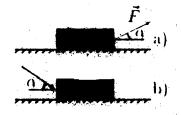
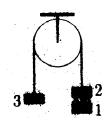
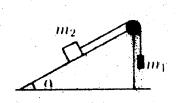

РГЗ №1 Задачи 1

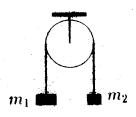
- 1.1 Движение точки по прямой задано уравнением $x = At + Bt^2$, где A = 2 м/c, B = -0.5 м/c². Определить среднюю путевую скорость $\langle v \rangle$ движения точки в интервале времени от $t_1 = 1$ с до $t_2 = 3$ с.
- 1.2 Движение точки по окружности радиусом R=4 м задано уравнением $\xi=A+Bt+Ct^2$, где A=10 м; B=-2 м/с, C=1 м/с. Найти тангенциальное a_{τ} , нормальное a_n и полное a ускорения точки в момент времени t=2 с.
- 1.3 По дуге окружности радиусом R = 10 м движется точка. В некоторый момент времени нормальное ускорение точки $a_n = 4.9 \text{ м/c}^2$; в этот момент векторы полного и нормального ускорений образуют угол $\phi = 60^{\circ}$. Найти скорость ν и тангенциальное ускорение a_{τ} точки.
- 1.4 Гочка движется по окружности радиусом $R = 2 \text{ м/c}^2$. согласно уравнению $\xi = At^3$, где $A = 2 \text{ м/c}^3$ В какой момент времени t нормальное ускорение a_n точки будет равно тангенциальному a_{τ} Определить полное ускорение a в этот момент.
- 1.5 Диск радиусом r = 20 см вращается согласно уравнению $\varphi = A + Bt + Ct^3$, где A = 3 рад; B = -1 рад/с; C = 0.1 рад/с³. Определить тангенциальное a_{τ} , нормальное a_n и полное a ускорения точек на окружности диска для момента времени t = 10 с.
- 1.6 Диск радиусом r = 10 см, находившийся в состоянии покоя, начал вращаться с постоянным угловым ускорением $\varepsilon = 0.5$ рад/с². Найти тангенциальное a_{τ} , нормальное a_n и полное a ускорения точек на окружности диска в конце второй секунды после начала вращения.
- 1.7 Колесо автомашины вращается равноускоренно. Сделав N = 50 полных оборотов, оно изменило частоту вращения от $n_1 = 4 \, \mathrm{c}^{-1}$ до $n_2 = 6 \, \mathrm{c}^{-1}$. Определить угловое ускорение є колеса.
- 1.8 Диск вращается с угловым ускорением $\varepsilon = -2$ рад/с². Сколько оборотов N сделает диск при изменении частоты вращения от $n_1 = 240$ мин⁻¹ до $n_2 = 90$ мин⁻¹? Найти время Δt , в течение которого это произойдет.
- 1.9 Определить линейную скорость ν и центростремительное ускорение a_{μ} точек, лежащих на земной поверхности: 1) на экваторе; 2) на широте Москвы ($\phi = 56^{\circ}$).
- 1.10 Движения двух материальных точек выражаются уравнениями $x = A_1 + B_1 t + C t^2$, $x_2 = A_2 + B_2 t + C_2 t^2$, где $A_1 = 20$ м; $A_2 = 2$ м; $B_2 = B_1 = 2$ м/c; $C_1 = -4$ м/c²; $C_2 = 0.5$ м/c². В какой момент времени t скорости этих точек будут одинаковыми? Определить скорости v_1 и v_2 и ускорения a_1 и a_2 точек в этот момент.


- $_{2.1}$ С высоты $h_1 = 2.0$ м на стальную плиту свободно падает шарик массой m = 0.2кг и подпрыгивает на высоту $h_2 = 0.5$ м. Определить изменение импульса шарика за время удара $(g = 9.8 \text{ м/c}^2)$.
- 2.2 Тело массой m = 0.3 кг, брошенное с поверхности Земли со скоростью V=2.0 м/с вертикально вверх, падает на Землю. Найти изменение импульса тела за время движения. Сопротивлением воздуха пренебречь.
- 2.3 Пуля пущена с поверхности Земли с начальной скоростью $V_0 = 200$ м/с под углом $\alpha = 60^{\circ}$ к горизонту. Масса пули 0,1 кг. Найти изменение импульса к моменту достижения пулей наивысшей точки траектории движения. Сопротивлением воздуха пренебречь.
- 2.4 Снаряд массой 2,0 кг выпущен из орудия под углом α=30° к горизонту с начальной скоростью 50 м/с. Найти изменение импульса к моменту падения снаряда из Землю. Сопротивление воздуха не учитывать.
- 2.5 Камеиь массой 0,1 кг брошен с вышки высотой h = 44,1 м в горизонтальном направлении с начальной скоростью V = 30,0 м/с. Определить импульс камня в момент падения на Землю и изменение импульса за время движения. Сопротивление воздуха не учитывать $(g = 9,8 \text{ м/c}^2)$.
- 2.6 Молекула массой $m = 4,65 \cdot 10^{-26}$ кг, летящая по нормали к стенке сосуда со скоростью V = 600 м/с, ударяется о стенку и упруго отскакивает от нее без потери скорости. Найти изменение импульса молекулы за время удара о стенку.
- 2.7 Молекула массой $m = 4,65 \cdot 10^{-26}$ кг, летящая со скоростью V = 600 м/с, ударяется о стенку сосуда под углом $\alpha = 60^2$ к нормали и упруго отскакивает от нее без потери скорости. Найти изменение импульса молекулы за время удара.
- 2.8 Тело массой 0,10 кг, двигаясь равномерно, описывает 1/4 окружности радиусом R=1,20 м в течение 2,00 с. Найти изменение импульса за время движения.
- 2.9 Тело массой 0,2 кг движется с постоянной скоростью 0,5 м/с по окружности. Определить изменение импульса тела за время прохождения им половины окружности.
- 2.10 Тело массой m = 0.1 кг брошено под углом $\alpha = 30^{\circ}$ к горизонту с начальной скоростью $V_0 = 10$ м/с. Пренебрегая сопротивлением воздуха, найти изменение импульса к моменту падения тела на Землю.

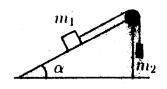

• 3.1. На подставке лежит тело, подвешенное к потолку с помощью пружины, которая в начальный момент не растянута. Подставку начинают опускать вниз с ускорением *а*. Определите скорость тела в момент отрыва. Жесткость пружины *k*, масса тела *m*.


3.2. Найдите ускорение тел, изображенных на рисунке и натяжение нити, связывающей тела m_1 и m_2 . Известны массы m_1 , m_2 , m_0 . Коэффициент трения о горизонтальную поверхность равен p. Нить скользит по блоку без трений. Массой блока и нити пренебречь.

•3.3. Найти ускорение санок массой m, если: а) их тянут за веревку с силой F под утлом a к горизонту: б) толкают с такой же силон. Коэффициент трения равен μ .

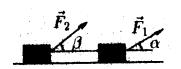


• 3.4. Через неподвижный блок перекинута невесомая и нерастяжимая нить, к которой подвешены три груза массой $m = 2.0 \ \kappa 2$ каждый. Найдите ускорение грузов и силу натяжения нити, связывающей грузы 1 и 2. Блок невесомый.

