Полупроводниковые устройства

Лекция 11 2019 г.

Примесные полупроводники

CB

CB

Получение *р-п* перехода

- 1. Получить *p-n* переход простым соприкосновением полупроводников *p*-и *n*-типа практически не возможно из-за качества поверхности.
- 2. Можно получить методом сплавления. На кристалл германия *n*-типа кладут кусочек индия. Расплавляют при 500-600 °C. После охлаждения на поверхности германия *n*-типа образуется германий, насыщенный индием с проводимостью *p*-типа.
- 3. Диффузионный метод получения. Диффузия из газообразной, жидкой или твердой фазы.
- 4. Эпитаксиальный метод. Метод заключается в осаждении на пластину кремния (например, пластину кремния *n*-типа) за счет химических реакций пленки кремния *p*-типа.
- 5. CVD-метод метод осаждения из плазмы.
- 6. Метод ионного легирования легирование пучком ионов.

Равновесное состояние р-п перехода

• Для *n*-области основными носителями заряда являются электроны, для *p*-области – дырки.

Сразу возникает запирающий двойной электрический слой.

 $l_{\rm o} = l_p + l_n \approx 5$ мкм

Упрощенная модель *р-п* перехода

 Основные носители возникают почти исключительно путем ионизации примесей. При не слишком низких температурах примеси практически полностью ионизированы, поэтому концентрация основных носителей заряда (*n_n* или *p_p*) приблизительно равна концентрации примесных атомов:

$$n_n = N_d$$
 $p_p = N_a$

Неосновные носители будем обозначать следующим образом: концентрацию дырок в *n*-области как *p_n*, концентрацию электронов в *p*-области как *n_p*.

Математическое описание

• То же самое можно описать математически:

$$N_d(x) = \begin{cases} N_d & \text{for } x > 0\\ 0 & \text{for } x < 0 \end{cases}$$
$$N_a(x) = \begin{cases} N_a & \text{for } x < 0\\ 0 & \text{for } x > 0 \end{cases}$$

Диффузионные и дрейфовые потоки

• В рабочем диапазоне температур $p_p \gg n_p$ и $n_n \gg p_n$.

Диффузионные потоки: ΔP_p – поток дырок из *p*-слоя, ΔN_n – поток электронов из *n*-слоя.

Дрейфовые потоки: ΔN_p – поток электронов из *p*-слоя, ΔP_n – поток дырок из *n*-слоя, $\Delta \varphi_0$ – контактная разность потенциалов на *p*-*n*-переходе.

3. Рассмотрим несимметричный *p*–*n*-переход, при котором концентрация акцепторов N_a и концентрация доноров N_d неодинаковы. Такой переход обычно формируют в полупроводниковых диодах. Например, пусть $N_a = 100...1000 N_d$. Тогда при активации примеси $P_p >> N_n$. Низкоомный *p*-слой, содержащий много основных носителей тока, называют эмиттером (Э), а более высокоомный *n*-слой называют базой (Б).

Закон действующих масс и концентрации носителей тока

- Из закона действующих масс следует, что
 - $p_p n_p = n_n p_n$
- Поскольку мы приняли, что $p_p \gg n_n$, то

$$p_p \gg n_n \gg p_n \gg n_p$$

• Тепловое движение приводит к самопроизвольной диффузии электронов и дырок на границе р и п-слоев.

Объёмные заряды в переходной области *p-n* перехода

- Вследствие рекомбинации на границе образуются заряды, сформированные ионами примесей: донорные ионы образуют заряд $q_n = eN_d l_n S$. Акцепторные ионы дают заряд $q_p = -eN_a l_p S$
- В силу электронейтральности имеем, что $q_n = -q_p$.

Так как $q_p = -q_n$, то $N_a l_{p_o} = N_d l_n$. При несимметричном *p*-*n*-переходе $(N_a \gg N_d)$ имеем $l_p \ll l_n$. Таким образом $l_o \approx l_n$ и *p*-*n*-переход размещен в основном в высокоомной базе.

Схема энергетических зон для *р-и* перехода

 В условиях равновесия уровни Ферми выравниваются по всему объёму полупроводника.

Относительно «горизонтального», общего для всего объема, уровня Ферми строятся валентная зона и зона проводимости, которые в области *p*–*n*-перехода оказываются «наклонными».

Дрейфовые и диффузионные потоки электронов и дырок

• Высота потенциального барьера: $\Delta E = e \Delta \phi$.

При температуре T = 300 К высота барьера $\Delta E_{0} \approx 0,35$ эВ ($\Delta \phi_{0} = 0,35$ В) для Ge и $\Delta E_{0} \approx 0,65$ эВ ($\Delta \phi_{0} \approx 0,65$ В) для Si.

Так как дырочный газ в валентной зоне — невырожденный, его концентрация при T = const распределяется по закону Больцмана

$$p_n = p_p e^{-\Delta E/k_B T}$$

• Отсюда

$$\Delta E = k_B T \ln \frac{p_p}{p_n}$$

Поскольку в равновесном состоянии $p_p \gg p_n$, то диффузионный поток Δp_p не прекращается, но компенсируется встречным дрейфовым потоком дырок Δp_n :

$$\Delta p_p = \Delta p_n$$

Величина дрейфового потока не зависит от высоты потенциального барьера ΔE , а зависит от концентрации дырок p_n – неосновных носителей тока в *n*-слое. В соответствии с формулой, она сильно зависит от температуры.

Прямое смещение *р-и* перехода

Разность потенциалов Δφ на границе p-n перехода можно изменять относительно контактной разности потенциалов Δφ₀ с помощью внешнего напряжения V, подаваемого на клеммы Э и Б.

Если напряжение U приложено так, что $\Delta \phi < \Delta \phi_0$, оно называется напряжением «прямого смещения» *p*–*n*-перехода или прямым напряжением на полупроводниковом диоде. В рассматриваемом здесь случае полярность прямого напряжения должна иметь плюс на Э и минус на Б.

$$\Delta \varphi = \Delta \varphi_0 - V \qquad \Delta E = e \Delta \varphi = \Delta E_0 - eV$$

6. При «прямом смещении» и при T = const концентрация неосновных носителей – дырок в *n*-слое P_n и дрейфовый поток ΔP_n дырок из *n*-слоя практически остаются такими же, как и в состоянии равновесия. Диффузионный же поток дырок ΔP_p из *p*-слоя, зависящий от высоты ΔE барьера, существенно возрастает по сравнению с равновесным значением: $\Delta P_p \gg \Delta P_{po}$. В *n*-слое за счет этого потока появляются «избыточные неосновные носители тока» – дырки. Этот процесс нагнетания из эмиттера в базу неосновных носителей называют инжекцией.

Примечание. Если p-n-переход симметричный, аналогичным образом рассматриваются электронные потоки в зоне проводимости, инжекция электронов из n-слоя, диффузионный электронный ток, соответствующий формуле (4), но содержащий тепловой ток электронов I_{on} . Прямой ток является суммой дырочного и электронного токов.

Обратное смещение *р-и* перехода

 Напряжение смещения V называют обратным напряжением, если оно приложено так, что Δφ>Δφ₀.

$$\Delta \varphi = \Delta \varphi_0 + V \qquad \Delta E = e \Delta \varphi = \Delta E_0 + eV$$

8. При обратном смещении и при T = const дрейфовый поток ΔP_n дырок из *n*-слоя остается таким же, как и в состоянии равновесия.

Диффузионный же поток дырок ΔP_p из *p*-слоя ввиду увеличения высоты ΔE потенциального барьера ($\Delta E > \Delta E_o$) существенно уменьшается по сравнению с равновесным значением: $\Delta P_p << \Delta P_{po}$.

Вольт-амперная характеристика полупроводникового диода

Ток через р-п-переход

 В общем случае концентрация электронов в зоне проводимости определяется соотношением (распределение Максвелла – Больцмана):

$$n = N_c \exp\left[-\left(E_c - E_F\right)/kT\right]$$

Соответственно, в *p*-области перехода концентрация электронов в зоне проводимости равна

$$n_p = N_c \exp\left[-\left(E_{cp} - E_{F_p}\right)/kT\right]$$

• В соответствии с рисунком, имеем

$$E_1 = E_{cp} - E_{F_p}$$

• Поэтому

$$n_p = N_c \exp[-E_1/kT]$$

Электронный ток из *p*-области обусловлен дрейфом электронов и пропорционален их концентрации

• Отсюда имеем

$$i'_e = A' \exp\left[-E_1/kT\right]$$

• Аналогично для *n*-области имеем

$$n_n = N_c \exp\left[-E_2/kT\right]$$

• С учетом потенциального барьера ΔE сила тока равна

$$i_e = A \exp[-E_2/kT] \exp[-\Delta E/kT]$$

В условиях равновесия

$$i'_e = i_e$$

 $A' \exp[-E_1/kT] = A \exp[-E_2/kT] \exp[-\Delta E/kT] = A \exp[-(E_2 + \Delta E)/kT]$

• Из рисунка следует, что $E_1 = E_2 + \Delta E$, поэтому

A = A'

Теперь для силы тока можно записать, что

$$i_e = i'_e = A \exp[-E_1/kT]$$
$$i_h = i'_h = A \exp[-E_1/kT]$$

• Нижнее уравнение – дырочный ток

При наложении внешней разности потенциалов, получим

• для тока

$$i_e = A \exp[-E_2/kT] \exp[-(\Delta E + eU)/kT] =$$
$$= A \exp[-E_1/kT] \exp[-eU/kT]$$

$$i_e' = A' \exp\left[-E_1/kT\right]$$

Результирующий ток равен

$$I_e = i_e - i'_e = i'_e \left\{ \exp\left[-\frac{eU}{kT}\right] - 1 \right\}$$

• Аналогично для дырочного тока:

$$I_h = i_h - i'_h = i'_h \left\{ \exp\left[-\frac{eU}{kT}\right] - 1 \right\}$$

Теперь полный ток через переход можно записать в виде

$$I = I_0 \left\{ \exp\left[-\frac{eU}{kT}\right] - 1 \right\}$$

ire 6.14. Effect of temperature on pn junction characteristics, at temperatures of 20, 40, 50 and 60 °C: horizontal scale 0.05 V per division; vertical scale 0.01 mA per division

Жорес Алферов

Терморезистор (термистор, термосопротивление) - зависимость сопротивления от температуры

$$R \approx R_0 e^{B\left(\frac{1}{T_0} - \frac{1}{T}\right)}$$
 - экспоненциально падает с ростом абсолютной температуры

Пример: компенсация ОС в цветных телевизорах и в дисплеях:

Тепловые сопротивления (термисторы)

Полупроводники:

- Применение в качестве чувствительных термометров при дистанционных измерениях
- Использование в качестве термометров для замера температур окружающей среды

Термистор(видео – опыт)

Фоторезисторы (фотосопротивления) - зависимость сопротивления от освещенности

$$R_{\phi} = R_0 \frac{I_{\phi 0}}{I_{\phi}}$$
 - т.е. $i \propto I_{\phi}$ в большинстве случаев

Обычно $R_{TEMH} \sim 100 K\Omega - 1 G\Omega$ $R_{CBET} \sim 100\Omega - 10 K\Omega$

Применение - измерение и регулировка освещенности, фотодатчики

Недостаток - инерционность

Достоинство - обычно линейная зависимость
$$i(u) = \frac{u}{R(I_{\phi})}$$
 (закон Ома)

Варистор (нелинейное сопротивление) i SiC u

Применение : стабилизация высоких напряжений (телевизоры, дисплеи), защита от перенапряжения

Фоторезистор

Когда на транзистор падает свет достаточно большой энергии, т.е. с достаточно малой длиной волны, в нем освобождаются электроннодырочные пары. Если пары возникают вблизи *p-n*-перехода с напряжением обратного смещения, они могут диффундировать в область перехода. Один из носителей может быть ускорен напряжением, имеющимся на переходе, и тогда он приобретает способность освобождать дополнительные заряды в процессах столкновения. В материале *п*-типа ускоряется дырка, в материале р-типа – электрон. Поскольку заряды несут ток через переход, он возникает и во внешней цепи, т.е. свет преобразуется в электрический ток.

Использование:

- 1. Регистрация и изменения слабых световых потоков.
- 2. Обнаружение инфракрасных лучей.
- 3. В автоматических устройствах, служащих для подсчета изделий движущихся на конвейере, контроля их размеров

Например, турникет в метро работает именно по такому принципу.

