Лабораторная работа №4

«Визуализация векторного поля»

ЗАДАНИЕ. Пользуясь графической библиотекой, построить линии тока и векторное поле скоростей плоского стационарного безвихревого течения идеальной несжимаемой жидкости, заданного комплексным потенциалом w(z). Варианты задания представлены в таблице:

№	Комплексный потенциал $w(z)$	Описание течения
вар. 1	первое слагаемое из варианта №8 + первое слагаемое из варианта №5 (при q<0) + первое слагаемое из варианта №5	Вихрь, сток и источник в разных точках
2	первое слагаемое из варианта №11 + первое слагаемое из варианта №3 + первое слагаемое из варианта №11	Диполь, вихреисточник и диполь в разных точках
3	$\frac{\gamma}{2\pi}\ln(z-z_0) + \frac{\overline{\gamma}}{2\pi}\ln(z-\overline{z}_0), \ \gamma = \gamma_1 + i\gamma_2 \in \mathbb{Z}$	Вихреисточник вблизи стенки $y = 0$
4	$\frac{V_{\infty}}{a-b} \left(az - b\sqrt{z^2 - c^2} \right), \ c^2 = a^2 - b^2$	Продольное обтекание эллиптического цилиндра с полуосями <i>a</i> и <i>b</i>
5	$\frac{q}{2\pi}\ln(z-z_0) + \frac{q}{2\pi}\ln(z-\overline{z}_0), \ q > 0$	Источник вблизи стенки $y = 0$
6	$i\frac{V_{\infty}}{a-b}\left(bz-a\sqrt{z^2-c^2}\right), c^2=a^2-b^2$	Поперечное обтекание эллиптического цилиндра с полуосями <i>a</i> и <i>b</i>
7	первое слагаемое из варианта №8 + первое слагаемое из варианта №5	Вихрь и источник в разных точках
8	$\frac{m}{2\pi i}\ln(z-z_0) + \frac{m}{2\pi i}\ln(z-\overline{z}_0), \ m < 0$	Вихрь вблизи стенки $y = 0$
10	первое слагаемое из варианта №8 + первое слагаемое из варианта №11	Вихрь и диполь в разных точках
11	$-c/(z-z_0)-c/(z-\overline{z}_0)$	Диполь вблизи стенки $y = 0$
12	первое слагаемое из варианта №3 + первое слагаемое из варианта №11+ первое слагаемое из варианта №5	Вихреисточник, диполь и источник в разных точках
13	$V_{\infty}\left(z + \frac{R^2}{z}\right) - \frac{i\Gamma}{2\pi} \ln z$	Циркуляционное обтекание кругового цилиндра радиусом R с центром в начале координат
14	первое слагаемое из варианта №5 + первое слагаемое из варианта №11	Источник и диполь в разных точках
15	$V_{\infty}\left(z-i\sqrt{2pz}\right), \ p>0$	Обтекание параболы равномерным потоком
16	первое слагаемое из варианта №3 + первое слагаемое из варианта №11	Вихреисточник и диполь в разных точках
17	$V_{\infty}z + \frac{q}{2\pi} \ln \frac{z+a}{z-a}, \ a > 0$	Продольное обтекание овального цилиндра
18	первое слагаемое из варианта №5 + первое слагаемое из варианта №5 (при q<0)	Источник и сток разной интенсивности в разных точках

19	$V_{\infty} \left(z + \frac{R^2}{z - z_0} + \frac{R^2}{z - \overline{z}_0} \right)$	Обтекание вблизи стенки $y=0$ кругового цилиндра радиусом R с центром в точке $z=z_0$
20	первое слагаемое из варианта №11 + первое слагаемое из варианта №5 (при q<0) + первое слагаемое из варианта №5	Диполь, сток и источник в разных точках
21	первое слагаемое из варианта №11 + первое слагаемое из варианта №8 + первое слагаемое из варианта №3	Диполь, вихрь и вихреисточник в разных точках
22	первое слагаемое из варианта №11 + первое слагаемое из варианта №8 + первое слагаемое из варианта №11	Диполь, вихрь и диполь в разных точках
23	первое слагаемое из варианта №3 + первое слагаемое из варианта №5 (при q<0)+ первое слагаемое из варианта №3	Вихреисточник, сток и вихреисточник в разных точках
24	первое слагаемое из варианта №3 + первое слагаемое из варианта №11 + первое слагаемое из варианта №3	Вихреисточник, диполь и вихреисточник в разных точках
25	первое слагаемое из варианта №8 + первое слагаемое из варианта №11+ первое слагаемое из варианта №5	Вихрь, диполь и источник в разных точках
26	первое слагаемое из варианта №8 + первое слагаемое из варианта №11+ первое слагаемое из варианта №8	Вихрь, диполь и вихрь в разных точках
27	первое слагаемое из варианта №8 + первое слагаемое из варианта №5+ первое слагаемое из варианта №8	Вихрь, источник и вихрь в разных точках
28	первое слагаемое из варианта №5 + первое слагаемое из варианта №8+ первое слагаемое из варианта №5	Источник, вихрь и источник в разных точках
29	первое слагаемое из варианта №3 + первое слагаемое из варианта №3+ первое слагаемое из варианта №3	Три вихреисточника разной интенсивности в разных точках

УКАЗАНИЯ. <u>Линии тока (ЛТ)</u> – это семейство интегральных кривых системы обыкновенных дифференциальных уравнений

$$\frac{dx}{dt} = u(x, y), \quad \frac{dy}{dt} = v(x, y). \tag{1}$$

Здесь u и v — соответственно продольная и поперечная скорости движения жидкости, связанные с комплексным потенциалом течения соотношением

$$u - iv = \frac{dw}{dz} \equiv w'(z)$$
.

