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Earth’s surface. Plot time versus distance and make a guess
at a “square-root function” that provides a reasonable model
for t in terms of d. Use a graphing utility to confirm the rea-
sonableness of your guess.
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Table Ex-21

22. (a) The accompanying table provides data on five moons
of the planet Saturn. In this table r is the orbital radius
(the average distance between the moon and Saturn) and
t is the time in days required for the moon to complete
one orbit around Saturn. For each data pair calculate
tr−3/2, and use your results to find a reasonable model
for r as a function of t .

(b) Use the model obtained in part (a) to estimate the orbital
radius of the moon Enceladus, given that its orbit time
is t ≈ 1.370 days.

(c) Use the model obtained in part (a) to estimate the orbit
time of the moon Tethys, given that its orbital radius is
r ≈ 2.9467 × 105 km.

1980S28
1980S27
1980S26
1980S3
1980S1

moon

1.3767
1.3935
1.4170
1.5142
1.5147

0.602
0.613
0.629
0.694
0.695

radius
(100,000 km)

orbit time
(days)

Table Ex-22

✔QUICK CHECK ANSWERS 1.7

1. (a) quadratic (b) linear (c) linear (d) trigonometric 2. 2 3. the model with correlation coefficient −0.75
4. (a) 2b2 + 2 (b) 0

1.8 PARAMETRIC EQUATIONS

Thus far, our study of graphs has focused on graphs of functions. However, because such
graphs must pass the vertical line test, this limitation precludes curves with self-intersec-
tions or even such basic curves as circles. In this section we will study an alternative
method for describing curves algebraically that is not subject to the severe restriction of
the vertical line test.

This material is placed here to provide an early parametric option. However, it can be
deferred until Chapter 11, if preferred.

PARAMETRIC EQUATIONS
Suppose that a particle moves along a curve C in the xy-plane in such a way that its x- and
y-coordinates, as functions of time, are

x = f (t), y = g(t)

We call these the parametric equations of motion for the particle and refer to C as the
trajectory of the particle or the graph of the equations (Figure 1.8.1). The variable t is

x

y

C

(x, y)

A moving particle with trajectory C

Figure 1.8.1

called the parameter for the equations.

Example 1 Sketch the trajectory over the time interval 0 ≤ t ≤ 10 of the particle
whose parametric equations of motion are

x = t − 3 sin t, y = 4 − 3 cos t (1)

Solution. One way to sketch the trajectory is to choose a representative succession of
times, plot the (x, y) coordinates of points on the trajectory at those times, and connect the
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points with a smooth curve. The trajectory in Figure 1.8.2 was obtained in this way from
the data in Table 1.8.1 in which the approximate coordinates of the particle are given at
time increments of 1 unit. Observe that there is no t-axis in the picture; the values of t
appear only as labels on the plotted points, and even these are usually omitted unless it is
important to emphasize the locations of the particle at specific times.
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Figure 1.8.2

Table 1.8.1

0
1
2
3
4
5
6
7
8
9

10

t

0.0
–1.5
–0.7

2.6
6.3
7.9
6.8
5.0
5.0
7.8

11.6

x

1.0
2.4
5.2
7.0
6.0
3.1
1.1
1.7
4.4
6.7
6.5

y

Although parametric equations commonly arise in problems of motion with time as the

TECH NOLOGY MASTERY

Read the documentation for your
graphing utility to learn how to graph
parametric equations, and then gener-
ate the trajectory in Example 1. Ex-
plore the behavior of the particle be-
yond time t = 10.

parameter, they arise in other contexts as well. Thus, unless the problem dictates that the
parameter t in the equations x = f (t), y = g(t)

represents time, it should be viewed simply as an independent variable that varies over
some interval of real numbers. (In fact, there is no need to use the letter t for the parameter;
any letter not reserved for another purpose can be used.) If no restrictions on the parameter
are stated explicitly or implied by the equations, then it is understood that it varies from
−� to +�. To indicate that a parameter t is restricted to an interval [a, b], we will write

x = f (t), y = g(t) (a ≤ t ≤ b)