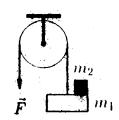


3.5. В установке, наклонная плоскость составляет угол $\alpha = 30^{0}$ с горизонтом. Отношение масс тел $m_{1}/m_{2} = 2/3$. Коэффициент трения между плоскостью и вторым телом $\mu = 0.10$. Найдите модуль и направление ускорений тел, если они начали двигаться из состояния покоя. Нить

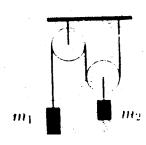
нерастяжима и невесома, массой блока пренебречь.



• 3.6. Две гири массой $m_1 = 1,90 \ \kappa 2$, и $m_2 = 0,90 \ \kappa 2$ соединены невесомой нерастяжимой нитью, перекинутой через неподвижный блок. Нить скользит по блоку без трения. Чему равно ускорение грузов и сила давления на ось блока?


• 3.7. Два тела массами m_1 и m_2 соединены невесомой и нерастяжимой нитью перекинутой через неподвижный блок. Найдите отношения масс m_1/m_2 при котором второе тело из состояния покоя: а) начинает опускаться: б) начинает

подниматься. Коэффициент трения между плоскостью и первым грузом равен μ . Угол наклона плоскости с горизонтом α . Массой блока пренебречь.



• 3.8. Два одинаковых тела массой *т* каждый соединены невесомым нерастяжимым стержнем. С каким ускорением вдоль поверхности движутся тела под действием указанных

сил? Коэффициент трения между поверхностью и брусками равен μ .

• 3.9. К перекинутой через неподвижный блок нити подвешен груз массой $m_1 = 2.0 \ \kappa z$, на который поставлен перегрузок массой $m_2 = 0.50 \ \kappa r$. Какое ускорение грузам может сообщить сила $F = 30 \ H$, приложенная к свободному концу нити и направленная вертикально вниз? С какой силой давит перегрузок на груз m_1 ?

•3.10. Предполагая массы грузов m_1 и m_2 известными найдите их ускорения и натяжения нитей в системе изображенной на рисунке если груз m_1 опускается. Массой блоков и нитей пренебречь.

- 4.1 При горизонтальном полете со скоростью V = 250 м/с снаряд массой m = 8 кг разорвался на две части. Большая часть массой $m_1 = 6$ кг получила скорость $U_1 = 400$ м/с в направлении полета снаряда. Определить абсолютное значение и направление скорости U_2 меньшей части снаряда.
- 4.2 На тележке, свободно движущейся по горизонтальному пути со скоростью $V_1 = 3$ м/с, находится человек. Человек прыга-
- ет в сторону, противоположную движению тележки. После прыжка скорость тележки изменилась и стала равной 4 м/с. Определить горизонтальную составляющую скорости человека при прыжке относительно тележки. Масса тележки m=210 кг, масса человека $m_2=70$ кг.
- 4.3 Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом $\alpha = 30^{\circ}$ к линии горизонта. Определить скорость U_2 отката платформы, если снаряд вылетает со скоростью $U_1 = 480$ м/с. Масса платформы с орудием и снарядом m = 18,0 т, масса снаряда $m_1 = 60,0$ кг.
- 4.4 На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце доски стоит человек. Масса его $m_1 = 60,0$ кг, масса доски $m_2 = 20,0$ кг. С какой скоростью U (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) $V_1 = 1,0$ м/с? Массой колес пренебречь, трение не учитывать.
- 4.5 Снаряд, летевший со скоростью V = 400 м/с, разорвался на два осколка. Меньший осколок, масса которого составляет 40 % от массы снаряда, полетел в противоположном направлении со скоростью $U_1 = 150$ м/с. Определить скорость U_2 большего осколка.
- 4.6 На железнодорожной платформе установлено орудие. Масса платформы с орудием M=15,0 т. Орудие стреляет вверх под углом $\alpha=60^\circ$ к горизонту. С какой скоростью V_1 покатится платформа вследствие отдачи, если масса снаряда m=20 кг и он вылетает со скоростью $V_2=600,0$ м/с?
- 4.7 Тело массой в 1,0 кг, движется горизонтально со скоростью 1,0 м/с, догоняет второе тело массой 0,5 кг и неупруго сталкивается с ним. Какую скорость *U* получат тела, если второе тело двигалось со скоростью 0,5 м/с в том же направлении, что и первое тело?

- 4.8 Человек массой m = 60,0 кг бежит со скоростью 2,0 м/с навстречу тележке массой $m_2 = 80,0$ кг и вскакивает на нее. Тележка движется со скоростью 0,85 м/с. С какой скоростью V будет двигаться тележка после того, как человек запрыгнет на нее?
- 4.9 Снаряд массой $m_1 = 100$ кг, летящий горизонтально вдоль железнодорожного пути со скоростью $V_1 = 500$ м/с, попадает в вагон с песком, масса которого $m_2 = 10$ т, и застревает в нем. Какую скорость U получит вагон, если он двигался со скоростью $V_2 = 10$ м/с в направлении, противоположном движению снаряда?
- 4.10 В лодке массой $m_1 = 240,0$ кг стоит человек массой $m_2 = 60,0$ кг. Лодка плывет со скоростью $V_1 = 2,0$ м/с. Человек прыгает с лодки в горизонтальном направлении со скоростью V = 4,0 м/с (относительно лодки) в сторону, противоположную движению лодки. Найти скорость U движения лодки после прыжка человека.

- 5.1 По небольшому куску мягкого железа, лежащему на наковальне массой $m_1 = 300$ кг, ударяется молот массой $m_2 = 8$ кг. Определить КПД η удара, если удар неупругий. Полезной считать энергию, затраченную на деформацию куска железа.
- 5.2 Шар массой $m_1 = 1.0$ кг движется со скоростью $V_1 = 4.0$ м/с и сталкивается с шаром массой $m_2 = 2.0$ кг, движущимся навстречу ему со скоростью $V_2 = 3.0$ м/с. Каковы скорости шаров U_1 и U_2 после удара? Удар считать абсолютно упругим, прямым, центральным.
- 5.3 Шар массой $m_1 = 3.6$ кг движется со скоростью. $V_1 = 2.0$ м/с и сталкивается с покоящимся шаром массой $m_2 = 5.0$ кг. Какая работа будет совершена при деформации шаров? Удар считать абсолютно неупругим, прямым, центральным.
- 5.4 Определить КПД (η) неупругого удара бойка массой $m_1 = 0.5$ т, падающего на сваю массой $m_2 = 120$ кг. Полезной считать энергию, затраченную на вбивание свай.
- 5.5 Шар массой $m_1 = 4.0$ кг движется со скоростью $V_1 = 5.0$ м/с и сталкивается с шаром массой $m_2 = 6.0$ кг, который движется ему навстречу со скоростью $V_2 = 2.0$ м/с. Считая удар прямым, центральным, а шары однородными, абсолютно упругими, найти их скорости после удара.
- 5.6 Шар массой $m_1 = 5.0$ кг движется со скоростью $V_1 = 1.0$ м/с и сталкивается с покоящимся шаром массой $m_2 = 2.0$ кг. Определить скорости шаров U_1 и U_2 после удара. Шары считать однородными, абсолютно упругими, удар прямым, центральным.

