k^{2}}{2 m_{e}}$ - для зоны проводимости, $\varepsilon=\varepsilon_{\mathrm{c}}+\frac{\hbar^{2} k^{2}}{2 m_{p}}$ - для валентной зоны, где m_{e} и $m_{p}-$ эффективные массы электронов и дырок соответственно. Это обстоятельство позволяет считать электроны и дырки свободными частицами в соответствующих зонах и определить плотности состояний в зонах как для свободных частиц:

$$
\begin{aligned}
& \rho_{\mathrm{c}}(\varepsilon)=\frac{\pi}{4}\left(\frac{2 m_{e}}{\pi^{2} \hbar^{2}}\right)^{3 / 2} \sqrt{\varepsilon-\varepsilon_{\mathrm{c}}}-\text { плотность состояний электронов; } \\
& \rho_{\mathrm{p}}(\varepsilon)=\frac{\pi}{4}\left(\frac{2 m_{p}}{\pi^{2} \hbar^{2}}\right)^{3 / 2} \sqrt{\varepsilon_{\mathrm{v}}-\varepsilon}-\text { плотность состояний дырок (для еди- }
\end{aligned}
$$

ничного объема полупроводника).

Среднее число электронов в квантовом состоянии описывается распределением Ферми-Дирака:

$$
\begin{equation*}
f(\varepsilon)=\left(\exp \left(\frac{\varepsilon-\varepsilon_{\mathrm{F}}}{k_{\mathrm{F}} T}\right)+1\right)^{-1}, \tag{9}
\end{equation*}
$$

где ε_{F} - химический потенциал, или энергия Ферми, электронов. Очевидно, что среднее число дырок определится как

$$
\begin{equation*}
1-f(\varepsilon)=\left(\exp \left(\frac{\varepsilon_{\mathrm{F}}-\varepsilon}{k_{\mathrm{B}} T}\right)+1\right)^{-1} \tag{10}
\end{equation*}
$$

Тогда концентрация электронов и дырок определяется следующими выражениями:

$$
\begin{equation*}
n=2 \int_{\varepsilon_{\mathrm{c}}}^{\varepsilon_{\mathrm{c}}^{\prime}} \rho_{\mathrm{c}}(\varepsilon) f(\varepsilon) d \varepsilon, \quad p=2 \int_{\varepsilon_{\mathrm{V}}^{\prime}}^{\varepsilon_{\mathrm{V}}} \rho_{p}(\varepsilon)(1-f(\varepsilon)) d \varepsilon \tag{11}
\end{equation*}
$$

где цифра 2 учитывает краткость вырождения состояний за счет спина электрона. Заметим, что для электронов и дырок среднее число частиц в квантовом состоянии совпадает с вероятностью заполнения этих состояний.

При условии, что $\varepsilon_{\mathrm{c}}^{\prime}-\varepsilon_{\mathrm{c}} \gg k_{\mathrm{D}} T$ и $\varepsilon_{\mathrm{v}}-\varepsilon_{\mathrm{v}}^{\prime} \gg k_{\mathrm{D}} T, \varepsilon_{\mathrm{c}}-\varepsilon_{\mathrm{F}} \gg k_{\mathrm{b}} T$ и $\varepsilon_{\mathrm{F}}-\varepsilon_{\mathrm{v}} \gg k_{\mathrm{B}} T$ в распределениях (9) и (10) можно пренебречь единицей. Это означает, что электроны и дырки при этих условиях описываются квазиклассическим распределением. Подставляя $f(\varepsilon)=$ $=\left(\exp \left(\frac{\varepsilon-\varepsilon_{\mathrm{F}}}{k_{\mathrm{B}} T}\right)\right)^{-1}$ и $1-f(\varepsilon)=\left(\exp \left(\frac{\varepsilon_{\mathrm{F}}-\varepsilon}{k_{\mathrm{F}} T}\right)\right)^{-1}$ в интегралы (11), после введения новых переменных $\frac{\varepsilon-\varepsilon_{\mathrm{c}}}{k_{\mathrm{D}} T}=x$ и $\frac{\varepsilon_{\mathrm{v}}-\varepsilon}{k_{\mathrm{b}} T}=y$ интегралы
вычисляются довольно просто. В результате получаем
$n=\frac{1}{4}\left(\frac{2 m_{e} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} \exp \left(\frac{\varepsilon_{\mathrm{F}}-\varepsilon_{\mathrm{c}}}{k_{\mathrm{D}} T}\right), \quad p=\frac{1}{4}\left(\frac{2 m_{p} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} \exp \left(\frac{\varepsilon_{\mathrm{v}}-\varepsilon_{\mathrm{F}}}{k_{\mathrm{B}} T}\right)$.

Для вычисления концентраций в последних выражениях не достает зависимости энергии Ферми от температуры.

Для собственных полупроводников $n=p$ (условие электронейтральности) и тогда

$$
\begin{equation*}
\varepsilon_{\mathrm{F}}=\frac{\varepsilon_{\mathrm{c}}-\varepsilon_{\mathrm{v}}}{2}+\frac{3}{4} k_{\mathrm{b}} T \ln \left(\frac{m_{p}}{m_{e}}\right) \tag{13}
\end{equation*}
$$

$n^{2}=p^{2}=n p$ и тогда

$$
\begin{equation*}
n=p=\frac{1}{4}\left(\frac{2 \sqrt{m_{e} m_{p}} k_{\mathrm{B}} T}{\pi \hbar^{2}}\right)^{3 / 2} \exp \left(\frac{\Delta \varepsilon}{2 k_{\mathrm{B}} T}\right) . \tag{14}
\end{equation*}
$$

Как видно из последних формул, в собственных полупроводниках уровень Ферми лежит в середине запрещенной зоны при $T=0$ и с ростом температуры движется в сторону зоны с меньшей эффективной массой. Например, если $m_{e}<m_{p}$, плотность состояний в зоне проводимости меньше, чем в валентной зоне, так как $\rho \sim \sqrt{m}$. Для выполнения условия $n=p$ необходимо увеличить вероятность заполнения уровней электронами в зоне проводимости и уменьшить вероятность заполнения состояний дырками в валентной зоне. Эта ситуация реализуется при смещении уровня Ферми в сторону зоны проводимости, т.е. в сторону меньшей эффективной массы.

Более сложная ситуация в примесных полупроводниках. Однако и в них положение уровня Ферми находится из условия электронейтральности: $n+N_{\mathrm{a}}^{-}=p+N_{\mathrm{d}}^{+}$, где $N_{\mathrm{d}}^{+}-$концентрация ионизованной донорной примеси; $N_{\mathrm{a}}^{-}=N_{\mathrm{a}}-N_{\mathrm{a}}^{+} ; N_{\mathrm{a}}^{+}-$концентрация акцепторной примеси.

Рассмотрим, например, донорный полупроводник (n-типа). Для него $N_{\mathrm{a}}=0$. При абсолютном нуле уровень Ферми лежит между примесным уровнем и дном зоны проводимости. В этой области температур $p \ll n$ и $n \approx N_{\mathrm{d}}^{+} \approx N_{\mathrm{d}} \exp \left(\frac{-\Delta \varepsilon_{\mathrm{A}}}{k_{\mathrm{B}} T}\right)$. При дальнейшем росте температуры достигается такое состояние, когда $N_{\mathrm{d}}^{+} \approx N_{\mathrm{d}}$ и увеличение концентра-

ции электронов в зоне проводимости происходит за счет переходов электронов из валентной зоны. Естественно, что можно повысить температуру до такой величины, что будет выполняться условие $n \approx p$, т. е. полупроводник станет собственным.

5. ЭЛЕКТРОПРОВОДНОСТЬ ПОЛУПРОВОДНИКОВ

Рассмотренные зависимости концентрации от температуры в первую очередь проявляют себя при исследовании электропроводности полупроводников. Электропроводность полупроводника определяется в общем случае двумя типами носителей заряда: $\sigma=e\left(n \mu_{e}+p \mu_{p}\right)$, где e - заряд электрона, μ_{e} и μ_{p} - подвижности электронов и дырок соответственно. (Заметим, что подвижность определяет дрейфовую скорость \mathbf{v} носителей заряда: $\left|\mathbf{v}_{e}\right|=\mu_{e}|\mathbf{E}|,\left|\mathbf{v}_{p}\right|=\mu_{p}|\mathbf{E}|$.) Таким образом, от температуры могут зависеть только концентрация и подвижность. Очевидно, что подвижность тем выше, чем реже сталкиваются частицы, чем менее интенсивное рассеяние. В полупроводниках возможны следующие механизмы рассеяния: рассеяние на ионах и нейтральных атомах примеси; на дефектах кристаллической структуры и в основном на колебаниях решетки (фононы). Как показывают расчеты, зависимость подвижности от температуры можно представить себе как степенную функцию: $\mu \sim T^{\alpha}$, где α определяется видом рассеяния. Например, при рассеянии на акустических колебаниях решетки $\alpha=-3 / 2$. Естественно, что более сильная зависимость концентрации от температуры $\exp \left(\frac{\Delta \varepsilon}{2 k_{\mathrm{B}} T}\right)$ по сравнению с температурной зависимостью подвижности и определяет прежде всего зависимость проводимости от температуры. На рис. 14 показана типичная зависимость логарифма электропроводности от обратной температуры. Линейные области соответствуют собственной проводимости I и примесной III. Область II - переходная область.

Puc. 14

Для полупроводника в области I (рис. 14) наиболее эффективно рассеяние на фононах. Учитывая в (14) $n=p \sim T^{3 / 2} \exp \left(\frac{-\Delta \varepsilon}{2 k_{\mathrm{B}} T}\right)$, получаем

$$
\begin{equation*}
\sigma=\sigma_{0} \exp \left(\frac{-\Delta \varepsilon}{2 k_{\mathrm{B}} T}\right), \tag{15}
\end{equation*}
$$

где σ_{0} не зависит от температуры.

ЛАБОРАТОРНАЯ РАБОТА № 40

ОПРЕДЕЛЕНИЕ ШИРИНЫ ЗАПРЕЩЕННОЙ ЗОНЫ ПОЛУПРОВОДНИКА

1. ЦЕЛЬ РАБОТЫ

Исследовать зависимость электропроводности полупроводника от температуры и по ней определить ширину запрещенной зоны полупроводника.

2. МЕТОДИКА ЭКСПЕРИМЕНТА

В лабораторной работе для исследования берется примесный полупроводник с примесью одного сорта атомов. Нагреванием полупроводник переводится в область собственной проводимости. Во введении было показано, что при относительно высоких температурах электропроводность полупроводника в области собственной проводимости равна $\sigma=\sigma_{0} \exp \left(\frac{-\Delta \varepsilon}{2 k_{\mathrm{Б}} T}\right)$.

Обычно экспериментально измеряются ток через образец, падение напряжения и температура. Поэтому удобнее пользоваться величиной сопротивления образца: $R=R_{0} \exp \left(\frac{\Delta \varepsilon}{2 k_{\mathrm{B}} T}\right)$. Из последней формулы,

логарифмируя, получаем $\ln R=\ln R_{0}+\frac{\Delta \varepsilon}{2 k_{\mathrm{Б}} T}$ (линейная зависимость $\ln R$ от $\left.\frac{1}{T}\right)$.