Example 2 Find the graph of the parametric equations

x = cos t, y = sin t (0 ≤ t ≤ 2π) (2)

Solution. One way to find the graph is to eliminate the parameter t by noting that

x2 + y2 = sin2 t + cos2 t = 1

Thus, the graph is contained in the unit circle x2 + y2 = 1. Geometrically, the parameter
t can be interpreted as the angle swept out by the radial line from the origin to the point
(x, y) = (cos t, sin t) on the unit circle (Figure 1.8.3). As t increases from 0 to 2π, the

x

y
1

t (1, 0)

(x, y)

x = cos t, y = sin t
(0 ≤ t ≤ 2p)

Figure 1.8.3

point traces the circle counterclockwise, starting at (1, 0) when t = 0 and completing one
full revolution when t = 2π. One can obtain different portions of the circle by varying the
interval over which the parameter varies. For example,

x = cos t, y = sin t (0 ≤ t ≤ π) (3)

represents just the upper semicircle in Figure 1.8.3.

ORIENTATION
The direction in which the graph of a pair of parametric equations is traced as the parameter
increases is called the direction of increasing parameter or sometimes the orientation
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imposed on the curve by the equations. Thus, we make a distinction between a curve, which
is a set of points, and a parametric curve, which is a curve with an orientation imposed
on it by a set of parametric equations. For example, we saw in Example 2 that the circle
represented parametrically by (2) is traced counterclockwise as t increases and hence has
counterclockwise orientation. As shown in Figures 1.8.2 and 1.8.3, the orientation of a
parametric curve can be indicated by arrowheads.

To obtain parametric equations for the unit circle with clockwise orientation, we can
replace t by −t in (2) and use the identities cos(−t) = cos t and sin(−t) = − sin t . This
yields

x = cos t, y = − sin t (0 ≤ t ≤ 2π)

Here, the circle is traced clockwise by a point that starts at (1, 0) when t = 0 and completes
one full revolution when t = 2π (Figure 1.8.4).

x

y
1

–t

(1, 0)

(x, y)

x = cos(–t),  y = sin(– t)
(0 ≤ t ≤ 2p)

Figure 1.8.4
TECH NOLOGY

MASTERY
When parametric equations are graphed using a calculator, the orientation can often be determined
by watching the direction in which the graph is traced on the screen. However, many computers
graph so fast that it is often hard to discern the orientation. See if you can use your graphing utility
to confirm that (3) has a counterclockwise orientation.

Example 3 Graph the parametric curve

x = 2t − 3, y = 6t − 7

by eliminating the parameter, and indicate the orientation on the graph.

Solution. To eliminate the parameter we will solve the first equation for t as a function
of x, and then substitute this expression for t into the second equation:

t = (
1
2

)
(x + 3)

y = 6
(

1
2

)
(x + 3)− 7

y = 3x + 2

Thus, the graph is a line of slope 3 and y-intercept 2. To find the orientation we must look
to the original equations; the direction of increasing t can be deduced by observing that
x increases as t increases or by observing that y increases as t increases. Either piece of
information tells us that the line is traced left to right as shown in Figure 1.8.5.

8

x

y

x = 2t – 3,  y = 6t – 7

Figure 1.8.5

x

y
(–1, 1) (1, 1)

Figure 1.8.6

Not all parametric equations produce curves with definite orientations; if the equations are badly
behaved, then the point tracing the curve may leap around sporadically or move back and forth,
failing to determine a definite direction. For example, if

x = sin t, y = sin2 t

then the point (x, y)moves along the parabola y = x2. However, the value of x varies periodically
between −1 and 1, so the point (x, y) moves periodically back and forth along the parabola
between the points (−1, 1) and (1, 1) (as shown in Figure 1.8.6). Later in the text we will discuss
restrictions that eliminate such erratic behavior, but for now we will just avoid such complications.

