Задача №1 Аппроксимация таблично заданной функции

В задаче аппроксимации табличных данных (x_i, f_i) строится сглаживающая функция, например, многочлен 3-й степени,

$$P(x) = a_1 + a_2 x + a_3 x^2 + a_4 x^3, (1.1)$$

имеющий в узлах таблицы x_i минимальное отклонение от заданных значений f_i . В i-й точке функция P(x) отклоняется от значения f_i на величину $P(x_i) - f_i$. Суммируя квадраты отклонений по всем точкам i = 1, 2, ..., n, находим суммарную невязку:

$$\Phi(a_1, a_2, a_3, a_4) = \sum_{i=1}^{n} (P(x_i) - f_i)^2 = \sum_{i=1}^{n} (a_1 + a_2 x_i + a_3 x_i^2 + a_4 x_i^3 - f_i)^2.$$

Потребуем, чтобы $\Phi(a_1, a_2, a_3, a_4) \rightarrow min$ (метод наименьших квадратов, МНК). Это будет выполняться, если

$$\frac{\partial \Phi}{\partial a_k} = 2\sum_{i=1}^n x_i^{k-1} (a_1 + a_2 x_i + a_3 x_i^2 + a_4 x_i^3 - f_i) = 0, \ k = 1, ..., 4.$$

Собирая коэффициенты при a_i , получим СЛАУ относительно искомых коэффициентов:

$$\begin{cases} N \cdot a_{1} + \sum_{i=1}^{N} x_{i} \cdot a_{2} + \sum_{i=1}^{N} x_{i}^{2} \cdot a_{3} + \sum_{i=1}^{N} x_{i}^{3} \cdot a_{4} = \sum_{i=1}^{N} f_{i} \\ \sum_{i=1}^{N} x_{i} \cdot a_{1} + \sum_{i=1}^{N} x_{i}^{2} \cdot a_{2} + \sum_{i=1}^{N} x_{i}^{3} \cdot a_{3} + \sum_{i=1}^{N} x_{i}^{4} \cdot a_{4} = \sum_{i=1}^{N} f_{i} \cdot x_{i} \\ \sum_{i=1}^{N} x_{i}^{2} \cdot a_{1} + \sum_{i=1}^{N} x_{i}^{3} \cdot a_{2} + \sum_{i=1}^{N} x_{i}^{4} \cdot a_{3} + \sum_{i=1}^{N} x_{i}^{5} \cdot a_{4} = \sum_{i=1}^{N} f_{i} \cdot x_{i}^{2} \\ \sum_{i=1}^{N} x_{i}^{3} \cdot a_{1} + \sum_{i=1}^{N} x_{i}^{4} \cdot a_{2} + \sum_{i=1}^{N} x_{i}^{5} \cdot a_{3} + \sum_{i=1}^{N} x_{i}^{6} \cdot a_{4} = \sum_{i=1}^{N} f_{i} \cdot x_{i}^{3}, \end{cases}$$

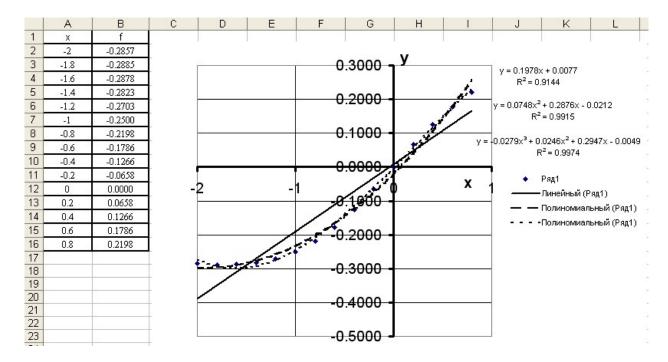
$$(1.2)$$

или

$$B\vec{a} = \vec{c}$$
,

где *В* — симметричная положительно определенная матрица. Решение (1.2) можно получить с помощью одного из методов решения СЛАУ, например, метода Гаусса. Аналогично определяются коэффициенты сглаживающего многочлена 1-й, 2-й и т.д. степеней.

Решение в Excel (инструмент диаграммы «Добавить линию тренда...»):



Задание. Сгладить опытные данные с помощью многочленов 1-й и 2-й степени. Результаты сравнить с результатами, полученными в Excel. Варианты опытных данных приведены в таблицах:

х	1	2	3	4	5	6	7	8	9	10	11	12
0.000	0.975	1.166	0.988	1.111	0.936	1.159	0.976	1.146	0.878	1.101	0.989	1.193
0.200	1.295	1.413	1.480	1.342	1.377	1.451	1.723	1.708	1.880	1.538	1.570	1.656
0.400	1.688	1.745	1.998	2.112	2.339	2.455	2.242	2.453	2.711	2.850	2.540	3.263
0.600	1.897	2.638	2.759	3.115	3.462	3.396	3.828	4.137	4.318	4.407	4.638	4.750
0.800	2.513	3.160	3.778	4.132	4.611	5.325	5.811	6.243	6.764	7.539	7.867	8.615
1.000	3.120	4.173	5.325	6.198	7.141	8.028	9.019	10.185	11.205	11.843	12.242	13.588
х	13	14	15	16	17	18	19	20	21	22	23	24
-0.400	-2.195	0.413	-2.320	3.542	-0.477	0.351	-3.423	2.542	-0.830	0.482	-1.595	
-0.200	-2.631	0.543	-2.688	2.717	-0.781	0.986	-3.781	1.678	-0.721	0.170	-0.850	
0.000	-2.619	1.131	-3.161	4.878	-1.655	1.872	-4.969	0.283	0.101	0.154	0.325	
0.200	-3.413	1.873	-4.213	5.477	-2.940	3.483	-6.786	-1.577	0.794	0.110	1.068	
0.400	-3.581	2.657	-5.221	7.343	-4.723	5.387	-9.104	1.536	1.339	0.854	2.237	
0.600	-4.120	2.973	-6.125	7.998	-6.441	7.368	-10.39	3.582	1.945	0.901	2.612	

Задача №2 Численное интегрирование

Вычислить определенный интеграл

$$I = \int_{a}^{b} f(x) dx,$$

используя квадратурные формулы:

а) левых прямоугольников (порядок точности p = 1)

$$I^{h} = h \sum_{i=1}^{N-1} f(x_{i}), \qquad (2.1)$$

б) трапеций (p = 2)

$$I^{h} = h \left\{ \frac{f(x_{1}) + f(x_{N})}{2} + \sum_{i=2}^{N-1} f(x_{i}) \right\},$$
 (2.2)

в) Симпсона (p = 4)

$$I^{h} = \frac{h}{3} \{ f(x_{1}) + 4f(x_{2}) + 2f(x_{3}) + \dots + f(x_{N}) \}$$
 (N – нечетное) (2.3)

с числом узлов N = 5.

Оценить погрешность по формуле Рунге:

$$|I - I^h| \approx |I^h - I^{2h}|/(2^p - 1).$$
 (2.4)

В пункте б) провести уточнение по Ричардсону:

$$I = I^{h} + (I^{h} - I^{2h})/(2^{p} - 1).$$
(2.5)

В промежуточных вычислениях удерживать 6 знаков после запятой. Ответы приводить с учетом погрешностей. Результаты сравнить со значением, полученным в пакете Mathcad.

Варианты заданий

Dupi	Зарианты задании									
№	f(x), [a,b]	№	f(x), [a,b]	№	f(x), [a,b]					
1	$e^{0.3/x^2}$, [-2,-1]	2	$2^x/\sqrt{2x^2+1}$, [1,2]	3	$\sin(0.5x^2),[0,1]$					
4	$ln(1+x^2), [1,3]$	5	$\cos x/(1+x^3),$	6	$\sqrt{2x^2+3}$, [2,3]					
			[0,1]							
7	$\sin x/(x+2)$, [1,3]	8	$e^{\sin\sqrt{x}}$, [1,2]	9	$e^{-0.1/x}$, [1,2]					
10	$\cos(x^2-1), [0,1]$	11	$\sin(x\sqrt{x}), [0,2]$	12	$e^{-\cos(2x)}, [0,1]$					
13	$\sin^3(1/x), [2,3]$	14	$x/3+x^4$, [1,2]	15	$2\cos(0.2x^2), [0,1]$					
16	$e^{-0.02x\sqrt{x}}$, [1,2]	17	$e^{-0.5x^2}$, [0,1]	18	$\sin(1/x^2), [2,3]$					
19	$4\cos(0.02x^3), [0,1]$	20	$e^{1/x}$, [1,2]	21	$e^x/\sqrt{x^3+3}$, [1,2]					
22	$\sqrt{1-\frac{1}{2}sin^2x}, [0,\pi/2]$	23	$\sqrt{1+\cos^2 x}, [0,\pi/2]$	24						

Пример:
$$I = \int_{1}^{2.2} e^{\sin x} dx$$
, $N = 5$.

Шаг интегрирования h = (b-a)/(N-1) = 0.3. Таблица значений подынтегральной функции в узлах $x_1 = a$, ..., $x_N = b$:

x	1	1.3	1.6	1.9	2.2	
f(x)	2.319777	2.621006	2.717123	2.576160	2.244531	

а) Формула левых прямоугольников. Находим

$$I^h = h \cdot (f(1) + f(1.3) + f(1.6) + f(1.9)) =$$

$$= 0.3 \cdot (2.319777 + 2.621006 + 2.717123 + 2.576160) =$$

$$= 0.3 \cdot 10.234066 = 3.070220.$$

$$I^{2h} = 0.6 \cdot (f(1) + f(1.6)) = 0.6 \cdot (2.319777 + 2.717123) = 3.02214.$$

Погрешность по формуле Рунге (порядок точности p = 1):

$$|I - I^h| \approx |I^h - I^{2h}|/(2^p - 1) = |I^h - I^{2h}|,$$

Тогда $|I^h - I^{2h}| = 0.0480798$, $I = 3.07022 \pm 0.04808$.

б) Формула трапеций. Находим

$$I^h = h \cdot ((f(1) + f(2.2))/2 + f(1.3) + f(1.6) + f(1.9)) =$$

$$= 0.3 \cdot ((2.319777 + 2.244531)/2 + 2.621006 + 2.717123 + 2.576160) =$$

$$= 0.3 \cdot (2.282154 + 7.914289) = 3.058933.$$

$$I^{2h} = 0.6 \cdot ((f(1) + f(2.2))/2 + f(1.6)) = 0.6 \cdot (2.228154 + 2.717123) = 2.967166.$$

Погрешность по формуле Рунге (порядок точности p = 2):

$$|I - I^h| = |3.058933 - 2.967166|/3 = 0.030589$$
, T.e. $I = 3.05893 \pm 0.03059$.

Уточнение по Ричардсону: $I = I^h + (I^h - I^{2h})/3 = 3.089522$.

в) Формула Симпсона. Находим

$$I^{h} = h/3 \cdot (f(1) + 4f(1.3) + 2f(1.6) + 4f(1.9) + f(2.2)) =$$

$$= 0.1 \cdot (2.319777 + 4.2.621006 + 2.2.717123 + 4.2.576160 + 2.244531) =$$

$$= 0.1 (4.564308 + 20.788664 + 5.434246) = 3.078722.$$

$$I^{2h} = 2h/3 \cdot (f(1) + 4f(1.6) + f(2.2)) = 0.2 \cdot (2.319777 + 4 \cdot 2.717123 + 2.244531) = 3.08656.$$

Погрешность по формуле Рунге (порядок точности p = 4):

$$|I - I^h| = |3.078722 - 3.08656|/15 = 5.2 \cdot 10^{-4}$$
, T.e. $I = 3.07872 \pm 0.00052$.

г) Решение в Mathcad:
$$\int_{1}^{2.2} e^{\sin(x)} dx = 3.078333$$

Ответы:

- a) $I = 3.07022 \pm 0.04808$;
- б) $I = 3.05893 \pm 0.03059$, уточнение по Ричардсону: I = 3.089522;
- B) $I = 3.07872 \pm 0.00052$;
- $_{\Gamma}$) I = 3.078333.

Выводы: В данной задаче наиболее точной является формула Симпсона. Вторая по точности − формула левых прямоугольников.

Задача №3 Численное дифференцирование

Вычислить значение первой производной f'(z) таблично заданной на отрезке [a,b] функции f(x) в точке $z \in [a,b]$, используя:

а) интерполяционный многочлен Лагранжа:

$$f_L'(z) = L'(z), L(x) = \sum_{i=1}^N f_i \prod_{\substack{j=1 \ j \neq i}}^N \frac{x - x_j}{x_i - x_j}$$
 ;(3.1)

б) подходящие формулы численного дифференцирования: первого порядка точности (p = 1)

$$f_h'(z) = \frac{f(z+h) - f(z)}{h},$$
 (3.2)

$$f_h'(z) = \frac{f(z) - f(z - h)}{h};$$
 (3.3)

второго порядка точности (p = 2)

$$f_h'(z) = \frac{f(z+h) - f(z-h)}{2h},$$
 (3.4)

$$f_h'(z) = \frac{3f(z) - 4f(z - h) + f(z - 2h)}{2h},$$

$$f_h'(z) = \frac{-3f(z) + 4f(z + h) - f(z + 2h)}{2h}.$$
(3.5)

$$f_h'(z) = \frac{-3f(z) + 4f(z+h) - f(z+2h)}{2h}. (3.6)$$

Формула численного дифференцирования будет подходящей, если она не задействует точки, лежащие вне таблицы. Полученные приближенные значения уточнить по Ричардсону:

$$f_{y}'(z) = f_{h}'(z) + (f_{h}'(z) - f_{2h}'(z))/(2^{p} - 1).$$

Определить относительные погрешности (в %) приближенных и уточненных значений:

$$\delta = |f'(z) - f_h'(z)| / |f'(z)|,$$

$$\delta_{y} = |f'(z) - f_{y}'(z)| / |f'(z)|.$$

Табличную зависимость сформировать по функции f(x) и отрезку [a,b]из Задачи №2 при числе узлов N=5. Расчетная точка $z=x_4$. Полученные результаты оформить следующим образом:

$$z=..., f_{\text{точное}}'(z)=...$$

Приближенные значения по формулам

(3.1)		(3.2)							
$f_L'(z)$	δ , %	$f_h'(z)$	δ , %		• • •				
• • •	• • •	• • •	•••						

Уточненные значения по формулам

(3.2)		(3.3)		•••					
$f_{y}'(z)$	$\delta_{ m y},\%$	$f_{y}'(z)$	$\delta_{ m y},\%$	•••	•••				
• • •			• • •						

Выводы: В данной задаче наиболее точной ...