- 5.7 Тело массой $m_1 = 3$ кг движется со скоростью $V_1 = 4$ м/с и ударяется о неподвижное тело такой же массы. Считая удар центральным и неупругим, найти количество теплоты Q, выделившееся при ударе.
- 5.8 Тело массой $m_1 = 5,0$ кг ударяется о неподвижное тело массой $m_2 = 2,5$ кг, которое после удара начинает двигаться с кинетической энергией $T_2 = 5,0$ Дж. Считая удар центральным и упругим, найти кинетические энергии T_1 и T_2 первого тела до и после удара.
- 5.9 Два тела движутся навстречу друг другу и соударяются неупруго. Скорости тел до удара были: $V_1 = 2.0$ м/с и $V_2 = 4.0$ м/с.

Общая скорость тел после удара U = 1,0 м/с и по направлению совпадает с направлением скорости V_1 . Во сколько раз кинетическая энергия T_1 первого тела была больше кинетической энергии T_2 второго тела?

5.10 Тело массой $m_1 = 5.0$ кг ударяется о неподвижное тело массой $m_2 = 2.5$ кг. Кинетическая энергия системы двух тел непосредственно после удара стала T = 5.0 Дж. Считая удар центральным и неупругим, найти кинетическую энергию первого тела до удара.

- 6.1 Определить скорость поступательного движения сплошного цилиндра, скатившегося с наклонной плоскости высотой h = 0.2 м.
- 6.2 По плоской горизонтальной поверхности катится диск со скоростью V = 8.0 м/с. Определить коэффициент сопротивления, если диск, будучи предоставленным самому себе, остановился, пройля путь S = 18.0м.
- 6.3 Диск массой m = 2 кг катится без скольжения со скоростью V = 4 м/с. Найти кинетическую энергию диска T.
- 6.4 Обруч и диск одинаковой массы $m_1 = m_2$ катятся без скольжения с одной и той же скоростью V. Кинетическая энергия обруча $T_1 = 40$ Дж. Найти кинетическую энергию диска.
- 6.5 Шар диаметром d = 0.06 м и массой m = 0.25 кг катится без скольжения по горизонтальной плоскости с частотой вращения n = 4.0 об/с. Найти кинетическую энергию шара T.
- 6.6 Найти кинетическую энергию T велосипеда, едущего со скоростью V = 9 км/ч. Масса велосипеда вместе с велосипедистом m = 78 кг, причем на колеса приходится масса $m_0 = 3$ кг. Колеса велосипеда считать обручами.

- 6.7 Обруч и сплошной цилиндр, имеющие одинаковую массу m=2,0 кг, катятся без скольжения с одинаковой скоростью V=5,0 м/с. Найти кинетические энергии этих тел.
- 6.8 Определить линейную скорость V центра шара, скатив-шегося без скольжения с наклонной плоскости высотой h=10,0 м.
- 6.9 Шар катится по горизонтальной плоскости. Какую часть составляет энергия поступательного движения от общей кинетической энергии?
- 6.10 Шар и сплошной цилиндр, двигаясь с одинаковой скоростью, вкатываются вверх по наклонной плоскости. Какое из тел поднимается выше? Найти отношение высот подъема.

- 7.1 На краю платформы в виде диска диаметром D=2 м, вращающейся по инерции вокруг вертикальной оси с частотой $n_1=8$ об/мин, стоит человек массой $m_1=70$ кг. Когда человек перешел в центр платформы, она стала вращаться с частотой $n_2=10$ об/мин. Определить массу платформы. Момент инерции человека рассчитывать как для материальной точки.
- 7.2 На краю неподвижной скамьи Жуковского диаметром D=0.8 м и массой $m_1=6.0$ кг стоит человек массой $m_2=60.0$ кг. С какой угловой скоростью ω начнет вращаться скамья, если человек поймает летящий на него мяч массой m=0.5 кг? Траектория мяча горизонтальная прямая, проходит на расстоянии r=0.4 м от оси скамьи. Скорость мяча V=5.0 м/с.
- 7.3 Человек стоит на скамъе Жуковского и держит и руках стержень вертикально вдоль оси вращения скамъи. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамейка неподвижна, колесо вращается с частотой $n_1 = 15,0$ об/с. С какой угловой скоростью ω_2 будет вращаться скамъя, если человек повернет стержень на угол $\alpha = 180^\circ$ и колесо окажется на нижнем конце стержня? Суммарный момент инерции человека и скамъи J = 8 кг·м², радиус колеса R = 0,25 м. Массу колеса m = 2,5 кг можно считать равномерно распределен-

ной по ободу. Считать, что центр тяжести человека с колесом находится на оси платформы.

7.4 На скамье Жуковского стоит человек и держит в руках стержень за его конец вертикально по оси вращения скамьи. Скамья с человеком вращается с угловой скоростью $\omega_1 = 4.0$ рад/с. С какой угловой скоростью будет вращаться скамья с человеком, если повернуть стержень так, чтобы он занял горизонтальное положение? Суммарный момент инерции человека и скамьи J = 5.0 кг·м². Длина стержня L = 1.8 м, его масса m = 6.0 кг. Считать, что центр тяжести стержня с человеком находится на оси платформы.

- 7.5 Платформа в виде диска диаметром D=3,0 м и массой $m_1=180,0$ кг может вращаться вокруг вертикальной оси. С какой угловой скоростью ω_1 будет вращаться эта платформа, если по ее краю пройдет человек массой $m_2=70,0$ кг со скоростью V=1,8 м/с относительно платформы? Момент инерции человека рассчитывать как для материальной точки.
- 7.6 Платформа, имеющая форму диска, может вращаться около вертикальной оси. На краю платформы стоит человек. На какой угол φ повернется платформа, если человек пойдет вдоль края платформы и, обойдя ее, вернется в исходную (на платформе) точку? Масса платформы $m_1 = 280,0$ кг, масса человека $m_2 = 80,0$ кг. Момент инерции человека рассчитывать как для материальной точки.
- 7.7 Щарик массой m = 0.06 кг, привязанный к концу нити длиной L = 1.2 м, вращается с частотой $n_1 = 2$ об/с, опираясь на горизонтальную плоскость. Нить укорачивается, приближая шарик к оси вращения до расстояния $L_2 = 0.6$ м. С какой частотой n_2 будет при этом вращаться шарик? Какую работу A совершает внешняя сила, укорачивая нить? Трением шарика о плоскость пренебречь.
- 7.8 Горизонтальная платформа массой m = 80 кг и радиусом R = 1 м вращается с частотой $n_1 = 20$ об/мин. В центре платформы стоит человек и держит в расставленных руках гири. С какой частотой n_2 будет вращаться платформа, если человек, опустив руки, уменьшит свой момент инерции от $J_1 = 2,94$ кг м² до $J_2 = 0,98$ кг м²? Считать платформу однородным диском.
- 7.9 Человек стоит на скамье Жуковского и держит и руках за конец легкий стержень, расположенный вертикально вдоль оси вращения скамейки. Стержень служит осью вращения колеса, расположенного на верхнем конце стержня. Скамейка неподвижна, колесо вращается с частотой $n_1 = 10$ об/с. С какой частотой будет вращаться скамейка, если человек повернет стержень на угол 90°? Суммарный момент инерции человека и скамейки 6 кг·м², момент инерции колеса 0,12 кг·м².
- 7.10 Горизонтальная платформа массой $m_1 = 100$ кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой $n_1 = 10$ об/мин. Человек массой $m_2 = 60$ кг стоит при этом на краю платформы. С какой частотой n_2 она начнет вращаться, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека точечной массой.