EXPRESSING ORDINARY FUNCTIONS PARAMETRICALLY
An equation y = f(x) can be expressed in parametric form by introducing the parameter
t = x; this yields the parametric equations x = t , y = f (t). For example, the portion of
the curve y = cos x over the interval [−2π, 2π] can be expressed parametrically as

x = t, y = cos t (−2π ≤ t ≤ 2π)

(Figure 1.8.7).
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Figure 1.8.7
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GENERATING PARAMETRIC CURVES WITH GRAPHING UTILITIES
Many graphing utilities allow you to graph equations of the form y = f(x) but not equations
of the form x = g(y). Sometimes you will be able to rewrite x = g(y) in the form y = f(x);
however, if this is inconvenient or impossible, then you can graph x = g(y) by introducing
a parameter t = y and expressing the equation in the parametric form x = g(t), y = t .
(You may have to experiment with various intervals for t to produce a complete graph.)

Example 4 Use a graphing utility to graph the equation x = 3y5 − 5y3 + 1.

Solution. If we let t = y be the parameter, then the equation can be written in parametric
form as

x = 3t5 − 5t3 + 1, y = t

Figure 1.8.8 shows the graph of these equations for −1.5 ≤ t ≤ 1.5.

-5 -4 -3 -2 -1 1 2 3 4 5

-2
-1

1
2

x

y

x = 3t5 – 5t3 + 1,  y = t
–1.5 ≤  t ≤  1.5

Figure 1.8.8
Some parametric curves are so complex that it is virtually impossible to visualize them

without using some kind of graphing utility. Figure 1.8.9 shows three such curves.

x

y

x

y

x = cos t + (1/2)cos 7t + (1/3)sin 17t
y = sin t + (1/2)sin 7t + (1/3)cos 17t

(0 ≤ t ≤ 2p)

x = 17cos t + 7cos(17/7)t
y = 17sin t – 7sin(17/7)t

(0 ≤ t ≤ 14p)

x = 31cos t – 7cos(31/7)t
y = 31sin t – 7sin(31/7)t

(0 ≤ t ≤ 14p)

x

y

Figure 1.8.9

GRAPHING INVERSE FUNCTIONS WITH GRAPHING UTILITIES
Most graphing utilities cannot graph inverse functions directly. However, there is a way of
graphing inverse functions by expressing the graphs parametrically. To see how this can

TECH NOLOGY MASTERY

Try your hand at using a graphing util-
ity to generate some parametric curves
that you think are interesting or beau-
tiful.

be done, suppose that we are interested in graphing the inverse of a one-to-one function f .
We know that the equation y = f(x) can be expressed parametrically as

x = t, y = f(t) (4)
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and we know that the graph of f −1 can be obtained by interchanging x and y, since this
reflects the graph of f about the line y = x. Thus, from (4) the graph of f −1 can be
represented parametrically as

x = f(t), y = t (5)

For example, Figure 1.8.10 shows the graph of f(x) = x5 + x + 1 and its inverse generated

-6 8

-6

8

x

y
f

f –1

Figure 1.8.10

with a graphing utility. The graph of f was generated from the parametric equations

x = t, y = t5 + t + 1

and the graph of f −1 was generated from the parametric equations

x = t5 + t + 1, y = t

TRANSLATION
If a parametric curveC is given by the equations x = f (t), y = g(t), then adding a constant
to f (t) translates the curve C in the x-direction, and adding a constant to g(t) translates
it in the y-direction. Thus, a circle of radius r , centered at (x0, y0) can be represented
parametrically as

x = x0 + r cos t, y = y0 + r sin t (0 ≤ t ≤ 2π) (6)

(Figure 1.8.11). If desired, we can eliminate the parameter from these equations by noting
that

(x − x0)
2 + (y − y0)

2 = (r cos t)2 + (r sin t)2 = r2

Thus, we have obtained the familiar equation in rectangular coordinates for a circle of radius
r , centered at (x0, y0):

(x − x0)
2 + (y − y0)

2 = r2 (7)

x

y

x = x0 + r cos t
y = y0 + r sin t
(0 ≤  t ≤  2p)

(x0, y0)

r

Figure 1.8.11

TECH NOLOGY MASTERY

Use the parametric capability of your
graphing utility to generate a circle of
radius 5 that is centered at (3,−2).