Вычисляем производную по $\frac{1}{T}$:

$$
\frac{d(\ln R)}{d\left[\frac{1}{T}\right]}=\frac{\Delta \varepsilon}{2 k_{\text {Б }}},
$$

откуда для ширины запрещенной зоны получим формулу

$$
\begin{equation*}
\Delta \varepsilon=2 k_{\mathrm{B}} \frac{d(\ln R)}{d\left[\frac{1}{T}\right]} \tag{1}
\end{equation*}
$$

Формула (1) позволяет рассчитать ширину запрещенной зоны полупроводника, если пользоваться графиком зависимости $\ln R$ от обратной температуры $\frac{1}{T}$. При этом численное значение производной, учитывая линейный характер зависимости, можно заменить отношением конечных приращений: $\frac{d(\ln R)}{d\left[\frac{1}{T}\right]}=\frac{\Delta(\ln R)}{\Delta\left[\frac{1}{T}\right]}$.

3. ЗАДАНИЕ

1. Собрать схему, приведенную в инструкции к установке.
2. Пользуясь инструкцией, включить установку.
3. Измерить падение напряжения на образце в зависимости от температуры.
4. Построить график зависимости $\ln R$ от обратной температуры $\frac{1}{T}$.
5. На линейном участке графика определить величину производной $\Delta(\ln R)$

и, пользуясь формулой (1), рассчитать ширину запрещенной зоны полупроводника, из которого изготовлен образец.
6. Пользуясь табл. 1 в приложении, определить, из какого полупроводника изготовлен образец.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Объяснить особенности закона дисперсии для электронов в кристалле.
2. Почему электроны полностью заполненной зоны не дают вклада в электрический ток?
3. Что такое электрический ток в зонной теории?
4. Что такое дырка в полупроводниках?
5. Что такое металлы, диэлектрики и полупроводники с точки зрения зонной теории?
6. Почему в полупроводниках электроны и дырки описываются «квазиклассическим распределением», а не распределением ФермиДирака?
7. Объяснить температурную зависимость энергии Ферми в собственных полупроводниках.
8. Какими факторами определяется электропроводность полупроводника?
9. Объяснить температурную зависимость электропроводности.
10. Вывести расчетную формулу (1) для определения ширины запрещенной зоны.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Епифанов Г.И. Физика твердого тела. - М.: Высшая школа, 1977. C. 67-88, 113-164.
2. Савельев И.В. Курс общей физики. - М.: Наука, 1979. - Т. 3. - С. 173204.

ЛАБОРАТОРНАЯ РАБОТА № 41

ЭФФЕКТ ХОЛЛА В ПРИМЕСНЫХ ПОЛУПРОВОДНИКАХ

\author{

1. ЦЕЛЬ РАБОТЫ
}

Изучить эффект Холла в примесных полупроводниках. Ознакомиться с методом измерения концентрации и подвижности основных носителей тока в примесных полупроводниках с помощью эффекта Холла.

2. КРАТКОЕ ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Эффект Холла заключается в появлении поперечной по отношению к направлению электрического тока разности потенциалов в образце, который помещен в поперечное магнитное поле.

Пусть по полупроводниковому образцу, имеющему форму прямоугольного параллелепипеда, протекает электрический ток силой I (от контакта 1 к 2) поддерживаемый источником ЭДС Е (рис. 1). Выберем на нижней и верхней гранях образца точки 3 и 4 , лежащие напротив друг друга. Припаяем к ним измерительные зонды, к которым подключим вольтметр. Поместим образец в поперечное магнитное поле, как показано на рис. 1. Теперь на движущиеся носители заряда будет действовать сила Лоренца, отклоняющая их в поперечном направлении. В результате грань образца, которой принадлежит точка 3, получит избыточный заряд одного знака, а грань с точкой 4 - другого. Между этими противоположно заряженными гранями возникнут электрическое поле (холловское поле) и, следовательно, поперечная разность потенциалов. Эта разность потенциалов U_{X} также называется холловской, а само явление - поперечным эффектом Холла.

Puc. 1

Опыт показывает, что холловская разность потенциалов равна

$$
\begin{equation*}
U_{\mathrm{X}}=R_{\mathrm{X}} \frac{I B}{b}, \tag{1}
\end{equation*}
$$

где I - сила тока, протекающего по образцу; B - индукция магнитного поля; b - толщина образца (размер по магнитному полю); $R_{\mathrm{X}}-$ постоянная Холла, зависящая от рода вещества.

Рассмотрим механизм появления поперечной разности потенциалов в примесном полупроводнике. Если основными носителями тока в образце являются электроны (полупроводник n-типа), их дрейфовая скорость $\mathbf{v}_{\text {др }}$ направлена против направления тока. Сила Лоренца $\mathbf{F}_{\text {ת }}$, действующая на каждый электрон, перпендикулярна как вектору дрейфовой скорости, так и вектору магнитной индукции В и равна

$$
\mathbf{F}_{\text {ת }}=q_{e}\left[\mathbf{v}_{\text {др }}, \mathbf{B}\right],
$$

где q_{e} - заряд электрона.
В ситуации, которая изображена на рис. 1, сила Лоренца будет смещать электроны к нижней грани образца (точка 3) в результате чего грань получит избыточный отрицательный заряд. На верхней грани за счет оттока от нее электронов возникнет нескомпенсированный положительный заряд ионов донорной примеси. Перераспределение заряда приведет к появлению в пространстве между гранями поперечного электрического поля, вектор напряженности которого \mathbf{E}_{X} направлен от положительно заряженной грани к заряженной отрицательно. Электроны будут испытывать со стороны этого электрического поля действие силы, направленной против \mathbf{E}_{X} :

$$
\mathbf{F}_{\text {эл }}=q_{e} \mathbf{E}_{\mathbf{X}} .
$$

Из сказанного следует, что на электрон внутри образца действуют одновременно две поперечные противоположно направленные силы: сила Лоренца и сила со стороны поперечного электрического поля. Накопление избыточного заряда на гранях образца прекратится, если векторная сумма этих сил станет равной нулю. Достигнутое при этом состояние называется стационарным, т. е. не меняющимся со временем. Для этого состояния выполняется равенство

$$
\left|\mathbf{F}_{\pi}\right|=q_{e}\left|\mathbf{E}_{\mathrm{X}}\right|,
$$

Напряженность холловского поля связана с холловской разностью потенциалов U_{X} между точками 3 и 4 образца формулой

$$
E_{\mathrm{X}}=\frac{U_{\mathrm{X}}}{d} .
$$

Здесь d - расстояние между точками 3 и 4 образца.
Если для изготовления исследуемого образца используется примесный полупроводник p-типа, в котором основными носителями заряда являются дырки, то направление их движения будет совпадать с направлением тока. Сила Лоренца, действующая на дырки со стороны магнитного поля В (рис. 1), будет направлена по-прежнему к нижней грани. Следовательно, нижняя грань такого образца получит избыточный положительный заряд, а верхняя - отрицательный. Знак заряда граней легко установить по знаку разности потенциалов между гранями, т. е. по знаку величины U_{X}.

Любой примесный полупроводник при достаточно высокой для него температуре переходит в область собственной проводимости. У собственного полупроводника концентрации свободных электронов и дырок одинаковы. Чтобы быть уверенными, что исследуемый образец содержит практически только один тип носителей тока, необходимо определить диапазон температур, при которых он имеет примесный тип проводимости. Для этого достаточно экспериментально получить зависимость $\ln \sigma$ от $\frac{1}{T}$, где σ - электропроводность полупроводникового образца. Известно, что эта зависимость для примесного полупроводника имеет вид, представленный на рис. 2.

Здесь первый участок зависимости, который наблюдается при низких температурах, соответствует примесной проводимости. Видно, что электропроводность σ с ростом температуры T на участке I растет. Это объясняется увеличением концентрации основных носителей заряда с ростом температуры полупроводника.

Puc. 2

При некоторой температуре все примесные атомы становятся ионизированными. Увеличение концентрации примесных носителей заряда с ростом температуры прекращается. Однако эта температура может быть еще недостаточно велика для ионизации собственных атомов полупроводника. Начиная с этой температуры происходит переход ко второму участку графика. Говорят, что при этих температурах полупроводник находится в области насыщения примесной проводимости. Слабое изменение электропроводности на участке II связано с тем, что от температуры зависит подвижность носителей заряда μ (см. ниже).

Если полупроводник достиг температуры, при которой начинается процесс ионизации собственных атомов, электропроводность опять резко увеличиваться с ростом температуры за счет возрастания концентрации собственных электронов и дырок. Этот процесс соответствует участку III графика.

Предположим, что полупроводниковый образец, описанный выше, предназначен для использования в качестве датчика измерителя индукции магнитного поля В (датчик Холла). Для такого прибора важно, чтобы его показания как можно меньше зависели от температуры. Выясним, как этого добиться.

Если датчик изготовлен из донорного полупроводника, то его удельная электропроводность определяется формулой

$$
\begin{equation*}
\sigma=q_{e} n \mu, \tag{2}
\end{equation*}
$$

где n - концентрация свободных электронов; μ - подвижность носителей заряда, которая равна

$$
\mu=\frac{\mathbf{v}_{\text {дp }}}{E} .
$$

Здесь $\mathbf{v}_{\text {др }}$ - дрейфовая скорость носителей заряда при напряженности электрического поля E.

Постоянная Холла в области температур, для которой концентрация свободных электронов много больше концентрации дырок, определяется формулой

$$
\begin{equation*}
R_{\mathrm{X}}=a \frac{1}{q_{e} n}, \tag{3}
\end{equation*}
$$

где a - поправочный множитель, который учитывает механизм рассеяния носителей тока в полупроводнике. Для низких температур, при которых основным является рассеяние на ионах примеси, $a=1,93$; при высоких температурах, когда основным является рассеяние на фононах, $a=\frac{3 \pi}{8} \approx 1,18$.

Подвижность зависит от температуры T и от типа рассеяния. При низких температурах $\mu \sim T^{3 / 2}$; при высоких температурах $\mu \sim T^{-3 / 2}$.

Из формулы (1) видно, что показания датчика Холла не будут зависеть от температуры, если от нее не зависит постоянная Холла R_{X}. Формула (3) показывает, что R_{X} не будет практически меняться при изменении температуры T, если рабочий диапазон температур соответствует области насыщения примесной проводимости (участок II на рис. 2).

3. МЕТОДИКА ЭКСПЕРИМЕНТА

3.1. Измерение электропроводности

Вначале, как отмечалось выше, следует убедиться, что исследуемый образец содержит один тип свободных носителей заряда. Иначе говоря, необходимо определить рабочий диапазон температур. Для этого достаточно экспериментально получить зависимость $\ln \sigma$ от $\frac{1}{T}$.

Электропроводность образца σ - это величина, обратная его удельному сопротивлению ρ :

$$
\sigma=\frac{1}{\rho}
$$

Удельное сопротивление связано с сопротивлением образца, измеряемым на участке между точками 1 и 2 :

$$
R_{12}=\rho \frac{L_{12}}{b d}
$$

где L_{12} - расстояние между точками 1 и 2 образца, $b d$ - площадь поперечного сечения образца.