При решении задач необходимы величины

- 1) энергия электрона, обусловленная массой, $m_e c^2 = 0.51 \text{ M}_2\text{B}_3$;
- 2) масса μ -мезона равна 207 m_e ; энергия, обусловленная массой μ -мезона, $m_{\mu}c^2$, равна 106 МэВ, где m_e – масса электрона $(m_e = 9.1 \cdot 10^{-31} \text{ Kr});$
 - 3) энергия протона, обусловленная массой, равна 938 МэВ; $1 \text{ МэВ} = 10^{+6} \text{ эВ} = 1,6 \cdot 10^{-13} \text{ Дж,}$ $1 \text{ ГэВ} = 10^{+9} \text{ эВ} = 1,6 \cdot 10^{-10} \text{ Дж.}$
- Найти импульс электрона, имеющего кинетическую энергию 1 МэВ.
- Кинетическая энергия некоторой частица равна ее энергии, обусловленной массой. Чему равна скорость частицы?
- Найти скорость µ-мезона, ускоренного разностью потенциалов в 1000 В. (Заряд μ -мезона равен заряду электрона $e = 1,6 \cdot 10^{-19}$ Кл.)
- Найти скорость µ-мезона и его кинетическую энергию, если полная энергия в 5 раз больше его энергии, обусловленной массой.
- Какую ускоряющую разность потенциалов U должен пройти электрон, чтобы его скорость составляла 95 % скорости света?
- Скорость электрона V = 0.8 c (где c скорость света в вакууме). Определить в мегаэлектрон-вольтах кинетическую энергию электрона (1 МэВ = 10^{+6} эВ).
- Определить скорость частицы, если ее кинетическая энергия в 9 раз больше энергии, обусловленной массой.
- Какую скорость В (в долях скорости света) нужно сообщить частице, чтобы ее кинетическая энергия была равна удвоенному значению энергии, обусловленной массой?
- Определить импульс и кинетическую энергию электрона, движущегося со скоростью V = 0.9 c, где c -скорость света в вакууме.
- 8.10 Синхрофазотрон дает пучок ц-мезонов с кинетической энергией 1 ГэВ. Какую долю в скорости света составляет скорость μ -мезонов в этом пучке (1 Γ эB = 10^9 эВ)?

- 9.1. Какова масса водорода в 1,0л воды?
- 9.2. Какое количество молекул газа находится в колбе емкостью V = 0.50л при нормальных условиях?
- 9.3. Определите концентрацию n молекул кислорода, находящегося в сосуде вместимостью $V = 3\pi$. Количество вещества v кислорода равно 0.5 моль.
 - 9.4. Сравните количество атомов в v=0,5 моль и в m=0,50г кальция.
 - 9.5. Сравните массы молекул кислорода и водорода.
- 9.6. Определите количество молей водорода, заполняющего сосуд объемом V $= 3\pi$, если концентрация молекул газа в нем $n = 2.0 \cdot 10^{18} M^{-3}$
 - 9.7. Сколько $9,0\pi$ атомов кислорода содержится В воды?

- 9.8. Одна треть молекул азота массой m=10г распалась на атомы. Сколько всего частиц находится в газе?
- 9.9. В баллоне емкостью $V=3,0\pi$ содержится кислород $m=10\varepsilon$. Определите концентрацию молекул газа n.
 - 9.10. Сколько атомов водорода содержится в 5,0молях воды?

- 10.1. Два сосуда одинакового объема содержат кислород. В одном сосуде давление $P_1=1,8$ M Πa , температура $T_1=750$ K, в другом $P_2=2,0$ M Πa , $T_2=250$ K. Сосуды соединили трубкой и охладили находящийся в них кислород до температуры T=280 K. Определите установившееся в сосудах давление P.
- 10.2. Азот находится в баллоне при температуре T=450K. На сколько изменится плотность ρ азота при изменении давления на $\Delta P=1,5M\Pi a$ и неизменной температуре $T=\mathrm{Const.}$
- 10.3. В сосуде вместимостью $V=30\pi$ находится азот при температуре T=273K. Когда часть газа израсходовали, давление в сосуде понизилось на $\Delta P=80\kappa\Pi a$. Определите массу m израсходованного газа. Процесс считать изотермическим.
- 10.4. Во сколько раз изменится плотность ρ кислорода при увеличении давления $P_1 = 2,4M\Pi a$ до давления $P_2 = 3,6M\Pi a$ при постоянной температуре?
- 10.5. Определите массу m кислорода в баллоне вместимостью $V=10\pi$ при температуре $27^{\circ}C$ и давлении $P=100\kappa\Pi a$.
- 10.6. В баллоне вместимостью $V=22\pi$ находится азот при температуре T=380K. Когда часть газа израсходовали, давление в сосуде понизилось на $\Delta P=180\kappa\Pi a$. Определите массу m израсходованного газа. Процесс считать изотермическим.
- 10.7. Определите массу газа в баллоне емкостью 30π при температуре $22^{\circ}C$ и давлении $5.0\cdot10^{5}\Pi a$, если его плотность при нормальных условиях $1.3\kappa \epsilon/m^{3}$.
- 10.8. Баллон объемом $V=20\pi$ заполнен аргоном при температуре T=360K. На сколько изменится давление в баллоне при медленной утечке m=502 газа?
- 10.9. Найти плотность газовой смеси водорода и кислорода, если их массовые доли соответственно $\frac{1}{9}$ и $\frac{8}{9}$. Давление смеси равно $P=100\kappa\Pi a$, температура T=300K.
- 10.10. В сосуде объемом $V=15\pi$ находится смесь азота и кислорода при $t=23^{\circ}C$ и давлении $P=200\kappa\Pi a$. Определите массу m смеси, если массовая доля азота в смеси равна 0,7.

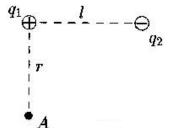
- 11.1. Кислород, занимавший при давлении $P_1 = 120\kappa\Pi a$ объем $V=8,0\pi$ расширился вдвое. Определите конечное давление и работу, совершенную газом при изобарном и изотермическом процессах. Начертите графики процессов в координатах P,V.
- 11.2. Азот массой $m = 35\varepsilon$, имевший температуру T = 295K, адиабатически расширился, увеличившись в объеме в 3,5 раза. Затем при изотермическом сжатии объем газа уменьшился в 2 раза. Определите полную работу газа и его конечную температуру.
- 11.3. Кислород массой $0.15\kappa 2$ был изобарически нагрет от $T_1 = 215K$ до $T_2 = 400K$. Определите работу A_1 совершенную газом, полученную теплоту Q и изменение внутренней энергии.
- 11.4. Азот массой $m=1,8\kappa z$ охлаждают при постоянном давлении от $T_1=410K$ до $T_2=295K$. Определите изменение внутренней энергии, работу и количество выделенной теплоты.

- 11.5. Определенная масса азота при давлении $P_1 = 0.20 M\Pi a$ занимает объем $V = 2.1 \pi$, а при давлении $P_2 = 1.0 M\Pi a$ объем $V = 4.8 \pi$. Найдите количество теплоты, сообщенное газу, изменение внутренней энергии и совершенную работу при переходе газа из первого состояния во второе сначала изобарно, затем изохорно.
- 11.6. Определите работу, совершенную кислородом при адиабатическом расширении от $V_1 = 2,0\pi$ до $V_2 = 10\pi$. Начальное давление было $P_1 = 1,4M\Pi a$.
- 11.7. При нагревании азота в условиях постоянного давления ему было сообщено $Q = 21\kappa \mathcal{Д}ж$ теплоты. Какую работу A совершил при этом газ? Как изменилась его внутренняя энергия?
- 11.8. Водород массой 250z изотермически расширился в 2,5 раза за счет полученной теплоты. Сколько теплоты Q получил газ, какую при этом работу A совершил? Температура газа T=320K.
- 11.9. Определенная масса кислорода занимает объем $V_1 = 2,1\pi$ при давлении $P_1 = 0,22M\Pi a$, а при давлении $P_2 = 1,0M\Pi a$ занимает объем $V_2 = 5,0\pi$. Определите количество теплоты, сообщенное газу, изменение внутренней энергии и совершенную работу при переходе из первого состояния во второе сначала изохорно, затем изобарно.
- 11.10. Кислород массой m=300г имевший температуру $T_1=295K$ был адиабатически сжат. При этом была совершена работа $A=30\kappa \not\square ж$. Определите конечную температуру газа T_2 .

- 12.1. В сосуде объемом $V = 150\pi$ находится идеальный газ при температуре T = 350K и давлении $P = 0.2M\Pi a$. Найдите теплоемкость $C_{\rm V}$ газа, если показатель адиабаты $\gamma = 1.4$.
- 12.2. Определите теплоемкость C_V двухатомного газа, который при температуре T=350K и давлении $P=0.4M\Pi a$ занимает объем V=3n.
- 12.3. Определите показатель адиабаты γ идеального газа, который при температуре T=350K и давлении $P=0,4M\Pi a$ занимает объем $V=300\pi$ и имеет теплоемкость $C_{\rm V}=857 \mbox{Дж/K}.$
- 12.4. Определите число степеней свободы молекулы газа, если его молярная теплоемкость $c_P = 29,05 \cdot 10^3 \text{Дэс/(кмольK)}$.
- 12.5. В сосуде вместимостью $V=6\pi$ находится при нормальных условиях двухатомный газ. Определите теплоемкость этого газа при постоянном объеме $C_{\rm V}$.
- 12.6. Определите молярные теплоемкости газа, если его удельные теплоемкости при постоянном объеме и давлении равны $c_{\text{Vyg}} = 10,4\kappa \not\square \mathscr{H}/(\kappa \varepsilon \cdot K)$ и $c_{\text{Pyg}} = 14,6\kappa \not\square \mathscr{H}/(\kappa \varepsilon \cdot K)$.
- 12.7. Найдите удельные теплоемкости и показатель адиабаты одноатомного газа, зная, что его молярная масса $\mu = 20\cdot 10^{-3}\,\kappa c/moль$.
- 12.8. Вычислите удельные теплоемкости газа, зная, что его молярная масса $\mu = 4 \cdot 10^{-3}$ кг/моль и отношение теплоемкостей $Cp/C_V = 1,67$.
- 12.9. Трехатомный газ под давлением $P = 240\kappa\Pi a$ и температуре $t = 20^{\circ}C$ занимает объем $V = 10\pi$. Определите теплоемкость Cр этого газа при постоянном давлении.
- 12.10. Одноатомный газ при нормальных условиях занимает объем $V=5\pi$. Вычислите теплоемкость $C_{\rm V}$ этого газа при постоянном объеме.

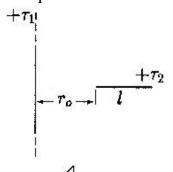

- 13.1. Какая часть молекул сернистого ангидрида SO_2 при температуре $200^{\circ}C$ обладает скоростями в пределах 210-220m/c; 420-430m/c?
- 13.2. При какой температуре среднеквадратичная скорость молекул азота равна среднеарифметической скорости молекул водорода, находящихся при температуре T=

- 400K? Чему равна при этой температуре наиболее вероятная скорость молекул водорода и азота?
- 13.3. Считая, что сухой воздух состоит из 78% азота, 21% кислорода и 1% аргона (по объему), определите, какая часть молекул от общего числа при температуре $20^{\circ}C$ движется со скоростями от 350 до 360 м/c.
- 13.4. Какая часть молекул азота, находящегося при температуре T, имеет скорости, лежащие в интервале от наиболее вероятной скорости v_{sep} до $v_{sep} + \Delta v$, где $\Delta v = 20 \frac{M}{c}$? Задачу решите для $T_1 = 400 K$ и $T_2 = 900 K$.
- 13.5. Найдите среднеквадратичную, наиболее вероятную и среднеарифметическую скорости молекул метана (CH_4) при $0^{\circ}C$.
- 13.6. Найдите отношение среднеквадратичной, наиболее вероятной и среднеарифметической скорости молекул кислорода к скорости пылинок, находящихся среди молекул кислорода (масса одной пылинки равна 10^{-8} г).
- 13.7. Найдите число молекул азота, заключающихся при нормальных условиях в $1cM^3$ и обладающих скоростью: а) между 99 и 101M/c, б) между 499 и 501M/c. Плотность азота при нормальных условиях равна $1,25\kappa e/M^3$.
- 13.8. Какой процент молекул обладает скоростями, разнящимися от наиболее вероятной не более чем на 1%?
- 13.9. Найдите отношение числа молекул водорода, скорости которых лежат в пределах от 299 до 301 m/c к числу молекул, имеющих скорости в пределах от 149 до 151 m/c, если температура водорода 300 K.
- 13.10. При какой температуре число молекул азота, обладающих скоростями в интервале от 299 до 301 m/c, равно числу молекул, обладающих скоростями в интервале от 599 до 601 m/c?

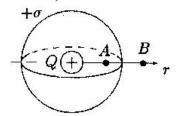

- 14.1. При изотермическом сжатии давление азота массой $m=2\kappa z$ было увеличено от $P_1=50\kappa\Pi a$ до $P_2=0.5M\Pi a$. Определите изменение энтропии газа.
- 14.2. Найдите изменение энтропии ΔS и количество теплоты Q, переданное азоту массой $m=4\varepsilon$, находящемуся при нормальных условиях. В результате изобарического расширения объем газа изменяется от $V_1=5\pi$ до $V_2=9\pi$.
- 14.3. Кислород массой $m=2\kappa z$ увеличил свой объем один раз изотермически, другой адиабатически. Каково будет изменение энтропии в этих двух случаях, если $n=V_2/V_1=5$?
- 14.4. Водород массой m=1г находится при нормальных условиях. При изохорическом нагревании давление P газа увеличилось в два раза. Определите изменение энтропии и переданное ему количество теплоты.
- 14.5. Водород массой $m=100\varepsilon$ был изобарически нагрет так, что объем его увеличился в n раз, затем водород был изохорически охлажден так, что давление его уменьшилось в n раз. Найдите изменение энтропии, если n=3.
- 14.6. Азот массой $m=0,1\kappa 2$ был изобарно нагрет от температуры $T_1=200K$ до температуры $T_2=400K$. Найдите изменение ΔS энтропии и работу A, совершенную газом.
- 14.7. Объем водорода при изотермическом расширении при температуре T=300K увеличился в n=3 раза. Определите работу A, совершенную газом, теплоту Q, полученную при этом, и изменение ΔS энтропии. Масса m водорода равна 200ε .

- 14.8. Найдите изменение ΔS энтропии и количество теплоты Q, которое надо сообщить кислороду, находящемуся в баллоне емкостью $V = 50\pi$ при нормальных условиях, если при изохорном нагревании давление газа. повысилось на $\Delta P = 0.5M\Pi a$.
- 14.9. Смешано $m_1 = 5\kappa z$ воды при температуре $T_1 = 280K$ с $m_2 = 8\kappa z$ воды при температуре $T_2 = 350K$. Найдите: 1) температуру смеси; 2) изменение ΔS энтропии, происходящее при смешивании. Удельная теплоемкость воды Cуд=4, $2\kappa \not$ Дж/ ($\kappa z \cdot K$).

- 15.1. Два одинаковых положительных заряда $q = 1,0 \cdot 10^{-7} \, Kn$ находятся в воздухе на расстоянии l = 8,0cm друг от друга. Определите напряженность электростатического поля: а) в точке О, находящейся на середине отрезка, соединяющего заряды; б) в точке A, расположенной на расстоянии r = 5,0cm от каждого заряда.
- 15.2. Отрицательный заряд $q_1 = -5q$ и положительный $q_2 = +2q$ закреплены на расстоянии r друг от друга. Где на линии, соединяющей заряды, следует поместить положительный заряд Q, чтобы он находился в равновесии?
- 15.3. Расстояние между двумя точечными зарядами $q_1 = 7 \cdot 10^{-9} \, Kn$ и $q_2 = -14 \cdot 10^{-9} \, Kn$ равно 5,0*cм*. Найдите напряженность электростатического поля в точке, находящейся на расстоянии 3,0*cм* от положительного заряда и на 4,0*cм* от отрицательного.
- 15.4. В вершинах квадрата со стороной a находятся одинаковые заряды +q. Какой заряд Q необходимо поместить в центре квадрата, чтобы вся система зарядов находилась в равновесии?

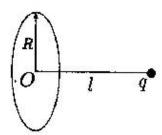

15.5. В вершинах равностороннего треугольника со стороной a=0,2M помещены заряды $|q|=2,0\cdot 10^{-9}\, Kn$.Найдите напряженность электростатического поля в точке B, расположенной на середине стороны треугольника.

- 15.6. Заряды $q_1 = 10 \text{мк} \text{Кл}$ и $q_2 = -10 \text{мк} \text{Кл}$ находятся на расстоянии l = 10 см. Определите напряженность электростатического поля в точке A, лежащей на перпендикуляре к линии, соединяющей заряды, и удаленной от q_1 на расстояние r = 10 cm.
- 15.7. Два равных по величине заряда $|q_1| = |q_2| = 3.0 \cdot 10^{-9} \, Kn$ расположены в вершинах острых углов равнобедренного прямоугольного треугольника на расстоянии l = 2.0 cm. Определите, с какой силой оба заряда действуют на третий заряд $q_3 = +1.0 \cdot 10^{-9} \, Kn$, находящийся в вершине прямого угла треугольника. Рассмотрите случаи, когда первые два заряда: а) одноименные; б) разноименные. Ответ поясните рисунками.

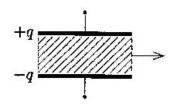

- 15.8. Три одинаковых положительных заряда величиной q каждый расположены в вершинах равностороннего треугольника со стороной a. Какой отрицательный заряд Q надо поместить в центре треугольника, чтобы система из четырех зарядов находилась в равновесии?
- 15.9. Два шарика массой m=1,0г каждый подвешены на нитях, верхние концы которых соединены вместе. Длина каждой нити равна l=1,0см. Какие одинаковые заряды необходимо сообщить шарикам, чтобы нити разошлись на угол $\alpha=60^{\circ}$?
- 15.10. Три одинаковых заряда величиной $q=1,0\cdot 10^{-9}\, Kл$ каждый расположены в вершинах прямоугольного треугольника, имеющего катеты: a=40cm и b=30cm. Найдите напряженность электростатического поля, создаваемого всеми зарядами в точке пересечения гипотенузы с перпендикуляром, опущенным на нее из вершины прямого угла.

- 16.1. На бесконечной вертикально расположенной плоскости равномерно распределен заряд с поверхностной плотностью $\sigma = 400 \text{мкKn/m}^2$. К плоскости на нити подвешен шарик массой m=102. Определите заряд шарика q, если нить образует с плоскостью угол $\phi=30^{\circ}$.
- 16.2. Параллельно бесконечной плоскости, заряженной с поверхностной плотностью заряда $\sigma = 4.0 \text{мк} \text{К} \text{л} / \text{м}^2$, расположена бесконечно длинная прямая нить, заряженная с линейной плотностью заряда $\tau = 100 \text{н} \text{K} \text{л} / \text{м}^2$. Определите силу F, действующую со стороны плоскости на отрезок нити длиной L = 1.0 м.
- 16.3. С какой силой, приходящейся на единицу площади, отталкиваются две одноименно заряженные бесконечно протяженные плоскости с одинаковой поверхностной плотностью заряда $\sigma = -2.0 \text{мкKn/m}^2$?

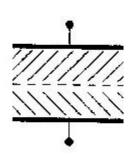
- 16.4. Бесконечная прямая нить, равномерно заряженная с линейной плотностью заряда $\tau_1 = +3.0 \cdot 10^{-7} \ Kn/m$, и отрезок нити длиной l = 20 cm, равномерно заряженный с линейной плотностью заряда $\tau_2 = +2.0 \cdot 10^{-7} \ Kn/m$, расположены в одной плоскости перпендикулярно друг другу на расстоянии $r_0 = 10 cm$. Определите силу взаимодействия между ними.
- 16.5. Электрическое поле создано бесконечной плоскостью, заряженной с поверхностной плотностью заряда $\sigma = 400 n K n/m^2$, и бесконечной прямой нитью, заряженной с линейной плотностью заряда $\tau = 100 n K n/m$. На расстоянии r = 10 cm от нити находится точечный заряд q = 10 n K n/m. Определите величину и направление силы, действующей на заряд, если заряд и нить лежат в одной плоскости, параллельной заряженной плоскости.
- 16.6. Пластины плоского конденсатора площадью $1,0\cdot 10^{-2}\, M^2$ каждая притягиваются с силой $1,2\cdot 10^{-2}\, H$. Пространство между пластинами заполнено диэлектриком с $\varepsilon=2,0$. Определите: а) модуль вектора электрического смещения |D|; б) заряд каждой пластины.


16.7. Электростатическое поле образовано положительно заряженной бесконечно длинной нитью. Протон, двигаясь под действием этого поля от точки, находящейся на расстоянии $x_1 = 1,0cm$ от нити, до точки $x_2 = 4,0cm$, изменил свою скорость от $2,0\cdot 10^5$ до $3,0\cdot 10^6\, m/c$. Найдите линейную плотность заряда нити τ . Масса протона $m=6,67\cdot 10^{-27}\, \kappa z$.