SCALING
If a parametric curve C is given by the equations x = f (t), y = g(t), then multiplying
f (t) by a constant stretches or compresses C in the x-direction, and multiplying g(t) by a
constant stretches or compresses C in the y-direction. For example, we would expect the
parametric equations

x = 3 cos t, y = 2 sin t (0 ≤ t ≤ 2π)

to represent an ellipse, centered at the origin, since the graph of these equations results from
stretching the unit circle

x = cos t, y = sin t (0 ≤ t ≤ 2π)

by a factor of 3 in the x-direction and a factor of 2 in the y-direction. In general, if a and b
are positive constants, then the parametric equations

x = a cos t, y = b sin t (0 ≤ t ≤ 2π) (8)

represent an ellipse, centered at the origin, and extending between −a and a on the x-axis
and between −b and b on the y-axis (Figure 1.8.12). The numbers a and b are called the
semiaxes of the ellipse. If desired, we can eliminate the parameter t in (8) and rewrite the
equations in rectangular coordinates as

x2

a2
+ y2

b2
= 1 (9)

TECH NOLOGY
MASTERY

Use the parametric capability of your graphing utility to generate an ellipse that is centered at the
origin and that extends between −4 and 4 in the x-direction and between −3 and 3 in the y-
direction. Generate an ellipse with the same dimensions, but translated so that its center is at the
point (2, 3).

x

y

x = a cos t, y = b sin t
(0 ≤ t ≤ 2p)

b

a–a

–b

Figure 1.8.12
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LISSAJOUS CURVES
In the mid-1850s the French physicist Jules Antoine Lissajous (1822–1880) became inter-
ested in parametric equations of the form

x = sin at, y = sin bt (10)

in the course of studying vibrations that combine two perpendicular sinusoidal motions. The
first equation in (10) describes a sinusoidal oscillation in the x-direction with frequency
a/2π, and the second describes a sinusoidal oscillation in the y-direction with frequency
b/2π. If a/b is a rational number, then the combined effect of the oscillations is a periodic
motion along a path called a Lissajous curve. Figure 1.8.13 shows some typical Lissajous
curves.
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-1 1
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y
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x

y

a = 1, b = 2 a = 2, b = 3 a = 3, b = 4 a = 4, b = 5

Figure 1.8.13

TECH NOLOGY MASTERY

Generate some Lissajous curves on
your graphing utility, and also see if you
can figure out when each of the curves
in Figure 1.8.13 begins to repeat.

CYCLOIDS
If a wheel rolls in a straight line along a flat road, then a point on the rim of the wheel will
trace a curve called a cycloid (Figure 1.8.14). This curve has a fascinating history, which
we will discuss shortly; but first we will show how to obtain parametric equations for it. For
this purpose, let us assume that the wheel has radius a and rolls along the positive x-axis of
a rectangular coordinate system. Let P(x, y) be the point on the rim that traces the cycloid,
and assume that P is initially at the origin. We will take as our parameter the angle θ that
is swept out by the radial line to P as the wheel rolls (Figure 1.8.14). It is standard here to
regard θ to be positive, even though it is generated by a clockwise rotation.

TECH NOLOGY MASTERY

Use your graphing utility to generate
two “arches” of the cycloid produced
by a point on the rim of a wheel of ra-
dius 1.