Сопротивление, сила тока и продольное напряжение между точками 1 и 2 связаны между собой через закон Ома для участка цепи:

$$
I R_{12}=U_{12}
$$

Из полученной системы уравнений следует рабочая формула для экспериментального определения электропроводности:

$$
\begin{equation*}
\sigma=\frac{I L_{12}}{U_{12} b d} . \tag{4}
\end{equation*}
$$

Puc. 3

На рис. 3 представлена схема для измерения электропроводности образца.

3.2. Измерение холловской разности потенциалов

Холловская разность потенциалов U_{X} измеряется между точками 3 и 4 образца (рис. 4), которые должны быть эквипотенциальны при нулевом значении индукции магнитного поля В. Однако расположить точки 3 и 4 на одной эквипотенциальной поверхности практически невозможно. Поэтому между этими точками, кроме холловской разности потенциалов U_{X}, имеется некоторая продольная разность потенциалов ΔU. Эту разность потенциалов необходимо исключить. С этой целью изменим направление вектора магнитной индукции В на противоположное, но сохраним направление тока I. Тогда знак холловской разности потенциалов U_{X} изменяется, а знак продольной разности потенциалов ΔU не изменяется. Следовательно, при одном направлении B суммарная разность потенциалов между точками 3 и 4 будет составлять

$$
U_{34}^{\prime}=U_{\mathrm{X}}+\Delta U
$$

А при обратном направлении B :

$$
U_{34}^{\prime \prime}=-U_{\mathrm{X}}+\Delta U
$$

Puc. 4
Вычтя из первого выражения второе и выразив U_{X}, получим формулу, в которой продольная разность потенциалов ΔU исключена:

$$
\begin{equation*}
U_{\mathrm{X}}=\frac{U_{34}^{\prime}-U_{34}^{\prime \prime}}{2} . \tag{5}
\end{equation*}
$$

Для усиления сигнала с датчика Холла используется неинвертирующий (не меняющий полярность сигнала) усилитель с коэффициентом усиления 100. Вольтметр необходимо подключить к выходу этого усилителя.

3.3 Параметры датчика Холла

Толщина по направлению магнитного поля $b=10$ мкм .
Ширина в направлении, перпендикулярном магнитному полю и направлению электрического тока, $d=2$ мм .

Расстояние между точками 1 и $2 L_{12}=2$ мм.

3.4. Чувствительность датчика Холла

Этот параметр γ определяется отношением

$$
\gamma=\frac{U_{\mathrm{X}}}{B},
$$

где B - индукция магнитного поля, U_{X} - холловская разность потенциалов, соответствующая этой индукции.

4. ЗАДАНИЕ

1. Собрать электрическую схему по рис. 3. В качестве источника подключить генератор тока (рекомендуемое значение силы тока $0,5 \mathrm{~mA})$. Изменяя температуру T от комнатной до максимальной через $\Delta T \approx 10$ К, измерить продольное напряжение U_{12} для ряда температур.
2. Вычислить электропроводность σ по формуле (4) и величину $\ln \sigma$ для каждого значения T.
3. Построить график зависимости $\ln \sigma$ от величины $\frac{1}{T}$. Определить по графику рабочий диапазон температур, соответствующий области насыщения примесной проводимости.
4. Снять зависимость холловского напряжения U_{X} от величины магнитного поля B при постоянной силе тока и постоянной температуре из выбранного рабочего диапазона (установленная температура будет поддерживаться термостатом). Измерения проводить, пользуясь методикой, дающей формулу (5). Построить график этой зависимости.
5. Снять зависимость холловского напряжения U_{X} от величины тока I при постоянной величине магнитного поля B и постоянной температуре T из выбранного рабочего диапазона. Измерения проводить, пользуясь методикой, приводящей к формуле (5). Построить график этой зависимости.
6. Снять зависимость холловского напряжения U_{X} от температуры при постоянной величине магнитного поля B и постоянном токе I. Измерения производить в найденном рабочем диапазоне температур. Измерения холловского напряжения U_{X} проводить, пользуясь методикой, дающей формулу (5). Построить график этой зависимости.
7. Оценить по формуле (1) значения постоянной Холла R_{X} для разных температур.
8. Оценить по формуле (3) значения концентрации свободных носителей заряда n или p для разных температур.
9. Оценить по формуле (2) значения подвижности μ для разных температур.
10. По знаку холловской разности потенциалов U_{X} определить тип полупроводника (n или p).
11. Оценить чувствительность γ датчика Холла.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. В чем состоит эффект Холла?
2. Вывести рабочую формулу для определения индукции магнитного поля В с помощью датчика Холла.
3. Как определить знак носителей тока примесного полупроводника, который используется в качестве датчика Холла?
4. За счет чего возникает систематическая погрешность при измерении холловской разности потенциалов U_{X} ? Как ее исключить?
5. Как зависят от температуры T концентрация n и подвижность μ для металлов и полупроводников?
6. Как будет изменяться постоянная Холла с ростом температуры датчика? Существует ли такой диапазон температур, в котором $R_{\mathrm{X}}=$ const ?
7. Как можно увеличить холловскую разность потенциалов U_{X}, не меняя силы тока I через датчик, индукции магнитного поля \mathbf{B} и постоянной Холла R_{X} ?
8. Почему холловская разность потенциалов U_{X} при включении магнитного поля вначале в течение некоторого промежутка времени возрастает, но, достигнув некоторой величины, становится постоянной?
9. Как определить концентрацию носителей заряда с помощью эффекта Холла?
10. Зачем в работе снимается зависимость $\ln \sigma$ от величины $\frac{1}{T}$?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Савельев И.В. Курс общей физики. - М.: Наука, 1978. - Т. 2 (и более поздние издания этого курса).
2. Епифанов Г.И. Физика твердого тела. - М.: Высшая школа, 1966 (и более поздние издания этого курса).
3. Епифанов Г.И. Физические основы микроэлектроники. - М.: Высшая школа, 1971.

ЛАБОРАТОРНАЯ РАБОТА № 42
 ИССЛЕДОВАНИЕ СВОЙСТВ ФОТОРЕЗИСТОРА

1. ЦЕЛЬ РАБОТЫ

Ознакомиться с принципом работы фоторезистора, исследовать его основные характеристики, оценить ширину запрещенной зоны полупроводника, из которого сделан фоторезистор.

2. ВНУТРЕННИЙ ФОТОЭФФЕКТ

Фоторезистором называется полупроводниковый прибор, действие которого основано на фотопроводимости - изменении проводимости полупроводника при освещении (внутренний фотоэффект). В полупроводнике под действием света генерируются свободные носители заряда (в отличие от внешнего фотоэффекта, когда электроны под действием света вырываются из вещества).

Рассмотрим это явление. В собственном полупроводнике при абсолютном нуле ($T=0 \mathrm{~K}$) валентная зона заполнена электронами, а зона проводимости свободна. Неосвещенный полупроводник при абсолютном нуле является изолятором. Если полупроводник нагреть, то вследствие теплового возбуждения появятся электроны в зоне проводимости и дырки в валентной зоне. Электропроводность полупроводника,

обусловленная тепловым возбуждением, иначе говоря, взаимодействием электронов и фононов, называется темновой проводимостью:

$$
\begin{equation*}
\sigma_{\mathrm{T}}=q_{e} n_{i}\left(\mu_{n}+\mu_{p}\right), \tag{1}
\end{equation*}
$$

где n_{i} - концентрация электронов в зоне проводимости и дырок в валентной зоне; μ_{n} и μ_{p} - подвижность электронов и дырок соответственно; q_{e} - заряд носителя тока.

При освещении полупроводника возникают дополнительные носители заряда, обусловленные внутренним фотоэффектом. При поглощении кванта света (фотона) один из валентных электронов переходит в зону проводимости, а в валентной зоне образуется дырка. Очевидно, что такой переход возможен, если энергия фотона $h \nu$ равна или несколько больше ширины запрещенной зоны ΔE (рис. 1):

$$
\begin{equation*}
h v \geq \Delta E \tag{2}
\end{equation*}
$$

Аналогично протекает процесс фотоионизации и в примесном полупроводнике. В донорном полупроводнике под действием

Puc. 1 квантов света электроны переходят с донорных уровней в зону проводимости (рис. 2, a), в акцепторных - из валентной зоны на акцепторные уровни (рис. 2, б).

Очевидно, примесная фотопроводимость возникает при условии

$$
\begin{equation*}
h v \geq \Delta E_{\mathrm{a}} \tag{3}
\end{equation*}
$$

где ΔE_{a} - энергия активации примесных атомов. Частоту, соответствующую знаку равенства в выражении (2), называют краем собственного

Puc. 2

поглощения, а в выражении (3) - краем примесного поглощения. Край поглощения называют также красной границей внутреннего фотоэффекта.

Избыточные электроны и дырки, генерируемые при освещении, являются неравновесными носителями заряда в отличие от равновесных носителей, которые имеются в полупроводнике при данной температуре и находятся в термодинамическом равновесии с решеткой кристалла. Дополнительная электропроводность, обусловленная появлением неравновесных носителей заряда, и есть фотопроводимость. В случае собственного поглощения фотопроводимость равна

$$
\begin{equation*}
\sigma_{\phi}=q_{e} \Delta n\left(\mu_{n}+\mu_{p}\right), \tag{4}
\end{equation*}
$$

где Δn - число пар электрон-дырка, возникающих при поглощении квантов света.

При примесном поглощении появляются неравновесные носители заряда преимущественно одного типа. В общем случае $\Delta n \neq \Delta p$ фотопроводимость определяется выражением

$$
\begin{equation*}
\sigma_{\phi}=q_{e}\left(\Delta n \cdot \mu_{n}+\Delta p \cdot \mu_{p}\right) \tag{5}
\end{equation*}
$$

Можно показать, что при внутреннем фотоэффекте выполняется так называемое основное характеристическое соотношение

$$
\Delta n=\eta N \tau,
$$

где η - квантовый выход внутреннего фотоэффекта (число оптически генерируемых носителей заряда, приходящееся на один поглощенный фотон); N - число фотонов, поглощенных в единице объема в единицу времени; τ - время жизни носителя заряда (промежуток времени от момента генерации до момента рекомбинации носителя заряда).

Из сказанного ясно, что полная электропроводимость складывается из темновой (равновесной) и фотопроводимости:

$$
\begin{equation*}
\sigma=\sigma_{\mathrm{T}}+\sigma_{\phi} \tag{6}
\end{equation*}
$$

3. МЕТОДИКА ЭКСПЕРИМЕНТА

Схематическое устройство фоторезистора дано на рис. 3. На изолирующую подложку 1 помещается тонкий слой полупроводника 2 (фоточувствительный слой). По краям этого слоя нанесены металлические

электроды (контакты) 3. Прибор заключен в закрытый корпус с окном для света. Электроды 3 соединены с клеммами, через которые прибор включается в электрическую цепь.

Puc. 3
Основными характеристиками фоторезистора являются вольтамперная, световая и спектральная.