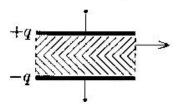
- 16.8. Точечный заряд $Q = +3.0 \cdot 10^{-5} \, Kn$, находится в центре сферы радиусом $R = 20 \, cm$, равномерно заряженной с поверхностной плотностью заряда $\sigma = +2.0 \cdot 10^{-5} \, Kn \, / \, m^2$. Найдите силу, действующую на заряд $q = +2.0 \cdot 10^{-9} \, Kn$, который последовательно помещают сначала в точку A, а затем в точку B. Точка A находится на расстоянии $r_A = 16 \, cm$ от центра сферы, а точка B на расстоянии $r_B = 30 \, cm$. Изобразите графически зависимость E(r), где r расстояние от центра сферы.
- 16.9. Между пластинами плоского воздушного конденсатора находится точечный заряд q=30нKл. Поле конденсатора действует на заряд с силой F=10мH. Определите силу взаимного притяжения пластин, если площадь каждой пластины S=100см 2 .
- 16.10. Точечный заряд q=25 n Kn находится в поле, созданном прямым бесконечным цилиндром радиусом R=1,0 c m, равномерно заряженным с поверхностной плотностью заряда $\sigma=+0,20 n Kn/c m^2$. Определите силу, действующую на заряд, если заряд находится на расстоянии r=10 c m от оси цилиндра.


- 17.1. Около заряженной бесконечно протяженной плоскости находится точечный заряд q=0,66нKл. Заряд перемещается по линии напряженности поля на расстояние l=2,0см. При этом совершается работа $A=5,0\cdot 10^{-7}$ Дж. Найдите поверхностную плотность заряда σ на плоскости.
- 17.2. При радиоактивном распаде из ядра атома полония вылетает α частица со скоростью $V=1,6\cdot 10^7\, m/c$. Найдите разность потенциалов электрического поля U, в котором можно разогнать покоящуюся α частицу до такой скорости. ($q_{\alpha}=3,2\cdot 10^{-19}\, Kn$, $m_{\alpha}=6,67\cdot 10^{-27}\, \kappa z$).
- 17.3. Электрическое поле образовано положительно заряженной бесконечно длинной нитью с линейной плотностью заряда $\tau = 0.2 m \kappa K n / m$. Какую скорость V получит электрон под действием поля, приблизившись к нити с расстояния $r_1 = 1.0 cm$ до расстояния $r_2 = 0.5 cm$?
- 17.4. Поверхностная плотность заряда металлической сферы $\sigma=0,33$ мкKл/ $м^2$.Потенциал сферы на расстоянии $\Delta r=1,5$ см от поверхности равен $\phi=750B$. Найдите радиус R сферы.
- 17.5. Электрическое поле образовано положительно заряженной бесконечно длинной нитью. Двигаясь под действием этого поля от точки, находящейся на расстоянии $r_1=1,0$ см от нити, до точки, находящейся на расстоянии $r_2=4,0$ см от нити, α частица изменила свою скорость от $V_1=2\cdot 10^5\, \text{м/c}$ до $V_2=3\cdot 10^6\, \text{м/c}$. Найдите линейную плотность заряда τ на нити. ($q_{\alpha}=3,2\cdot 10^{-19}\, \text{Кл}\,, m_{\alpha}=6,67\cdot 10^{-27}\, \text{кг}$).

- 17.6. Электрон летит от одной пластины плоского конденсатора до другой. Разность потенциалов между пластинами $U=3,0\kappa B$, а расстояние между ними d=5,0мм. Найдите скорость V, с которой электрон приходит ко второй пластине, и поверхностную плотность зарядов на пластинах σ . ($q_e=1,6\cdot 10^{-19}$ $K\pi$, $m_e=9,1\cdot 10^{-31}$ $\kappa \varepsilon$).
- 17.7. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобретает скорость $V=1,0\cdot 10^6\, M/c$. Расстояние между пластинами $d=5,3\, MM$. Найдите разность потенциалов U между пластинами и поверхностную плотность заряда σ на пластинах.
- 17.8. Электрическое поле образовано двумя параллельными пластинами, находящимися на расстоянии d=2,0см друг от друга. К пластинам приложена разность потенциалов U=120B. Какую скорость получит электрон под действием поля, пройдя вдоль линии напряженности расстояние $\Delta x=3,0$ мм?

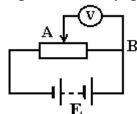


- 17.9. На тонком кольце радиусом R=8,0cM равномерно распределен заряд $Q=3,0M\kappa K\pi$. На оси кольца на расстоянии l=12cM от центра O находится точечный заряд $q=-0,1M\kappa K\pi$. Какую работу необходимо совершить, чтобы удалить заряд q на бесконечность?
- 17.10. В однородное электрическое поле напряженностью E = 200B/M влетает (вдоль силовой линии) электрон со скоростью $V_0 = 2.0 \cdot 10^6 \, \text{м/c}$. Определите расстояние l, которое пройдет электрон до точки, в которой его скорость будет равна половине начальной.


18.1. Найдите работу, которую нужно затратить, чтобы вынуть диэлектрик из плоского конденсатора, если напряжение на пластинах поддерживается постоянным и равным U = 500B. Площадь пластин $S = 50 cm^2$, расстояние между пластинами d = 0.50 cm, а диэлектрическая проницаемость диэлектрика $\varepsilon = 2.0$.

- 18.2. Найдите работу, которую нужно затратить, чтобы вынуть диэлектрик из плоского конденсатора, если заряд на пластинах поддерживается постоянным и равным q = 6.0 мк Кл. Площадь пластин $S = 100 \text{см}^2$, расстояние между пластинами d = 0.3 см, а диэлектрическая проницаемость диэлектрика $\varepsilon = 2.0$.
- 18.3. Найдите работу A, которую нужно затратить, чтобы увеличить расстояние x между пластинами плоского воздушного конденсатора, заряженного разноименными зарядами $Q = 0.2 m \kappa K \pi$, на величину $\Delta x = 0.2 m m$. Площадь каждой из пластин конденсатора $S = 400 c m^2$.
- 18.4. Какую работу надо совершить, чтобы увеличить расстояние между пластинами плоского вакуумного конденсатора с площадью пластин $S=100cm^2$ от расстояния $x_1=0{,}03m$ до расстояния $x_2=0{,}10m$? Напряжение между пластинами конденсатора постоянно и равно U=220B .

18.5. Найдите работу, которую нужно затратить, чтобы вынуть одну половинку диэлектрика из плоского конденсатора, если напряжение между пластинами поддерживается постоянным и равным U = 300B. Площадь пластин $S = 250cm^2$, расстояние между пластинами d = 1,0cm, а диэлектрическая проницаемость диэлектрика $\varepsilon = 3,0$.