The motion of P is a combination of the movement of the wheel’s center parallel to the
x-axis and the rotation of P around the center. As the radial line sweeps out an angle θ , the
point P traverses an arc of length aθ , and the wheel moves a distance aθ along the x-axis
(why?). Thus, as suggested by Figure 1.8.15, the center moves to the point (aθ, a), and the
coordinates of P(x, y) are

x = aθ − a sin θ, y = a − a cos θ (11)

These are the equations of the cycloid in terms of the parameter θ .

caP oa åa

x

y

a

A cycloid

Figure 1.8.14

x = au – a sin u

P(x, y)
a

x

y

u a cos u

y = a – a cos u
a

au

a sin u

Figure 1.8.15
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THE ROLE OF THE CYCLOID IN MATHEMATICS HISTORY
The cycloid is of interest because it provides the solution to two famous mathematical
problems—the brachistochrone problem (from Greek words meaning “shortest time”) and
the tautochrone problem (from Greek words meaning “equal time”). The brachistochrone
problem is to determine the shape of a wire along which a bead might slide from a point P
to another point Q, not directly below, in the shortest time. The tautochrone problem is to
find the shape of a wire from P to Q such that two beads started at any points on the wire
between P and Q reach Q in the same amount of time. The solution to both problems turns
out to be an inverted cycloid (Figure 1.8.16).

In June of 1696, Johann Bernoulli posed the brachistochrone problem in the form of a
challenge to other mathematicians. At first, one might conjecture that the wire should form
a straight line, since that shape results in the shortest distance from P to Q. However, the
inverted cycloid allows the bead to fall more rapidly at first, building up sufficient initial
speed to reach Q in the shortest time, even though it travels a longer distance. The problem
was solved by Newton and Leibniz as well as by Johann Bernoulli and his older brother
Jakob; it was formulated and solved incorrectly years earlier by Galileo, who thought the
answer was a circular arc.

P

Q

Figure 1.8.16

Bernoulli An amazing Swiss family that included several
generations of outstanding mathematicians and scientists.
Nikolaus Bernoulli (1623–1708), a druggist, fled from
Antwerp to escape religious persecution and ultimately
set tled in Basel, Switzerland. There he had three sons,
Jakob I (also called Jacques or James), Nikolaus, and

Johann I (also called Jean or John). The Roman numerals are used
to distinguish family members with identical names (see the family
tree below). Following Newton and Leibniz, the Bernoulli brothers,
Jakob I and Johann I, are considered by some to be the two most
important founders of calculus. Jakob I was self-taught in math-
ematics. His father wanted him to study for the ministry, but he
turned to mathematics and in 1686 became a professor at the Uni-
versity of Basel. When he started working in mathematics, he knew
nothing of Newton’s and Leibniz’ work. He eventually became fa-
miliar with Newton’s results, but because so little of Leibniz’ work
was published, Jakob duplicated many of Leibniz’ results.

Jakob’s younger brother Johann I was urged to enter into business
by his father. Instead, he turned to medicine and studied mathemat-
ics under the guidance of his older brother. He eventually became
a mathematics professor at Gröningen in Holland, and then, when
Jakob died in 1705, Johann succeeded him as mathematics profes-
sor at Basel. Throughout their lives, Jakob I and Johann I had a
mutual passion for criticizing each other’s work, which frequently
erupted into ugly confrontations. Leibniz tried to mediate the dis-
putes, but Jakob, who resented Leibniz’ superior intellect, accused
him of siding with Johann, and thus Leibniz became entangled in
the arguments. The brothers often worked on common problems
that they posed as challenges to one another. Johann, interested
in gaining fame, often used unscrupulous means to make himself
appear the originator of his brother’s results; Jakob occasionally re-
taliated. Thus, it is often difficult to determine who deserves credit
for many results. However, both men made major contributions
to the development of calculus. In addition to his work on calcu-

lus, Jakob helped establish fundamental principles in probability,
including the Law of Large Numbers, which is a cornerstone of
modern probability theory.

Among the other members of the Bernoulli family, Daniel, son
of Johann I, is the most famous. He was a professor of mathematics
at St. Petersburg Academy in Russia and subsequently a professor
of anatomy and then physics at Basel. He did work in calculus and
probability, but is best known for his work in physics. A basic law
of fluid flow, called Bernoulli’s principle, is named in his honor. He
won the annual prize of the French Academy 10 times for work on
vibrating strings, tides of the sea, and kinetic theory of gases.