Вольт-амперной характеристикой называется зависимость тока, протекающего через фоторезистор, от величины приложенного напряжения при постоянном световом потоке $I_{\mathrm{c}}=f(U)_{\Phi=\text { const }}$:

$$
\begin{equation*}
I_{\mathrm{c}}=\frac{\sigma S}{l} U=\frac{\left(\sigma_{\mathrm{T}}+\sigma_{\phi}\right) S}{l} U=I_{\mathrm{T}}+I_{\phi} \tag{7}
\end{equation*}
$$

где I_{c} - световой ток; I_{T} - темновой ток; I_{ϕ} - фототок.
В частности, если световой поток Ф равен нулю, то характеристика называется темновой. Из уравнения (7) видно, что вольт-амперная характеристика (как темновая, так и при освещении) является линейной, поскольку при постоянной температуре и постоянном световом потоке электропроводность не зависит от напряжения. Следует отметить, что в области обычно реализуемых освещенностей световой ток намного больше темнового, т. е. $I_{\mathrm{c}} \approx I_{\phi}$.

Световой характеристикой фоторезистора называется зависимость фототока I_{ϕ} от величины падающего светового потока при постоянном значении приложенного напряжения $I_{\Phi} \approx I_{\mathrm{c}}=f(\Phi)_{U=\text { const }}$. Температура фоторезистора при этом должна быть постоянной. Эту зависимость можно заменить зависимостью I_{ϕ} от освещенности E : $I_{\phi}=f(E)_{U=\text { const }}$, называемой часто люкс-амперной характеристикой.

Puc. 4

Световая характеристика обычно нелинейная (рис. 4). При большой освещенности увеличение фототока отстает от роста светового потока, намечается тенденция к насыщению. Это объясняется тем, что при увеличении светового потока наряду с ростом концентрации генерируемых носителей заряда растет вероятность их рекомбинации.
Спектральной характеристикой называется зависимость фототока от длины волны при постоянном световом потоке $I_{\phi}=f(\lambda)_{\Phi=\text { const }}$. Фототок в собственном полупроводнике при уменьшении длины волны появляется, начиная с длины волны λ_{0} (рис. 5), соответствующей равенству (см. формулу (2)):

$$
\begin{equation*}
h v_{0}=\frac{h c}{\lambda_{0}}=\Delta E, \tag{8}
\end{equation*}
$$

где ΔE - ширина запрещенной зоны полупроводника; λ_{0} - край собственного поглощения.

Казалось бы, что спектральная характеристика должна иметь вид ступени (рис. 5, a), но такой вид она могла бы иметь лишь при абсолютном нуле.

При повышении температуры тепловое движение «размывает» край собственного поглощения (рис. 5, б).

Pис. 5

С увеличением энергии фотона, т. е. с уменьшением длины световой волны в реальной спектральной характеристике фототок быстро достигает максимума, а затем начинает уменьшаться (рис. 5, б), хотя энергии фотона при $\lambda<\lambda_{0}$ более чем достаточно для возникновения фотопроводимости. Это объясняется тем, что с уменьшением λ растет коэффициент оптического поглощения, а это приводит к поглощению света в тонком приповерхностном слое вещества, к повышению концентрации неравновесных носителей и соответственно повышенной скорости рекомбинации в этом слое. Другими словами, носители заряда активно рекомбинируют на поверхности, не успевая диффундировать в объеме полупроводника, что приводит к уменьшению фотопроводимости.

Край примесного поглощения λ_{1}, соответствующий равенству

$$
\begin{equation*}
\frac{h c}{\lambda_{1}}=\Delta E_{\mathrm{a}} \tag{9}
\end{equation*}
$$

смещен в сторону больших длин волн относительно края собственной фотопроводимости (рис. 6). Очевидно, что по спектральной характеристике, определив λ_{0}, можно оценить ширину запрещенной зоны полупроводника, из которого сделан фоторезистор, а определив λ_{1}, - энергию активации примеси.

Puc. 6
Фоторезисторы широко применяются в различных схемах измерения, автоматизации и контроля.

4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

1. Собрать схему, показанную на рис. 7.

Puc. 7
2. Снять семейство двух-трех вольт-амперных характеристик $I_{\mathrm{c}}=f(U)_{\Phi=\text { const }}$.
3. Снять семейство двух-трех световых характеристик $I_{\phi} \approx I_{\text {с }}=$ $=f(\Phi)_{U=\text { const }}$.
4. Снять спектральную характеристику фоторезистора $I_{\phi}=$ $=f(\lambda)_{\Phi=\text { const }}$, следуя указаниям преподавателя.
5. По результатам измерений, проведенных согласно пунктам $2-4$, построить графики вольт-амперных, световых и спектральной характеристик фоторезистора.
6. Определить по спектральной характеристике край собственного поглощения λ_{0}. Оценить ширину запрещенной зоны полупроводника ΔE, из которого сделан фоторезистор, по формуле (8). Записать полученное значение в электронвольтах.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое внутренний фотоэффект? Сравнить с внешним фотоэффектом.
2. Объяснить механизм возникновения фотопроводимости в собственном и примесном полупроводнике.
3. Что такое край собственного и примесного поглощения? Каким равенствам они удовлетворяют?
4. Что представляет собой фоторезистор?
5. Чем объясняется наличие темнового тока фоторезистора?
6. Объяснить ход вольт-амперной и световой характеристик фоторезистора. Сравнить их с аналогичными характеристиками фотоэлемента.
7. Объяснить спектральную зависимость фототока в собственном и примесном полупроводниках.
8. Как с помощью спектральной характеристики можно оценить ширину запрещенной зоны полупроводника? Энергию активации примеси?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Епифанов Г.И. Физика твердого тела. - М.: Высшая школа, 1966 (и более поздние издания этого курса).
2. Соболева Н.А., Меламид А.Е. Фотоэлектронные приборы. - М.: Высшая школа, 1974.
3. Анисимова И.Д., Викулин И.М. Полупроводниковые фотоприемники. М.: Радиосвязь, 1984.
4. Тарасов Л.В. Введение в квантовую оптику. - М.: Высшая школа, 1987.

ЛАБОРАТОРНАЯ РАБОТА № 43

ИССЛЕДОВАНИЕ СВОЙСТВ ТЕРМОРЕЗИСТОРА

1. ЦЕЛЬ РАБОТЫ

Изучение физических свойств и определение параметров полупроводникового и металлического терморезисторов.

2. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ТЕРМОРЕЗИСТОРОВ И МЕТОДИКА ЭКСПЕРИМЕНТА

Терморезистором называется прибор, в работе которого используется зависимость его электрического сопротивления от температуры. Наиболее подходящим материалом для изготовления терморезисторов являются полупроводники, обладающие высоким температурным коэффициентом сопротивления.

Электропроводность σ полупроводников и металлов различна не только по величине, но и по характеру зависимости от температуры. Если в веществе преобладают свободные носители заряда одного знака (электроны или дырки), то электропроводность этого вещества равна

$$
\begin{equation*}
\sigma=e n \mu=\frac{e^{2} n}{m} \bar{\tau} \tag{1}
\end{equation*}
$$

где e - элементарный заряд, n - концентрация носителей заряда, μ подвижность носителей заряда, m - масса носителей заряда, $\bar{\tau}$ среднее время свободного пробега носителей заряда.

В металле концентрация свободных электронов составляет примерно $n \approx 10^{28} \mathrm{~m}^{-3}$, т. е. того же порядка, что и число атомов в $1 \mathrm{~m}^{3}$. В проводимости принимают участие валентные электроны. Они обобществляются кристаллической решеткой металла при очень низких абсолютных температурах. Другие электроны весьма прочно связаны с атомами и не становятся свободными даже при очень высоких температурах. Из этого следует, что концентрация носителей заряда в металлах не зависит от температуры. Среднее время свободного пробега носителей заряда при повышении температуры металлов уменьшается по закону $\bar{\tau} \sim \frac{1}{T}$, что объясняется рассеянием их на фононах. Сделанное утверждение не относится к области очень низких температур, при которых основным становится рассеяние на примесях и других дефектах кристаллической решетки. Поскольку электропроводность - величина обратная удельному электрическому сопротивлению вещества $\sigma=\frac{1}{\rho}$, то сопротивление металла R линейно растет с повышением его абсолютной температуры (рис. 1, график a) по закону

$$
\begin{equation*}
R=R_{0} \alpha T, \tag{2}
\end{equation*}
$$

где R_{0} - сопротивление при некоторой условной температуре (обычно при $0^{\circ} \mathrm{C}$); α - температурный коэффициент сопротивления металла, показывающий относительное изменение величины сопротивления при изменении температуры на 1 градус,

$$
\begin{equation*}
\alpha=\frac{1}{R_{0}} \frac{d R}{d T} . \tag{3}
\end{equation*}
$$

Коэффициент α для металлов положителен, почти не меняется с температурой и мал по абсолютной величине по сравнению с α для полупроводников. Заметим, что зависимость (2) нельзя экстраполировать до абсолютного нуля температур, стремясь к которому, сопротивление обычных металлов (не сверхпроводников) стремится к некоторой конечной величине, обусловленной

Puc. 1 наличием примесей и дефектов решетки.

В полупроводниках, в отличие от металлов, при абсолютном нуле в зоне проводимости носители заряда отсутствуют. С повышением температуры число носителей значительно возрастает. Подвижность носителей в области низких температур из-за рассеяния на ионах примеси пропорциональна $T^{3 / 2}$, т. е. растет при увеличении температуры полупроводника. В области высоких температур основное значение имеет рассеяние на тепловых колебаниях решетки (фононах) и $\mu \sim T^{-3 / 2}$, т. е. подвижность с ростом температуры уменьшается. Но так как концентрация свободных носителей заряда с ростом температуры как в области примесной, так и в области собственной проводимости увеличивается значительно быстрее, чем изменяется подвижность, электропроводность в любом случае растет по закону

$$
\begin{equation*}
\sigma=\sigma_{0} \exp \left(-\frac{\Delta E}{2 k T}\right)=\sigma_{0} \exp \left(-\frac{B}{T}\right), \tag{4}
\end{equation*}
$$

где σ_{0} от температуры не зависит (см. описание лабораторной работы № 40).

Сопротивление полупроводников с ростом температуры, следовательно, убывает по экспоненциальному закону (рис. 1, график б):

$$
\begin{equation*}
R_{T}=R_{0} \exp \left(\frac{\Delta E}{2 k T}\right)=R_{0} \exp \left(\frac{B}{T}\right), \tag{5}
\end{equation*}
$$

где $\quad R_{0}$ - условное сопротивление полупроводника при $T \rightarrow \infty ; \Delta E-$ энергия активации примеси (или ширина запрещенной зоны); k - постоянная Больцмана; $\quad B=\frac{\Delta E}{2 k}$ - коэффициент температурной чувст-

вительности, который определяется структурой полупроводника и служит характеристикой исследуемого материала.

Температурный коэффициент сопротивления α для полупроводника определяется формулой

$$
\begin{equation*}
\alpha=\frac{1}{R_{T}} \frac{d R}{d T} \tag{6}
\end{equation*}
$$

где R_{T} - сопротивление резистора при той температуре T, для которой взята производная $\frac{d R}{d T}$.