Таким образом, чтобы найти u необходимо взять вещественную часть производной w'(z), для нахождения v — мнимую часть w'(z) с обратным знаком. При аналитических преобразованиях полезны различные формы представления комплексного числа z:

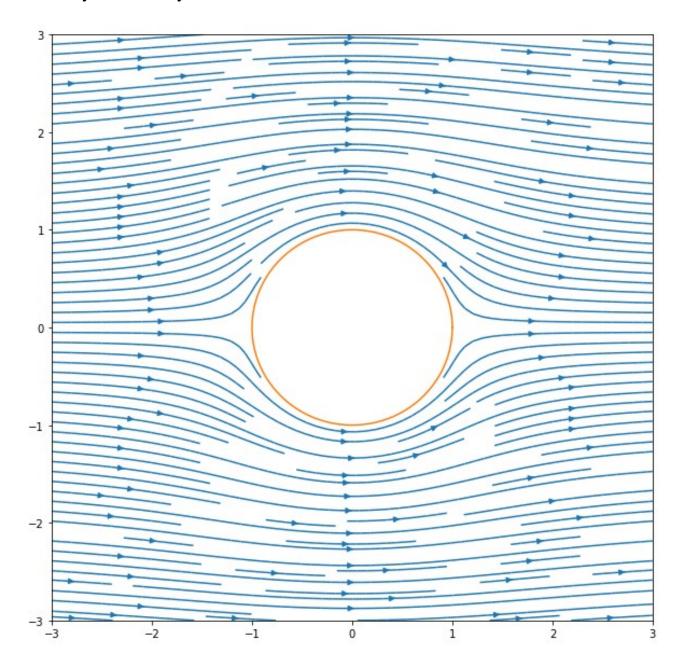
$$z = x + iy = |z|e^{i\varphi} = |z|\cos\varphi + i|z|\sin\varphi,$$

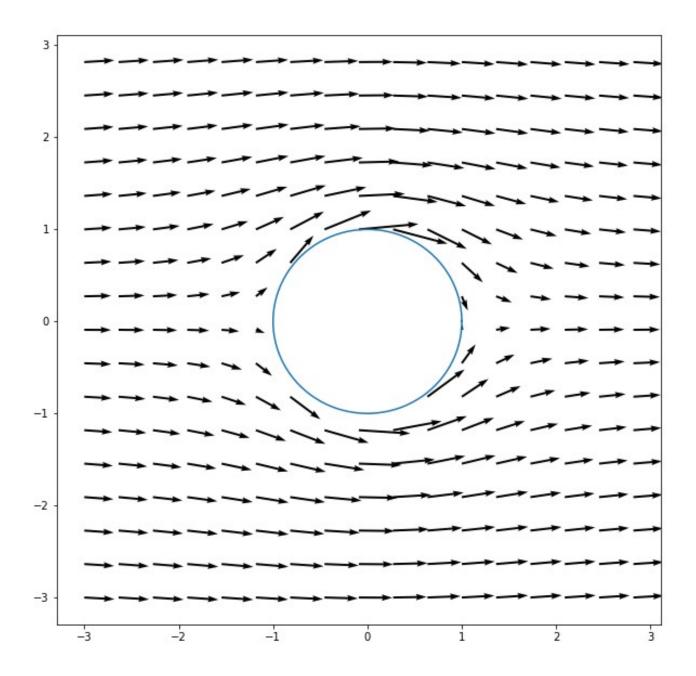
где $|z| = \sqrt{x^2 + y^2}$ — модуль, $\varphi = arctg(y/x)$ — полярный угол. Например, для w(z) = z получаем:

$$w'(z) = 1 = u(x, y) - iv(x, y),$$

т.е. u = 1, v = 0 — поле скоростей равномерного потока, параллельного оси Ох. Для определения компонент скорости можно также использовать комплексные переменные (пример соответствующих процедур см. ниже).

Для построения ЛТ численно интегрируем (1) с начальными условиями


$$x|_{t=0} = x_0, \quad y|_{t=0} = y_0.$$


Меняя координаты начальной точки (x_0, y_0) , получаем семейство ЛТ.

При написании графического приложения за основу взять нижеприведенную программу, с помощью которой строятся ЛТ и векторы скорости при обтекании кругового цилиндра.

```
# Программа для построения ЛТ и векторов скорости
import numpy as np
import matplotlib pyplot as plt
def dw(z): # = dw(z)/dz
  dw=1-R*R/z**2
  return dw
def Ufun(x,y): # x-компонента скорости
  U=dw(complex(x,v)).real
\# U=1-R*R*(x*x-y*y)/(x*x+y*y)**2
  if x**2+y**2<R**2: U=0
  return U
def Vfun(x,y): # у-компонента скорости
  V=-dw(complex(x,y)).imag
# V=-2*R*R*(x*y)/(x*x+y*y)**2
  if x**2+y**2<R**2: V=0
  return V
R=1
w = 3
Y, X = np.mgrid[-w:w:100j, -w:w:100j]
Ufun1=np.vectorize(Ufun)
Vfun1=np.vectorize(Vfun)
U=Ufun1(X,Y)
V=Vfun1(X,Y)
t = np.linspace(0,2*np.pi,100)
x,y = np.cos(t),np.sin(t) # обтекаемый контур
mask = np.zeros(U.shape, dtype=bool) # маска для внутренности тела
mask[X^{**}2+Y^{**}2<=R^{**}2] = True
U = np.ma.array(U, mask=mask)
plt.figure(figsize=(10, 10))
plt.streamplot(X, Y, U, V, density=2)
plt.plot(x,y)
plt.show()
```

Результаты запуска:

