
Термодинамический метод анализа макросистем

Вопросы

- 1. Макросистемы и способы их описания.
- 2. Термодинамические системы, состояния, параметры и процессы.
- 3. Первое начало термодинамики.
- 4. Первое начало термодинамики и процессы идеального газа.
- 5. Энтропия. Второе начало термодинамики.

Во Вселенной выделяются три масштабно-структурных уровня организации материи.

Микромир —мир предельно малых, непосредственно не наблюдаемых объектов. Характерный пространственный масштаб $10^{-8} - 10^{-18}$ см.

Макромир — мир соразмерных человеку объектов. Характерный пространственный масштаб $10^{-3} - 10^6$ м.

Мегамир – мир огромных космических масштабов. Расстояние в котором измеряется световыми годами.

Макросистема — система, состоящая из очень большого числа частиц (молекулы, атомы, элементарные частицы).

В капле воды порядка 10²² молекул

Для описания макросистем могут быть использованы три метода:

- **I.** Термодинамический, основанный на началах (законах) термодинамики.
- **II. Статистический** с использованием законов статистики.
- **III. Динамический** на основе применения законов механики.

•

Термодинамический метод заключается в описании поведения макросистем с помощью 4-х основных постулатов — начал (законов) термодинамики:

- 1. Принцип температуры (нулевое начало).
- 2. Принцип энергии (первое начало).
- 3. Принцип энтропии (второе начало).
- 4. Принцип Нернста (третье начало).

Начала термодинамики, являющиеся **результатами опыта**, принимаются за **аксиомы**, исходя из которых строится **термодинамика**.

Термодинамический метод не опирается на какие-либо модельные представления о микроскопической структуре вещества. Этот метод является *феноменологическим*, т.е. описательным. Он устанавливает связи между непосредственно наблюдаемыми физическими величинами, характеризующими состояние системы, такими как, например, давление P, объем V, температура T и т. п. Микроскопические физические величины в термодинамике не рассматриваются.

Термодинамический метод позволяет с общих позиций разобраться в физической сути ряда задач, не требуя сведений о микроскопической структуре вещества. В этом состоит преимущество феноменологического подхода.

Статистический метод основан на модельных представлениях о структуре вещества.

Основная задача метода - устанавливать законы поведения макроскопических тел, исходя из законов движения составляющих эти тела микроскопических частиц.

Математическая основа метода состоит в применении законов *теории вероятностей*, а в качестве основной применяемой для анализа функции выступает *функция распределения*.

Обычно находятся одночастичные функции распределения (энергия, импульс, скорость) и считается, что функции распределения всех микрочастиц являются идентичными.

Наблюдаемые параметры макросистемы определяются путем нахождения **средних значений динамических переменных микрочастиц** (энергия, импульс, скорость), составляющих макросистему.

Статистический метод позволяет получить описание не только **равновесных состояний** макросистемы, но и определить характер её **изменения с течением времени**.

Для этого применяется кинетическое и гидродинамическое описания макросистем.

Кинетическое описание. На основе уравнений динамики микрочастиц получают **кинетические уравнения**, описывающие **эволюцию во времени функций распределения**. С помощью кинетических уравнений решаются задачи для процессов в газе, плазме и различных конденсированных средах. Уравнения физической кинетики применимы для описания **необратимых процессов**.

Гидродинамическое описание. Составляются уравнения для средних значений динамических параметров среды (скорость течения, температура, плотность и т.д.). В уравнения входят кинетические коэффициенты (коэффициенты переноса), такие, как коэффициенты вязкости, температура и т.д.

Отличительной особенностью кинетических коэффициентов от динамических параметров среды является отсутствие у них микроскопического аналога.

Если, например, для температуры таким микроскопическим аналогом является средняя кинетическая энергия микрочастицы, то коэффициент теплопроводности полностью теряет какой-либо физический смысл при переходе к описанию одной микрочастицы.

Гидродинамическое описание является более грубым, чем **кинетическое**, но его получение и использование существенно проще.