Если в формулу (6) подставить R_{T} и $\frac{d R}{d T}$ из формулы (5), для полупроводника получим температурный коэффициент сопротивления

$$
\begin{equation*}
\alpha=-\frac{B}{T^{2}} . \tag{7}
\end{equation*}
$$

Таким образом, величина α определяется значением коэффициента температурной чувствительности B и оказывается сильно зависящей от температуры. Особенностью полупроводников является также отрицательный знак α, указывающий на то, что при повышении температуры сопротивление полупроводника уменьшается. Кроме того, коэффициент α у полупроводников в десятки раз выше, чем у металлов. В результате этого сопротивление полупроводника при изменении температуры изменяется в очень широких пределах. Чтобы охватить весь диапазон $R(T)$, на практике вместо формулы (5) часто используют зависимость

$$
\begin{equation*}
\ln R=\ln R_{0}+\frac{B}{T} . \tag{8}
\end{equation*}
$$

Экспериментальные кривые $\ln R=f(T)$ являются почти прямыми линиями (рис. 2).

Резкая зависимость сопротивления полупроводника от температуры используется для устройства большого класса полупроводниковых терморезисторов, или термисторов.

Материалом для изготовления терморезисторов служат смеси различных металлов: меди, марганца, цинка, кобальта, титана, никеля и т. д., а также германий и полупроводниковые соединения элементов третьей и четвертой групп таблицы Менделеева.

Малые габариты, высокая механическая прочность и надежность,

Puc. 2 большой срок службы и высокая чувствительность терморезисторов определили широкое применение их в приборах для измерения и регулирования температуры, температурной компенсации элементов электрических цепей, измерения мощности электромагнитного излучения и т.д.

Область применения каждого терморезистора определяется его параметрами и характеристиками, основные из которых для полупроводниковых терморезисторов следующие.

1. Температурная характеристика, вид которой определяется формулами (5) и (8).
2. Коэффициент температурной чувствительности B, значение которого можно определить экспериментально, измерив сопротивления терморезистора при двух температурах T_{1} и T_{2} :

$$
\begin{align*}
& R_{1}=R_{0} \exp \left(\frac{B}{T_{1}}\right), \tag{9}\\
& R_{2}=R_{0} \exp \left(\frac{B}{T_{2}}\right) . \tag{10}
\end{align*}
$$

Разделив почленно выражение (9) на (10) и затем, логарифмируя, получим

$$
\begin{equation*}
B=\frac{T_{1} T_{2}}{T_{2}-T_{1}} \ln \frac{R_{1}}{R_{2}} \tag{11}
\end{equation*}
$$

3. Температурный коэффициент сопротивления α, определяемый формулой (6). Вычислив B по уравнению (11), можно по формуле (7) оценить теоретическое значение α для температуры:

$$
\begin{equation*}
T=\frac{T_{1}+T_{2}}{2} . \tag{12}
\end{equation*}
$$

Для полупроводниковых терморезисторов принято указывать величину α для определенной температуры, чаще всего для $20^{\circ} \mathrm{C}$, так как α сильно зависит от температуры. Температура, для которой определяется α, указывается как индекс. Например, α_{20}.
4. Сопротивление постоянному току при некоторой температуре. Обычно это то же значение, что и для $\alpha: 20^{\circ} \mathrm{C}$, обозначаемое R_{20}.
5. Максимальная мощность, рассеиваемая терморезистором при стабильной работе.
6. Статическая вольт-амперная характеристика. Она имеет ярко выраженный нелинейный характер. Типичный ее вид показан на рис. 3. На ней можно выделить три основных участка: $O A, A B, B C$. На участке $O A$ характеристика линейна, так

Puc. 3 как мощность, выделяющаяся в терморезисторе, мала и не изменяет его температуры. На участке $A B$ линейность нарушается, так как с повышением тока мощность рассеяния увеличивается, температура терморезистора повышается, следовательно, сопротивление его уменьшается. При некотором значении тока кривая достигает максимума, и в небольшом интервале напряжение на терморезисторе остается постоянным, так как относительное увеличение тока становится равным вызванному им относительному понижению сопротивления. На участке $B C$ при дальнейшем увеличении тока уменьшение сопротивления оказывается столь сильным, что рост тока ведет к уменьшению напряжения на терморезисторе, и появляется участок с отрицательным дифференциальным сопротивлением.

3. ЗАДАНИЕ

1. Собрать схему, представленную на рис. 4. Регуляторы температуры и напряжения поставить в минимальные положения.

Puc. 4
2. Снять вольт-амперную характеристику (ВАХ) $U=f(I)$ для полупроводникового и металлического терморезисторов при комнатной температуре ($T \approx 300 \mathrm{~K}$). Полученные данные занести в таблицу и построить графики.
3. Снять температурную зависимость сопротивления $R=f(T)$ для полупроводникового терморезистора при начальном напряжении U от 5 до 15 В (задается преподавателем). Для этого нужно записать показания вольтметра и амперметра при комнатной температуре. Установить на шкале терморегулятора максимальное значение температуры. Измерения проводить через 10 К, нагревая образец от 290 до 380 К. При достижении необходимых температур записывать показания вольтметра и амперметра. Вычислить, используя закон Ома, сопротивление терморезисторов для каждой температуры. Построить график $R=f(T)$.
4. Снять температурную зависимость сопротивления $R=f(T)$ для металлического терморезистора при начальном напряжении U от 2 до 4 В (задается преподавателем). Построить график $R=f(T)$.
5. Используя формулы (3) и (6), вычислить температурные коэффициенты сопротивления α для полупроводникового и металлического терморезисторов при температуре, близкой к комнатной.
6. Вычислить для полупроводника величину коэффициента температурной чувствительности B по формуле (11), используя сопротивления терморезистора R_{1} и R_{2} для двух различных температур T_{1} и T_{2}.
7. Используя результат, полученный в пункте 5 , вычислить ожидаемое теоретическое значение α по формуле (7) при температуре, близкой к комнатной. Сравнить с α, полученным в пункте 4.
8. Сравнить α металлического и полупроводникового терморезисторов, сделать выводы.

4. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Какова цель работы?
2. Какие зависимости нужно снимать в данной работе?
3. Каков ожидаемый вид этих зависимостей?
4. Объяснить механизм электропроводности металлов и полупроводников.
5. Как влияет температура на электропроводимость металлов и полупроводников?
6. Какими параметрами характеризуется работа терморезистора?
7. Почему температурный коэффициент сопротивления для полупроводников дается в справочниках для определенного температурного интервала?
8. Объяснить статическую вольт-амперную характеристику терморезистора. От чего зависит вид вольт-амперной характеристики?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Городечкий А.Ф., Кравченко А.Ф. Основы физики полупроводниковых приборов. - М.: Высшая школа, 1966. - С. 163-171.
2. Лысов В.Ф. Практикум по физике полупроводников. - М.: Просвещение, 1976. - С. 35-57.
3. Епифанов Г.И. Физика твердого тела. - М.: Высшая школа, 1977. C. 156-164.
4. Шайвз Дж. Физические свойства и конструкции полупроводниковых приборов. - М.: Госэнергоиздат, 1963. - С. 46-74.

ЛАБОРАТОРНАЯ РАБОТА № 44
 ИЗУЧЕНИЕ ПОЛУПРОВОДНИКОВОГО ДИОДА

1. ЦЕЛЬ РАБОТЫ

Изучить физические процессы в $p-n$-переходе при равновесии и в смещенном состоянии, исследовать вольт-амперную характеристику и определить параметры полупроводникового диода.

2. p-n-ПЕРЕХОД И ЕГО ЭНЕРГЕТИЧЕСКАЯ ЗОННАЯ ДИАГРАММА В СОСТОЯНИИ РАВНОВЕСИЯ

1. Полупроводниковый «плоскостной» диод представляет собой тонкую (менее 0,1 мм) монокристаллическую пластинку германия (Ge) или кремния (Si), содержащую два слоя, один из которых имеет дырочную (p-типа), а второй - электронную (n-типа) проводимость, как показано на рис. 1.

Puc. 1
Эти два слоя разделены плоской и резкой границей, по обе стороны которой спонтанно формируется область шириной $l_{\mathrm{o}}=l_{p}+l_{n} \approx 5$ мкм, практически не содержащая носителей тока - дырок в p-слое и свобод-

ных электронов в n-слое. Проводимость ее очень мала. Она называется $p-n$-переходом (или электронно-дырочным переходом) и является основным элементом полупроводникового диода. В кристалл четырехвалентного Ge (либо Si) вводят примесные атомы: акцепторы (трехвалентный индий, бор) для получения p-слоя, доноры (пятивалентный мышьяк, фосфор или сурьма) для получения n-слоя. Концентрация примеси мала (порядка $10^{-5} \ldots 10^{-7} \%$). Ее атомы размещаются в узлах кристалла достаточно далеко друг от друга, чтобы, не испытывая взаимного влияния, иметь один общий энергетический примесный уровень. Примесные уровни находятся в «запрещенной зоне» ΔE_{3} полупроводника на «расстоянии» $\Delta E_{\mathrm{a}} \ll \Delta E_{3}$ либо от «потолка» валентной зоны (В3) в р-слое (акцепторный уровень), либо от «дна» зоны проводимости (3П) в п-слое (донорный уровень). В каждом слое вблизи примесного уровня расположен «уровень Ферми». Энергия активации примеси $\Delta E_{\mathrm{a}} \approx 0,01$ эВ. Ширина запрещенной зоны $\Delta E_{3}=0,75$ эВ у Ge и $\Delta E_{3}=1,12$ эВ у Si.
2. Малые значения ΔE_{a} обеспечивают термоактивацию атомов примеси при весьма низких температурах. В p-слое акцепторы захватывают недостающий им для связи в узлах решетки четвертый электрон у близких атомов Ge (либо Si): из B3 полупроводника эти электроны переходят на акцепторный уровень. Акцепторы становятся отрицательными ионами с зарядом $q_{e}=1,6 \cdot 10^{-19}$ Кл, а в ВЗ образуются «дырки примесного происхождения». В n-слое доноры освобождают от связи свой «лишний» пятый электрон, который с донорного уровня переходит в 3 П полупроводника. Эта зона в n-слое частично заполняется «электронами примесного происхождения», а доноры становятся положительными ионами с зарядом q_{e}.

При повышении температуры кристалла происходит термогенерация собственных носителей тока в обоих слоях: электроны из ВЗ через ΔE_{3} переходят в ЗП. Эти электроны и образовавшиеся дырки в В3 являются носителями тока. «Собственные» электроны в p-слое и «собственные» дырки в n-слое - неосновные носители тока. Любого происхождения дырки в p-слое и свободные (в ЗП) электроны в n-слое являются основными носителями тока.

В рабочем диапазоне температур ($T<340 \mathrm{~K}$ для $\mathrm{Ge}, T<400 \mathrm{~K}$ для Si) концентрация основных носителей много больше концентрации

неосновных носителей тока: p-слой и n-слой имеют характерные примесные свойства. При более высокой температуре эти концентрации примерно одинаковы и полупроводник примесные свойства теряет. Во всем объеме он обладает в основном собственной проводимостью.

Основные принятые обозначения

Концентрация основных носителей тока: P_{p} - дырки в p-слое, N_{n} - свободные электроны в n-слое.

Концентрация неосновных носителей тока: N_{p} - свободные электроны в p-слое, P_{n} - дырки в n-слое.

Диффузионные потоки: ΔP_{p} - поток дырок из p-слоя, ΔN_{n} - поток электронов из n-слоя.

Дрейфовые потоки: ΔN_{p} - поток электронов из p-слоя, ΔP_{n} - поток дырок из n-слоя, $\Delta \varphi_{o}$ - контактная разность потенциалов на p - n-переходе.