- 18.6. Найдите работу, которую нужно затратить, чтобы вынуть одну половинку диэлектрика из плоского конденсатора, если заряд на пластинах поддерживается постоянным и равным q = 5.0 мк Кл. Площадь пластин $S = 50 \text{см}^2$, расстояние между пластинами d = 0.3 см, а диэлектрическая проницаемость диэлектрика $\varepsilon = 2.0$.
- 18.7. Площадь пластин плоского воздушного конденсатора $S = 0.01 m^2$, а расстояние между ними d = 5.0 m. Какая разность потенциалов U была приложена к пластинам, если известно, что при разряде конденсатора выделилось Q = 4.19 mДж тепла?
- 18.8. Плоский конденсатор, заполненный жидким диэлектриком с диэлектрической проницаемостью $\varepsilon=3.0$, зарядили, затратив на это энергию $W_1=10$ мкДжс. Затем конденсатор отсоединили от источника, слили из него диэлектрик и разрядили. Определите энергию W_2 , которая выделилась при разрядке.
- 18.9. Плоский конденсатор заполнен диэлектриком и на его пластины подана некоторая разность потенциалов. Его энергия при этом W=70 мкДж. После того как конденсатор отключили от источника напряжения, диэлектрик вынули из конденсатора. Найдите диэлектрическую проницаемость диэлектрика ε , если работа, которая была совершена против сил электрического поля, чтобы вынуть диэлектрик, A=20 мкДж.
- 18.10. Площадь пластин плоского воздушного конденсатора $S=12,5cm^2$, а расстояние между ними $d_1=5,0$ мм. К пластинам конденсатора приложена разность потенциалов $U=6\cdot 10^3 B$. Найдите изменение емкости конденсатора ΔC и изменение плотности энергии $\Delta \omega$ электрического поля при увеличении расстояния между пластинами до $d_2=10$ мм, если источник напряжения не отключается.

- 19.1. Обкладки конденсатора с неизвестной емкостью C_1 , заряженного до напряжения $U_1=80B$, соединяют с обкладками конденсатора емкостью $C_2=60$ мк Φ , заряженного до напряжения $U_2=16B$. Определите емкость C_1 , если напряжение на конденсаторах после их соединения $U_1=20B$. Конденсаторы соединяются обкладками, имеющими: а) одноименные заряды; б) разноименные заряды.
- 19.2. Заряженный шар 1 радиусом $R_1=2,0$ см приводится в соприкосновение с незаряженным шаром 2, радиус которого $R_2=3,0$ см. После того как шары разъединили, заряд шара 2 оказался равным $q_2=3,0$ мкKл. Какой заряд q_1 был на шаре 1 до соприкосновения с шаром 2?
- 19.3. Конденсатор емкостью C_1 , заряженный до напряжения U_1 = 100B, соединяется с конденсатором емкостью C_2 = 2 C_1 , заряженным до напряжения

- $U_2 = 200B$ параллельно (положительная обкладка с положительной, отрицательной). Какое напряжение установится между обкладками?
- 19.4. Конденсатор емкостью $C_1=10$ мкФ заряжен до напряжения U=10 В. Определите заряд на обкладках этого конденсатора после того, как параллельно ему был подключен другой, не заряженный, конденсатор емкостью $C_2=20$ мкФ.
- 19.5. Конденсатор емкостью $C_1 = 1,0 m \kappa \Phi$, предварительно заряженный до напряжения U = 300 B, подключили параллельно к незаряженному конденсатору емкостью $C_2 = 2,0 m \kappa \Phi$. Найдите приращение электрической энергии этой системы ΔW к моменту установления равновесия.
- 19.6. В плоский конденсатор вдвинули пластинку парафина толщиной d=1,0cM, которая вплотную прилегает к пластинам конденсатора. Диэлектрическая проницаемость парафина $\varepsilon=2,0$. На сколько нужно увеличить расстояние между пластинами конденсатора, чтобы получить прежнюю емкость?
- 19.7. Два металлических шарика радиусами $R_1 = 5,0$ см и $R_2 = 10$ см имеют заряды $Q_1 = 40$ нКл и $Q_2 = -20$ нКл соответственно. Найдите энергию W, которая выделится при разряде, если шары соединить проводником.
- 19.8. На плоский воздушный конденсатор с толщиной воздушного слоя d=1,2cM подается напряжение $U=32\kappa B$. Будет ли пробит конденсатор, если предельная напряженность электрического поля в воздухе $E^*=30\kappa B/cM$?
- 19.9. Площадь пластин плоского воздушного конденсатора $S=12,5cm^2$, а расстояние между ними $d_1=5,0$ мм. Найдите изменение емкости конденсатора ΔC и изменение плотности энергии $\Delta \omega$ электрического поля при увеличении расстояния между пластинами до $d_2=10$ мм, если источник напряжения перед этим был отключен.
- 19.10. Пространство между пластинами плоского конденсатора заполнено двумя слоями диэлектрика: слой стекла толщиной $d_1=0,2c_M$ и слой парафина толщиной $d_2=0,3c_M$. Разность потенциалов между обкладками U=300B. Найдите плотность энергии электрического поля в каждом слое ($\varepsilon_{cm}=9,0;\varepsilon_n=3,0$).

- 20.1. От батареи, э.д.с. которой E = 600B, требуется передать энергию на расстояние $l = 1\kappa M$. Потребляемая мощность $P = 5\kappa Bm$. Найти минимальные потери мощности в сети, если диаметр подводящих медных проводов d = 0.5 cM.
- 20.2. К батарее, э.д.с. которой E = 2B и внутреннее сопротивление r = 0.5Om, присоединен проводник. Определить: 1) при каком сопротивлении проводника мощность, выделяемая на нем, максимальна? 2) как велика при этом мощность, выделяемая в проводнике?
- 20.3. Аккумулятор замыкают один раз таким сопротивлением, что сила тока равна 3A, а второй раз таким сопротивлением, что сила тока равна 2A. Определить э.д.с. аккумулятора, если мощность тока во внешней цепи в обоих случаях одинакова, а внутреннее сопротивление аккумулятора равно r = 4OM.
- 20.4. Э.д.с. батареи E=24B. Наибольшая сила тока, которую может дать батарея, $I_{\rm max}=10A$. Определить максимальную мощность $P_{\rm max}$, которая может выделяться во внешней цепи.

- 20.5. При внешнем сопротивлении $r_1=8OM$ сила тока в цепи равна $I_1=0.8A$, а при сопротивлении $r_2=15OM$ сила тока $I_2=0.5A$. Определите силу тока I_{K3} короткого замыкания источника э.д.с.
- 20.6. Найти внутреннее сопротивление генератора, если известно, что мощность, выделяемая во внешней цепи, одинакова при двух значениях внешнего сопротивления $R_1 = 5O_M$ и $R_2 = 0.2O_M$.
- 20.7. От генератора, э.д.с. которого равна 110B, требуется передать энергию на расстояние 250 M. Мощность нагрузки равна 1 KBM. Найти минимальное сечение медных подводящих проводов, если потери мощности в цепи не должны превышать 1% от мощности нагрузки.
- 20.8. Э.д.с. батареи E=12B. При силе тока I=4A к.п.д. батареи равен 0,6. Определите внутреннее сопротивление батареи.

- 20.9. Потенциометр сопротивлением R=100OM подключен к батарее с э.д.с. E=150B и внутренним сопротивлением r=50OM. Определить: 1) показания вольтметра сопротивлением $R_V=500OM$, соединенного с одной из клемм потенциометра (точка B) и подвижным контактом (точка A), установленным посередине потенциометра; 2) разность потенциалов между теми же точками потенциометра при отключенном вольтметре.
- 20.10. Сила тока в проводнике сопротивлением R=20OM нарастает в течение времени $\Delta t=2c$ по линейному закону от $I_0=0A$ до I=6A. Определите теплоту Q_1 , выделяющуюся в этом проводнике за первую секунду, и теплоту Q_2 за вторую, а также найдите отношение $\frac{Q_2}{Q_1}$.