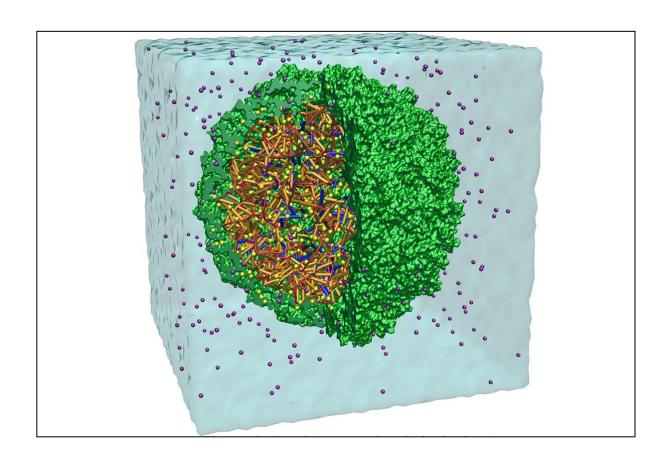
Статистический метод обладает меньшей общностью, чем термодинамический.

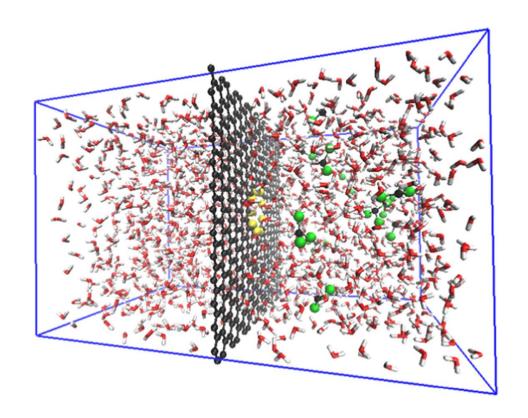
Выводы статистической механики справедливы лишь в той степени, в какой справедливы сделанные *модельные предположения* о поведении микроскопических частиц.

Преимущество статистического метода заключается в том, что он позволяет решать задачи, в принципе неразрешимые в рамках термодинамики. Метод позволяет находить уравнение состояния для *конкретных макроскопических систем*.

Статистический метод дает строгое обоснование законов классической термодинамики и устанавливает границы их применимости.

Динамический метод на основе применения


Законов механики для описания макросистем не подходит!


Потребуется совместное решение систем огромного количества дифференциальных уравнений (для капли воды порядка 10^{22}) с предварительно определенными начальными условиями (координаты и скорости всех частиц макросистемы).

Но интегрирование подобных систем уравнений давало бы достаточно полную картину эволюции системы частиц.

В последние десятилетия в связи с прогрессом компьютерных технологий, численных методов и использования параллельных вычислений стал развиваться метод молекулярной динамки (метод частиц) применительно к мезо структурам с числом частиц порядка 10^4-10^6 .

В 2013 году Нобелевская премия по химии присуждена Мартину Карплусу, Майклу Левитту и Арье Уоршелу за создание методов компьютерного моделирования молекул и их реакций.

J. Azamat, A. Khataee, S. Woo Joo. Molecular dynamics simulation of **trihalomethanes** separation from water by functionalized nanoporous graphene under induced pressure / Chemical Engineering Science. – 2015. – V.127

2.Термодинамические системы, состояния, параметры и процессы

Термодинамические системы. Макросистемы, состоящие из очень большого числа частиц (молекул, атомов, электронов, фотонов и т.д.). Это динамические системы, обладающие огромным числом степеней свободы.

Термостат. Если анализируется часть системы, то остальное — это окружающая среда, окружение или термостат, который налагает некоторые условия на изучаемую систему(например, постоянство температуры, давления и т.п.).

Изолированная система. Независимая система, которая не взаимодействует с окружающей средой.

Замкнутая система. Система, которая не обменивается веществом с окружающей средой.

2. Термодинамические системы, состояния, параметры и процессы

Открытая система. Система, которая обменивается веществом и энергией с окружающей средой. Пример – *биологические системы*.

Между системами может осуществляться **термодинамический контакт**, когда термодинамические системы связаны хотя бы одним из типов взаимодействий:

- 1. Механическое взаимодействие одна система совершает работу над другой системой. Такие взаимодействия характеризуются силами.
- 2. Тепловое взаимодействие совершается в форме передачи тепла посредством теплопроводности или теплового излучения.
- 3. **Материальное взаимодействие** приводит к обмену веществом между двумя системами. Пример полупроницаемая мембрана.

2. Термодинамические системы, состояния, параметры и процессы

Если термостат рассматривать как источник, действующий на систему одним из трех способов, то его можно называть:

- Источником, совершающим работу над системой,
- Источником тепла (тепловым резервуаром) для системы,
- Источником (резервуаром) частиц для системы.

При термодинамическом анализе обычно принимается, что **резервуар (источник) значительно больше анализируемой системы** и он остается в некотором неизменном (равновесном) состоянии независимо от взаимодействия с системой, находящейся с ним в контакте.

2. Термодинамические системы, состояния, параметры и процессы

Термодинамические параметры состояния системы. Физические величины (температура, давление, объём, плотность и т. д.), характеризующие состояние макросистемы.

Не зависящие от размеров системы параметры называются *интенсивными* (температура, давление, химический потенциал).

Параметры, зависящие от объема или массы системы, называются экстенсивными (энергия, энтропия).

- Состояние термодинамической системы называется *равновесным*, если параметры системы имеют определённые значения, не изменяющиеся с течением времени и в системе нет никаких стационарных потоков, вызванных действием каких-либо внешних тел (источников).
- Состояние, в котором хотя бы один из параметров не имеет определенного значения, называется *неравновесным*.

Изолированная система независимо от своего начального состояния в конечном итоге приходит в состояние **термодинамического равновесия**, которое в дальнейшем не изменяется.

2.Термодинамические системы, состояния, параметры и процессы

Термодинамическим процессом называется процесс переход системы из одного термодинамического состояния в другое.

Инфинитезимальный процесс. Если разница между начальным и конечным состояниями системы достаточно мала, то такой процесс называется **инфинитезимальным**.

Термодинамический процесс называется *равновесным или квазистватическим*, если все параметры системы изменяются физически бесконечно медленно, так что система всё время находится в равновесных состояниях.

Равновесный процесс обладает свойством *обратимости*, так как при изменении направления протекания равновесного процесса система будет проходить через те же равновесные состояния, что и в прямом направлении, но в обратной последовательности.

2.Термодинамические системы, состояния, параметры и процессы

Примеры квазистатических процессов:

Изотермический процесс. Система находится в контакте с термостатом, имеющим постоянную температуру. Процесс происходит квазистатически при данной температуре термостата.

Адиабатический процесс. Система не имеет теплового и материального контактов с окружающей средой, но при взаимодействии с окружающей средой может совершаться работа.

Все неравновесные процессы необратимы. В этом случае невозможно привести термодинамическую систему в предыдущее состояние без какихлибо изменений в окружающих систему телах.

Описание систем, находящихся в неравновесных состояниях, занимается неравновесная термодинамика.

3. Первое начало термодинамики

Первое начало термодинамики является фундаментальным законом физики макросистем. Результат обобщения большого количества экспериментальных данных. Распространение закона сохранения энергии на тепловые процессы.

Три физические величины содержатся в математическом выражении этого закона (при отсутствии материального взаимодействия систем):

U – внутренняя энергия,

A — работа,

Q – теплота (количество теплоты).

Внутренняя энергия U складывается из энергии взаимодействия частиц системы и энергии их движения в системе центра масс. Внутренняя энергия не включает энергию взаимодействия частиц системы с другими системами.

Внутренняя энергия является функцией состояния и не зависит от способа перехода термодинамической системы в это состояние.

Приращение внутренней энергии определяется только конечным и начальным состояниями системы и **не зависит от процесса**, переводящего систему из одного состояния в другое.

20

3. Первое начало термодинамики

Работа A —**является физической величиной**, характеризующей **механическое взаимодействие систем**, сопровождаемое процессом их перемещения в пространстве. Значение работы системы A **зависит от совершаемого процесса** при переходе системы из одного состояния в другое. При увеличении объема системы A > 0. При уменьшении объема системы A < 0. При неизменном объеме системы A = 0. Работа, совершаемая внешними силами над системой:

$$A' = -A$$

Количество теплоты Q – *является* физической величиной, характеризующей непосредственную передачу внутренней энергии от одной макросистемы к другой в результате теплового взаимодействия (теплопередачи). Значение количества теплоты Q зависит от совершаемого процесса при переходе системы из одного состояния в другое. Если в процессе теплопередачи внутренняя энергия системы возрастает, то для системы Q > 0. Если в процессе теплопередачи внутренняя энергия системы уменьшается, то для системы Q < 0.