В рабочем диапазоне температур $P_{p} \gg N_{p}, \quad N_{n} \gg P_{n}$.
3. Рассмотрим несимметричный $p-n$-переход, при котором концентрация акцепторов N_{a} и концентрация доноров N_{d} неодинаковы. Такой переход обычно формируют в полупроводниковых диодах. Например, пусть $N_{\mathrm{a}}=100 \ldots 1000 N_{\mathrm{d}}$. Тогда при активации примеси $P_{p} \gg N_{n}$. Низкоомный p-слой, содержащий много основных носителей тока, называют эмиттером (Э), а более высокоомный n-слой называют базой (Б).

Из «закона действующих масс» следует, что $P_{p} N_{p}=N_{n} P_{n}$. Так как $P_{p} \gg N_{n}$, то $P_{n} \gg N_{p}$. Общее соотношение концентраций носителей тока $P_{p} \gg N_{n} \gg P_{n} \gg N_{p}$.

На границе между p-слоем и n-слоем имеется большая разность концентрации дырок и свободных электронов. Вследствие теплового движения этих частиц происходит спонтанный процесс диффузии и дырок, и электронов через границу между слоями.

Диффузионный поток ΔP_{p} дырок из p-слоя, проходя в n-слой, на участке l_{n} встречается со свободными электронами. Процесс реком-

бинации уничтожает эти носители тока. Остаются донорные ионы, создающие объемный заряд $q_{n}=q_{e} N_{\mathrm{d}} l_{n} S$, где S - площадь поперечного сечения полупроводника. Аналогично после рекомбинации диффузионного потока ΔN_{n} электронов из n-слоя и дырок p-слоя на участке l_{p} этого слоя остаются акцепторные ионы, создающие заряд $q_{n}=-q_{e} N_{\mathrm{a}} l_{p} S$. Так образуется $p-n$-переход шириной $l_{\mathrm{o}}=l_{p}+l_{n}$, лишенный носителей тока и содержащий объемные заряды ионов q_{p} и q_{n}. Он обладает очень большим сопротивлением.

Так как $q_{p}=-q_{n}$, то $N_{\mathrm{a}} l_{p_{\mathrm{o}}}=N_{\mathrm{d}} l_{n}$. При несимметричном $p-n$-переходе $\left(N_{\mathrm{a}} \gg N_{\mathrm{d}}\right)$ имеем $l_{p} \ll l_{n}$. Таким образом $l_{\mathrm{o}} \approx l_{n}$ и $p-n$-переход размещен в основном в высокоомной базе.
4. При некоторой постоянной температуре p-слой, n-слой и переход между ними приходят в состояние равновесия. Особенность этого состояния рассматриваемой системы определяется тем, что для всего объема полупроводника в равновесном состоянии уровень Ферми E_{F} имеет одинаковое значение. Исходя из этого «принципа горизонтальности уровня Ферми» строится энергетическая зонная диаграмма системы, показанная на рис. 2. При построении ее учитывается, что в p-слое уровень Ферми всегда находится вблизи валентной зоны, а в n-слое он расположен вблизи зоны проводимости.

Относительно «горизонтального», общего для всего объема, уровня Ферми строятся валентная зона и зона проводимости, которые в области p - n-перехода оказываются «наклонными».
«Наклонная» В3 для дырок p-слоя создает при их переходе в n-слой потенциальный барьер ΔE_{0}. Такой же барьер в ЗП создается для электронов n-слоя. Энергия дырок на диаграмме увеличивается «вниз», а электронов - «вверх». Переход дырок из p-слоя в n-слой требует увеличения их энергии. Дырки же n-слоя, оказавшиеся у границы $p-n$-перехода, беспрепятственно, уменьшая свою энергию, направленно движутся (дрейфуют) в p-слой.

Потенциальный барьер определяется в равновесном состоянии контактной разностью потенциалов $\Delta \varphi_{\text {o }}$ электрического поля, создаваемого объемными зарядами q_{p} и q_{n} ионов в $p-n$-переходе. Высота барьера $\Delta E_{\mathrm{o}}=q_{e} \cdot \Delta \varphi_{\mathrm{o}}$, ширина ($p-n$-перехода) $-l_{\mathrm{o}} \approx \sqrt{\Delta \varphi_{\mathrm{o}}}$.

Puc. 2

Так как дырочный газ в валентной зоне - невырожденный, его концентрация при $T=$ const распределяется по закону Больцмана

$$
P_{n}=P_{p} \cdot e^{-\frac{\Delta E_{0}}{k T}},
$$

где $k=1,38 \cdot 10^{-23}$ Дж/К - постоянная Больцмана. Следовательно, равновесная концентрация дырок P_{p} в p-слое и P_{n} в n-слое неодинакова.

Из предыдущей формулы получим

$$
\begin{equation*}
\Delta E_{\mathrm{o}}=k T \ln \frac{P_{p}}{P_{n}} . \tag{1}
\end{equation*}
$$

При температуре $T=300 К$ высота барьера $\Delta E_{\mathrm{o}} \approx 0,35$ эВ $\left(\Delta \varphi_{\mathrm{o}}=0,35 \mathrm{~B}\right)$ для Ge и $\Delta E_{\mathrm{o}} \approx 0,65$ эВ $\quad\left(\Delta \varphi_{\mathrm{o}} \approx 0,65 \mathrm{~B}\right)$ для Si.

В равновесном состоянии вследствие $P_{p} \gg P_{n}$ диффузионный поток дырок $\Delta P_{p \text { о }}$ не исчезает, но компенсируется встречно направленным дрейфовым потоком ΔP_{n} дырок: $\Delta P_{p o}=\Delta P_{n}$. Величина дрейфового потока не зависит от высоты потенциального барьера ΔE_{o}, а определяется концентрацией P_{n} дырок - неосновных носителей тока в n-слое. Она существенно зависит от температуры полупроводника. При постоянной температуре $\Delta P_{n}=$ const .

Для зоны проводимости картина диффузионного и дрейфового потоков электронов аналогична рассмотренной. Ввиду малости этих потоков при несимметричном $p-n$-переходе в дальнейшем их можно не рассматривать.

Прямое смещение \boldsymbol{p} - \boldsymbol{n}-перехода

5. Разность потенциалов $\Delta \varphi$ на границах $p-n$-перехода можно изменять относительно «контактной» разности потенциалов $\Delta \varphi_{\text {о }}$ с помощью внешнего напряжения, подаваемого на клеммы Э и Б полупроводниковой системы.

Если напряжение U приложено так, что $\Delta \varphi<\Delta \varphi_{0}$, оно называется напряжением «прямого смещения» $p-n$-перехода или прямым напряжением на полупроводниковом диоде. В рассматриваемом здесь случае полярность прямого напряжения должна иметь плюс на Э и минус на Б.

При прямом смещении $p-n$-перехода по сравнению с равновесными значениями уменьшаются разность потенциалов $\Delta \varphi$, высота ΔE и ширина l потенциального барьера:

$$
\left.\begin{array}{l}
\Delta \varphi=\Delta \varphi_{\mathrm{o}}-U \tag{2}\\
\Delta E=q_{e} \cdot \Delta \varphi=\Delta E_{\mathrm{o}}-q_{e} U \\
l=l_{\mathrm{o}} \sqrt{\Delta \varphi / \Delta \varphi_{\mathrm{o}}}=l_{\mathrm{o}} \sqrt{1-U / \Delta \varphi_{\mathrm{o}}}
\end{array}\right\}
$$

а также на $\Delta E_{\mathrm{F}}=q_{e} U$ уровень Ферми E_{Fn} в n-слое смещается «вверх» на зонной диаграмме относительно уровня Ферми $E_{\mathrm{F} p}$ в p-слое. Неравенство $E_{\mathrm{F} n}>E_{\mathrm{F} p}$ означает, что система прямым напряжением U выведена из состояния равновесия при неизменной температуре. Такой процесс «энергетического смещения» при T = const coxpаняет в p-слое и в n-слое равновесное положение валентной зоны и зоны проводимости относительно соответствующего уровня Ферми. На зонной диаграмме B 3 и $3 П$ в n-слое вместе с уровнем E_{F} смещаются «вверх», как это показано на рис. 3.
6. При «прямом смещении» и при $T=\mathrm{const}$ концентрация неосновных носителей - дырок в n-слое P_{n} и дрейфовый поток ΔP_{n} дырок из n-слоя практически остаются такими же, как и в состоянии равновесия.

Диффузионный же поток дырок ΔP_{p} из p-слоя, зависящий от высоты ΔE барьера, существенно возрастает по сравнению с равновесным значением: $\Delta P_{p} \gg \Delta P_{p o}$. В n-слое за счет этого потока появляются «избыточные неосновные носители тока» - дырки. Этот процесс нагнетания из эмиттера в базу неосновных носителей называют инжекцией. На границе $p-n$-перехода ($x=0$ на рис. 3) концентрация «избыточных дырок» $\Delta P_{\text {o }}=\Delta P_{p}-\Delta P_{n}$ максимальна. Эти дырки диффундируют в n слое и по причине рекомбинации с имеющимися в этом слое свободными электронами уменьшают свою концентрацию по закону

$$
\begin{equation*}
\Delta P(x)=\Delta P_{\mathrm{o}} \cdot e^{-\frac{x}{L}}=P_{n}\left(e^{\frac{q_{e} U}{k T}}-1\right) e^{-\frac{x}{L}}, \tag{3}
\end{equation*}
$$

где $L \approx 0,1$ мм - «диффузионная длина» дырок в n-слое, при которой $\Delta P(x=L)<\Delta P_{\text {о }}$ в $e=2,7$ раз, $k=1,38 \cdot 10^{-23}$ Дж/К.

Рекомбинационное уменьшение концентрации свободных электронов в n-слое компенсируется их притоком из внешней цепи под действием источника «прямого» напряжения. Соответственно инжекция дырок из эмиттера в p-слое компенсируется оттоком электронов во внешнюю цепь, что эквивалентно притоку дырок из этой цепи.

Диффузионный дырочный ток на границе ($x=0$ на рис. 3) $p-n$-перехода с n-слоем определяется законом диффузии

$$
\begin{equation*}
I=\left.q_{e} \cdot D_{p} S \frac{d[\Delta P(x)]}{d x}\right|_{x=0} \tag{4}
\end{equation*}
$$

где D_{p} - коэффициент диффузии дырок в n-слое.

Puc. 3

Подставляя $\Delta P(x)$ из (3) и находя производную, получим при $x=0$ формулу прямого тока через $p-n$-переход:

$$
\begin{equation*}
I=I_{\mathrm{o} p}\left(e^{\frac{q_{e} U}{k T}}-1\right), \tag{5}
\end{equation*}
$$

где $I_{\text {о }}=q_{e} D_{p} S P_{n} / L-$ «тепловой ток» дырок, зависящий от температуры вследствие термогенерации дырок в n-слое и от ширины запрещенной зоны ΔE_{3} полупроводника. При $T=300$ К для Ge $I_{\text {о }} \approx 1$ мкА, для $\mathrm{Si} I_{\mathrm{o} p} \approx 10^{-7}$ мкА.