3. Первое начало термодинамики

Приращение внутренней энергии ΔU макросистемы при её переходе из начального состояния в конечное равно сумме совершенной над системой работы A всех внешних сил и количества переданного системе тепла Q:

$$\Delta U = A' + Q$$
или
 $Q = \Delta U + A$

Количество теплоты Q, сообщенное макросистеме, идет на приращение её внутренней энергии ΔU и на совершение системой работы A над внешними телами.

<u>Для инфинитезимального процесса:</u>

$$\mathrm{d} oldsymbol{U} = oldsymbol{\delta} oldsymbol{A}^{'} + oldsymbol{\delta} oldsymbol{Q}$$
 или $\delta oldsymbol{Q} = oldsymbol{d} oldsymbol{U} + oldsymbol{\delta} A$

Идеальный газ – идеализированная модель газа:

- 1. Собственный суммарный объем молекул значительно меньше объема сосуда.
- 2. Молекулы взаимодействую только при упругих столкновениях между собой и стенками.

<u>Уравнение состояния</u> идеального газа связывает термодинамические параметры состояния — давление p, объем V и температуру T:

$$pV = \frac{m}{M}RT$$

уравнение Клапейрона-Менделеева.

Внутренняя энергия идеального газа:

$$U=\frac{i}{2}\frac{m}{M}RT,$$

где число степеней свободы молекул

$$\boldsymbol{i} = \boldsymbol{i}_{\text{пост}} + \boldsymbol{i}_{\text{вращ}} + 2\boldsymbol{i}_{\text{кол}}$$
.

Закон Больцмана о равномерном распределении кинетической энергии по степеням свободы молекул.

Работа газа:

$$A=\int_{V_1}^{V_2}pdV.$$

Изопроцессы:

1)
$$T = const$$
, $\Delta U = 0$, $A = \int_{V_1}^{V_2} \frac{m}{M} \frac{RT}{V} dV = \frac{m}{M} RT ln \left(\frac{V_2}{V_1}\right)$, $Q = A$.

2)
$$V = const$$
, $\Delta U = \frac{i}{2} \frac{m}{M} R \Delta T$, $A = 0$, $Q = \Delta U$.

3)
$$p = const$$
, $\Delta U = \frac{i}{2} \frac{m}{M} R \Delta T$, $A = p \Delta V$, $Q = \Delta U + A$.

Молярная теплоемкость:

$$C_V = \frac{dQ_V}{dT} = \frac{dU}{dT} = \frac{i}{2}R.$$

$$C_p = \frac{dQ_p}{dT} = \frac{i}{2}R + R = C_V + R.$$

$$\gamma = \frac{C_p}{C_V} = \frac{i+2}{i}$$

Адиабатный процесс:

Из определения процесса:

$$\delta Q = 0 \rightarrow$$

$$dU + pdV = 0 \rightarrow$$

$$pdV = -C_V dT. \qquad (1)$$

Из уравнения состояния:

$$pdV + Vdp = RdT. (2)$$

Преобразования:

$$\frac{dp}{p} = -\gamma \frac{dV}{V}$$

Уравнение адиабатного процесса: $pV^{\gamma} = const$

5. Энтропия. Второе начало термодинамики

На примере <u>обратимого процесса идеального газа</u> можно ввести новую функцию состояния термодинамической системы – энтропию S.

$$dS = \frac{\delta Q}{T} = \frac{pdV}{T} + \frac{\frac{i}{2}RdT}{T} = \frac{RdT}{T} + \frac{\frac{i}{2}RdT}{T}.$$

В термодинамике энтропия определена с точностью до константы!

Адиабатный процесс – изоэнтропийный процесс.

Понятие энтропии было введено в 1865 году Р. Клаузиусом.

Статистический смысл определил Л. Больцман.

$$S = klnW$$

W – число микросостояний, реализующих данное макросостояние. Энтропия –мера хаотизации состояния.

5. Энтропия. Второе начало термодинамики

Энтропия обладает свойством <u>аддитивности</u>: энтропия системы равна сумме энтропий её подсистем.

Введение энтропии позволило сформулировать второе начало термодинамики, определяющее направление протекания термодинамических процессов.

Любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Формула Больцмана позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процессах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния.

Спасибо за внимание!