Прямое напряжение смещения, исходя из требования $\Delta \varphi=\Delta \varphi_{\mathrm{o}}-U>0$, ограничивается условием $U<\Delta \varphi_{\mathrm{o}}$. Прямой ток нормируется по допустимой мощности, выделяющейся при нагревании полупроводника, и для диодов средней мощности $I_{\max } \approx 0,5 \mathrm{~A}$. Так как ширина $l p-n$-перехода при прямом смещении мала, его сопротивление незначительно.

Примечание. Если $p-n$-переход симметричный, аналогичным образом рассматриваются электронные потоки в зоне проводимости, инжекция электронов из n-слоя, диффузионный электронный ток, соответствующий формуле (4), но содержащий тепловой ток электронов $I_{\text {оп }}$. Прямой ток является суммой дырочного и электронного токов.

Обратное смещение \boldsymbol{p} - \boldsymbol{n}-перехода

7. Напряжение смещения U^{\prime} называют обратным напряжением, если оно приложено к клеммам Э и Б так, что $\Delta \varphi>\Delta \varphi_{\text {o }}$. На рис. 4 полярность этого напряжения имеет плюс на Б и минус на Э.

При обратном смещении $p-n$-перехода возрастают по сравнению с равновесными значениями разность потенциалов, высота и ширина потенциального барьера:

$$
\left.\begin{array}{l}
\Delta \varphi=\Delta \varphi_{\mathrm{o}}+U^{\prime} ; \tag{6}\\
\Delta E=q_{e} \cdot \Delta \varphi=\Delta E_{\mathrm{o}}+q_{e} U^{\prime} ; \\
l=l_{\mathrm{o}} \sqrt{\Delta \varphi / \Delta \varphi_{\mathrm{o}}}=l_{\mathrm{o}} \sqrt{1+U^{\prime} / \Delta \varphi_{\mathrm{o}}^{\prime}}
\end{array}\right\}
$$

а также на $\Delta E_{\mathrm{F}}=q_{e} U^{\prime}$ смещается «вниз» на зонной диаграмме уровень Ферми $E_{\mathrm{F} n}$ относительно уровня Ферми $E_{\mathrm{F} p}$.

Напряжением U^{\prime} система выведена из состояния равновесия $\left(E_{\text {Fи }}<E_{\mathrm{F}_{p}}\right)$ при неизменной температуре. Равновесные значения концентрации основных и неосновных носителей тока в p-слое и в n-слое сохраняются. Неизменным остается и положение ВЗ и ЗП относительно уровней Ферми в каждом слое.

Вместе с уровнем Ферми смещаются «вниз» относительно p-слоя ВЗ и ЗП n-слоя, как показано на зонной диаграмме (рис. 4).
8. При обратном смещении и при $T=$ const дрейфовый поток ΔP_{n} дырок из n-слоя остается таким же, как и в состоянии равновесия.

Pис. 4

Диффузионный же поток дырок ΔP_{p} из p-слоя ввиду увеличения высоты ΔE потенциального барьера ($\Delta E>\Delta E_{\mathrm{o}}$) существенно уменьшается по сравнению с равновесным значением: $\Delta P_{p} \ll \Delta P_{p o}$.

Преимущественный дрейфовый переход дырок из n-слоя в p-слой (экстракция, или отсос дырок из базы) создает в n-слое вблизи его границы с $p-n$-переходом «дефицит дырок», распространяющийся по мере удаления от границы (вдоль оси X) в соответствии с формулой

$$
\begin{equation*}
\Delta P^{\prime}(x)=\Delta P_{0}^{\prime} \cdot e^{-\frac{x}{L}}=P_{n}\left(e^{-\frac{q_{e} U^{\prime}}{k T}}-1\right) e^{-\frac{x}{L}} \tag{7}
\end{equation*}
$$

где максимальное значение «дефицита» (при $x=0$) $\Delta P_{\mathrm{o}}^{\prime}=\Delta P_{p}-\Delta P_{n}<0$.
Дырки, покидающие n-слой, компенсируются притоком их из глубины n-слоя, что эквивалентно оттоку свободных электронов во внешнюю цепь через клемму Б. В p-слое сверхравновесные дырки, проникшие через $p-n$-переход, компенсируются рекомбинацией их с электронами, поступающими из внешней цепи через клемму Э.

Дрейфовый дырочный ток на границе $p-n$-перехода с n-слоем определяется формулой (4), подставляя в которую (7), получим для обратного тока через $p-n$-переход

$$
\begin{equation*}
I^{\prime}=I_{\mathrm{o} p}\left(e^{-\frac{q_{e} U^{\prime}}{k T}}-1\right), \tag{8}
\end{equation*}
$$

где тепловой дырочный ток $I_{\text {ор }}$ соответствует рассмотренному в (5). Обратное напряжение U^{\prime} ограничивается электрической прочностью кристалла и может быть достаточно большим ($30 \ldots 100$ B).

Даже при не очень больших напряжениях U^{\prime} в (8) экспоненциальная часть много меньше единицы и ею можно пренебречь. Поэтому $I^{\prime} \approx-I_{\text {op }}=$ const при данной температуре и разных значениях $U^{\prime} \gg 0$. Температурная зависимость тока I^{\prime} весьма существенна.

Ввиду большого значения ширины $l p$ - n-перехода сопротивление обратно смещенного перехода очень большое.

3. ВОЛЬТ-АМПЕРНАЯ ХАРАКТЕРИСТИКА ПОЛУПРОВОДНИКОВОГО ДИОДА

Формулы (5) и (8) определяют вольт-амперные характеристики (BAX) полупроводникового диода при прямом $I=f(U)$ и при обратном $I^{\prime}=f\left(U^{\prime}\right)$ смещениях. В первом случае ВАХ имеет большую крутизну: при малом изменении прямого напряжения ток диода изменяется резко. Для экспериментального исследования ВАХ в этом случае проще и точнее устанавливать величину тока, а напряжение, полученное на диоде, измерять. Для этого в качестве источника необходимо применять «генератор тока». ВАХ при обратном включении диода: даже при больших изменениях напряжения ток изменяется незначительно. В этом случае предпочтительнее использовать «генератор напряжений» для установки напряжения на диоде, а ток диода измерять.

ВАХ полупроводникового диода показана на рис. 5 для прямого и обратного смещений. Здесь же приведен пример практического

Puc. 5

применения полупроводникового диода для выпрямления переменного тока, когда на диод подается переменное напряжение.

Важнейшими характеристиками диода являются его прямое и обратное сопротивления.

Статические сопротивления:

$$
\begin{equation*}
R=\frac{U^{\prime}}{I^{\prime}}, \quad R^{\prime}=\frac{U_{2}^{1}}{I_{2}^{1}} \tag{9}
\end{equation*}
$$

Динамические сопротивления:

$$
\begin{equation*}
R_{\text {д }}=\frac{\Delta U}{\Delta I}, \quad R_{\text {д }}^{\prime}=\frac{\Delta U^{\prime}}{\Delta I^{\prime}} . \tag{10}
\end{equation*}
$$

Динамические сопротивления проявляются при подключении к диоду источников переменного напряжения и используются для расчета цепей переменного тока.

4. СХЕМА ЭКСПЕРИМЕНТАЛЬНОЙ УСТАНОВКИ

Для исследования и построения ВАХ полупроводникового диода схема экспериментальной установки имеет два варианта, показанные на рис. 6, один из которых для прямого включения, второй - для обратного включения диода. На рис. 6 обозначены: ГН - генератор напряжения, а также вольтметры и амперметры.

Прямое включение

Обратное включение

Puc. 6

5. ЗАДАНИЕ

1. Собрать схему прямого включения, представленную на рис. 6. Регуляторы температуры и напряжения поставить в минимальные положения.
2. Включить установку. Снять зависимость (ВАХ) $I=f(U)$ для прямого включения при комнатной температуре.
3. Снять температурную зависимость $U=f(T)$ для прямого включения при постоянном токе, поддерживая ручкой генератора напряжения его заданное значение. Установить ток I через диод от 2 до 5 мА (задается преподавателем). Установить на шкале терморегулятора нужное значение температуры.
4. При достижении необходимой температуры записать показания вольтметра.
5. Измерения проводить через 10 К, нагревая образец от 290 до 380 K.
6. Включить вентилятор, охладить диод до комнатной температуры. Выключить установку.
7. Собрать схему обратного включения, представленную на рис. 6. Регуляторы температуры и напряжения поставить в минимальные положения.
8. Включить установку. Снять зависимость $I=f(U)$ (ВАХ) для обратного включения при комнатной температуре.
9. Снять температурную зависимость $I=f(T)$ для обратного включения при постоянном напряжении U от 5 до 15 В (задается преподавателем). Установить на шкале терморегулятора нужное значение температуры.
10. При достижении необходимой температуры записать показания амперметра.
11. Измерения проводить через 10 К, нагревая образец от 290 до 380 K.
12. Построить графики $U=f(I), U=f(T), I=f(U), I=f(T)$.
13. По графикам $U=f(I)$ и $I=f(U)$ определить статическое и динамическое сопротивления диода в обоих направлениях.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Устройство полупроводникового диода.
2. Прямое и обратное включения диода, охарактеризовать прямое и обратное напряжения, прямой и обратный токи диода.
3. Выбор измерительных приборов для схем прямого и обратного включений диода. ВАХ полупроводникового диода.
4. Охарактеризовать температурные зависимости прямого и обратного токов диода, рабочий диапазон температур.
5. Основные и неосновные носители тока в полупроводниках p-типа и n-типа, способ получения этих носителей.
6. Формирование несимметричного $p-n$-перехода, его особенности.
7. Равновесное состояние $p-n$-перехода и равновесная энергетическая зонная диаграмма.
8. Диффузионные и дрейфовые потоки через $p-n$-переход, причины их возникновения, особенности и равновесные значения.
9. Ширина $p-n$-перехода и ее влияние на сопротивление перехода.
10. Контактная разность потенциалов, высота потенциального барьера на $p-n$-переходе и ее влияние на диффузионный и дрейфовый потоки.
11. Прямое и обратное смещения $p-n$-перехода, энергетические зонные диаграммы.
12. Причины образования прямого и обратного токов через p - n переход, инжекция и экстракция носителей тока.
13. Процессы диффузии носителей тока в p-слое и в n-слое. Диффузионная длина носителей тока.
14. Чем различаются ВАХ и температурные характеристики германиевого и кремниевого диодов?
15. Выпрямляющее действие диода.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Савельев И.В. Курс общей физики. - М.: Наука, 1978. - Т. 2 (и более поздние издания этого курса).
2. Епифанов Г.И. Физические основы микроэлектроники. - М.: Высшая школа, 1971.

ЛАБОРАТОРНАЯ РАБОТА № 48
 ИССЛЕДОВАНИЕ ПРОБОЯ p - n-ПЕРЕХОДА

\author{

1. ЦЕЛЬ РАБОТЫ
}

Изучить явление пробоя в $p-n$-переходе.

2. КРАТКОЕ ТЕОРЕТИЧЕСКОЕ ВВЕДЕНИЕ

Существует предел повышения запирающего напряжения на $p-n$ переходе. Этот предел определяется пробоем p - n-перехода. Если постепенно увеличивать запирающее напряжение, то, начиная с некоторого значения напряжения, обратный ток увеличивается вначале медленно, а затем все быстрее и быстрее. Если не принимать специальных мер по ограничению тока, то переход окажется пробитым. В области больших запирающих напряжений вольт-амперные характеристики будут иметь вид одной из кривых, показанных на рис. 1.

Различают четыре вида пробоя:

- туннельный пробой;
- лавинный пробой или пробой за счет ударной ионизации;
- тепловой пробой за счет разогрева перехода;
- поверхностный пробой.

Туннельный (зенеровский) пробой является результатом непосредственного воздействия сильного внешнего электрического поля на

1 - туннельный пробой
2 - лавинный пробой
3 - тепловой пробой
Puc. 1

результирующее поле в области $p-n$-перехода полупроводника. При сильном обратном смещении $p-n$ перехода можно создать условия для прямых электронных переходов между валентной зоной и зоной проводимости (туннелирования). Зонная диаграмма при таком смещении $p-n$-перехода показана на рис. 2. Вероятность перехода электрона через такой потенциальный барьер (с сохранением энергии) отлична от нуля, если с дру-

Puc. 2 гой стороны барьера имеются свободные состояния с равной или меньшей энергией. Кроме того, ширина барьера d должна быть достаточно мала. Поэтому туннельный пробой наблюдается в узких (тонких) $p-n$-переходах.

С увеличением толщины $p-n$-перехода вероятность туннельного просачивания электронов уменьшается и более вероятным становится лавинный пробой. При этом неосновные носители заряда, попадающие в электрическое поле широкого p - n-перехода, успевают за счет работы сил этого поля приобрести энергию, достаточную для ионизации собственных атомов, с которыми эти носители заряда сталкиваются. При столкновении они выбивают из атома валентный электрон. В результате возникает парный заряд электрон-дырка, увеличивающий ток через переход. Выбитый электрон вместе с первичным электроном вновь ускоряются полем $p-n$-перехода и могут затем опять выбить по валентному электрону и т.д. Этот процесс имеет лавинообразный характер. Для того чтобы носители заряда успели приобрести за время движения в переходе достаточную энергию, время их дрейфа должно быть велико. Поэтому ударная ионизация наблюдается только в достаточно широких p-n-переходах, т. е. в переходах на высокоомных материалах.

Как в первом, так и во втором случаях при пробое в области $p-n$-перехода растет концентрация неосновных носителей заряда $n_{n 0}$ и, следовательно, уменьшается удельное сопротивление ρ :

$$
\rho=\frac{1}{e n_{n 0} u_{n}} .
$$

Здесь e - элементарный заряд; u_{n} - дрейфовая скорость носителя заряда. Именно поэтому ток через $p-n$-переход резко возрастает (см. рис. 1).

Два вида пробоя, описанные выше, не являются взаимоисключающими. Часто в $p-n$-переходах действуют оба указанных механизма. Результаты экспериментальных исследований показывают, что как у германиевых, так и у кремниевых p - n-переходов туннельный пробой наблюдается при удельных сопротивлениях в слабо легированной области полупроводника менее 0,1 Ом•см. Напряжения туннельного пробоя составляют при этом менее 2 B для германиевых и менее 5 B для кремниевых переходов. Пробивные напряжения свыше 5 В для германиевых и свыше 7 В для кремниевых переходов соответствуют лавинному пробою. Промежуточные значения соответствуют одновременному существованию обоих видов пробоя. ВАХ для туннельного и лавинного пробоев оказываются довольно сходными, и поэтому не всегда можно с уверенностью сказать, какая из причин вызвала пробой.

Температурная зависимость напряжения туннельного пробоя определяется температурной зависимостью ширины $p-n$-перехода. С ростом температуры уменьшается контактная разность потенциалов, уменьшается ширина $p-n$-перехода, вероятность туннелирования возрастает и напряжение пробоя падает. Это объясняется тем, что при высоких температурах уровни Ферми в p - и n-полупроводниках приближаются к середине запрещенной зоны, электропроводность примесных полупроводников стремится к собственной, а, следовательно, p - n-переход исчезает.

Температурная зависимость напряжения лавинного пробоя связана с температурной зависимостью длины свободного пробега носителей тока. При рассеянии носителей на фононах подвижность носителей с ростом температуры уменьшается. Поэтому для того чтобы носитель при меньшей длине свободного пробега приобрел энергию, достаточную для разрыва валентных связей, поля в переходе должны иметь большую величину. Это приводит к тому, что напряжение пробоя будет увеличиваться с ростом температуры.

Таким образом, напряжения туннельного и лавинного пробоев противоположным образом изменяются с изменением температуры. Эта зависимость характеризуется знаком температурного коэффициента напряжения (ТКН), определение которого будет дано ниже. Изменение знака этого коэффициента происходит при концентрациях носителей заряда порядка $5 \cdot 10^{16} \mathrm{~cm}^{-3}$. В этой области ($U_{\text {п }}=5 \ldots 6 \mathrm{~B}$) изменения напряжения пробоя с температурой будут минимальными.

Тепловой пробой может иметь место в тех случаях, когда не обеспечивается необходимый отвод тепла от перехода, работающего в режиме выпрямления больших токов.

Явление поверхностного пробоя заключается в следующем. Поверхностный заряд, практически всегда имеющийся в месте выхода $p-n$-перехода на поверхность, может сильно исказить картину поля в переходе. Это в свою очередь повлияет на ширину $p-n$-перехода на поверхности и, как следствие, может увеличить вероятность пробоя.

3. МЕТОДИКА ЭКСПЕРИМЕНТА

Исследовать пробой $p-n$-перехода можно с помощью полупроводникового стабилитрона. Полупроводниковым стабилитроном называется электронный прибор, предназначенный для получения опорного (стабильного) напряжения. Этот прибор состоит из $p-n$-перехода, системы контактов и корпуса.

Как отмечалось выше, напряжение пробоя зависит от температуры $p-n$-перехода. Поэтому важным параметром стабилитронов является температурный коэффициент напряжения стабилизации. Этот коэффициент выражается обычно в процентах на градус ($\% /$ град) и определяется из следующей зависимости:

$$
\begin{equation*}
\text { ТКН }=\frac{d U_{п}}{d T} \frac{1}{U_{\text {п }}} \cdot 100 \% \text {. } \tag{1}
\end{equation*}
$$

Для наблюдения пробоя $p-n$-перехода нужно включить его по схеме обратного смещения (рис. 3). Для обеспечения защиты стабилитрона от чрезмерного возрастания тока необходимо использовать ограничивающее сопротивление R.

Pис. 3

4. ЗАДАНИЕ

1. Собрать схему, показанную на рис. 3. Регулятор температуры должен стоять на минимуме.
2. При комнатной температуре (примерно 300 К) получить данные для построения обратной ветви BAX, задавая разные значения обрат-

ного напряжения на генераторе напряжения и измеряя соответствующие значения обратного тока стабилитрона.
3. Повторить измерения пункта 2 при других температурах. Рекомендуемые значения: 330 К, 360 К, 390 К. Построить графики ВАХ для всех температур.
4. По результатам пунктов 2 и 3 построить график зависимости напряжения стабилизации от температуры для заданного значения тока стабилизации $U_{\mathrm{c}}=f(T)_{I=\mathrm{const}}$. Рекомендуемое значение тока стабилизации 20 мА.
5. Пользуясь графиком $U_{\mathrm{c}}=f(T)_{I=\text { const }}$ (пункт 4) и формулой (1), определить значение ТКН для исследуемого стабилитрона.
6. Определить, туннельный или лавинный пробой наблюдается в $p-n$-переходе исследованного стабилитрона.

5. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что такое пробой $p-n$-перехода?
2. Сколько видов пробоя $p-n$-перехода известно?
3. Дать характеристику туннельному пробою. Пояснить причины и условия его появления.
4. Дать характеристику лавинному пробою. Пояснить причины и условия его появления.
5. Пояснить причины и условия появления теплового и поверхностного пробоев.
6. Как изменяется напряжение туннельного пробоя с ростом температуры?
7. Как изменяется напряжение лавинного пробоя с ростом температуры?
8. Для чего используется стабилитрон?
9. Что называется температурным коэффициентом напряжения стабилизации (ТКН) стабилитрона?
10. Как определить, туннельный или лавинный пробой имеет место в исследуемом стабилитроне?

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

1. Федотов Я.А. Основы физики полупроводниковых приборов. - М.: Сов. радио, 1969.
2. Епифанов Г.И. Физические основы микроэлектроники. - М.: Сов. радио, 1971.

Таблица 1
Справочные данные по некоторым полупроводниковым материалам

Материал	$\Delta E, э \mathrm{~B}$	$\frac{m_{n}^{*}}{m_{0}}$	$\frac{m_{p}^{*}}{m_{0}}$	$\mu_{n}, \frac{\mathrm{~cm}^{2}}{\mathrm{~B} \cdot \mathrm{c}}$	$\mu_{p}, \frac{\mathrm{~cm}^{2}}{\mathrm{~B} \cdot \mathrm{c}}$	ε
Ge	0,72	0,082	0,28	3900	1900	16,0
Si	1,12	0,190	0,49	1500	450	11,9
InSb	0,17	0,015	0,40	80000	1250	17,7
GaAs	1,42	0,056	0,68	8500	400	13,1
GaP	2,26	0,820	0,60	110	75	11,6
CdS	2,42	0,210	0,80	340	50	5,4
CdSe	1,70	0,130	0,45	800	-	10,0
PbS	0,41	0,25	0,25	600	700	17,0

$$
1 \text { эВ }=1,60 \cdot 10^{-19} \text { Дж }
$$

Таблица 2
Некоторые физические константы

Постоянная Больцмана	$k_{\text {Б }}$	$1,38 \cdot 10^{-23}$ Дж $\cdot \mathrm{K}^{-1}$
Постоянная Планка	h	$6,62 \cdot 10^{-34}$ Дж $\cdot \mathbf{c}$
Число Авогадро	N_{A}	$6,02 \cdot 10^{23}$ моль $^{-1}$
Масса электрона	m_{0}	$9,11 \cdot 10^{-31}$ кг
Элементарный заряд	q_{e}	$1,60 \cdot 10^{-19}$ Кл
Скорость света	c	$3 \cdot 10^{8}$ м/с

СОДЕРЖАНИЕ

Введение 3
Лабораторная работа № 40. Определение ширины запрещенной зоны полупроводника 20
Лабораторная работа № 41. Эффект Холла в примесных полупровод- никах 23
Лабораторная работа № 42. Исследование свойств фоторезистора 32
Лабораторная работа № 43. Исследование свойств терморезистора 39
Лабораторная работа № 44. Изучение полупроводникового диода 47
Лабораторная работа № 48. Исследование пробоя $p-n$-перехода 62
Приложение 67

ФИЗИКА ТВЕРДОГО ТЕЛА ФИЗИЧЕСКИЕ ОСНОВЫ ЭЛЕКТРОНИКИ

Методическое руководство

Редактор Н.А. Лукашова
Выпускающий редактор И.П. Брованова
Корректор И.Е. Семенова
Компьютерная верстка В.Ф. Ноздрева

Подписано в печать 07.04.2011. Формат $60 \times 841 / 16$. Бумага офсетная.
Тираж 200 экз. Уч.-изд. л. 3,95. Печ. л. 4,25. Изд. № 322. Заказ №
Цена договорная
Отпечатано в типографии
Новосибирского государственного технического университета
630092, г. Новосибирск, пр. К. Маркса, 20