Johann II succeeded his father as professor of mathematics at
Basel. His research was on the theory of heat and sound. Nikolaus
I was a mathematician and law scholar who worked on probability
and series. On the recommendation of Leibniz, he was appointed
professor of mathematics at Padua and then went to Basel as a
professor of logic and then law. Nikolaus II was professor of ju-
risprudence in Switzerland and then professor of mathematics at St.
Petersburg Academy. Johann III was a professor of mathematics
and astronomy in Berlin and Jakob II succeeded his uncle Daniel
as professor of mathematics at St. Petersburg Academy in Russia.
Truly an incredible family!

Nikolaus Bernoulli
(1623–1708)

Nikolaus I
(1687–1759)

Nikolaus II
(1695–1726)

Daniel
(1700–1782)

Johann II
(1710–1790)

NikolausJakob I
(1654–1705)

(Jacques, James)

Johann I
(1667–1748)
(Jean, John)

Johann III
(1744–1807)

Jakob II
(1759–1789)
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Newton’s solution of the brachistochrone
problem in his own handwriting

✔QUICK CHECK EXERCISES 1.8 (See page 96 for answers.)

1. Find parametric equations for a circle of radius 2, centered
at (3, 5).

2. Find parametric equations for the ellipse

x2

a2
+ y2

b2
= 1

3. The graph of the curve described by the parametric equa-
tions x = 4t − 1, y = 3t + 2 is a straight line with slope

and y-intercept .

4. Suppose that a parametric curveC is given by the equations
x = f(t), y = g(t) for 0 ≤ t ≤ 1. Find parametric equa-
tions for C that reverse the direction the curve is traced as
the parameter increases from 0 to 1.

5. If f(x) is a one-to-one function, then parametric equations
for the curve y = f −1(x) are given by x = and
y = t .

EXERCISE SET 1.8 Graphing Utility

1. (a) By eliminating the parameter, sketch the trajectory over
the time interval 0 ≤ t ≤ 5 of the particle whose para-
metric equations of motion are

x = t − 1, y = t + 1

(b) Indicate the direction of motion on your sketch.
(c) Make a table of x- and y-coordinates of the particle at

times t = 0, 1, 2, 3, 4, 5.
(d) Mark the position of the particle on the curve at the times

in part (c), and label those positions with the values of t .

2. (a) By eliminating the parameter, sketch the trajectory over
the time interval 0 ≤ t ≤ 1 of the particle whose para-
metric equations of motion are

x = cos(πt), y = sin(πt)

(b) Indicate the direction of motion on your sketch.
(c) Make a table of x- and y-coordinates of the particle at

times t = 0, 0.25, 0.5, 0.75, 1.
(d) Mark the position of the particle on the curve at the times

in part (c), and label those positions with the values of t .

3–12 Sketch the curve by eliminating the parameter, and
indicate the direction of increasing t .

3. x = 3t − 4, y = 6t + 2

4. x = t − 3, y = 3t − 7 (0 ≤ t ≤ 3)

5. x = 2 cos t , y = 5 sin t (0 ≤ t ≤ 2π)

6. x = √
t , y = 2t + 4

7. x = 3 + 2 cos t , y = 2 + 4 sin t (0 ≤ t ≤ 2π)

8. x = sec t , y = tan t (π ≤ t < 3π/2)

9. x = cos 2t , y = sin t (−π/2 ≤ t ≤ π/2)

10. x = 4t + 3, y = 16t2 − 9

11. x = 2 sin2 t , y = 3 cos2 t

12. x = sec2 t, y = tan2 t (−π/2 < t < π/2)

13–18 Find parametric equations for the curve, and check
your work by generating the curve with a graphing utility.

13. A circle of radius 5, centered at the origin, oriented clock-
wise.

14. The portion of the circle x2 + y2 = 1 that lies in the third
quadrant, oriented counterclockwise.

15. A vertical line intersecting the x-axis at x = 2, oriented
upward.

16. The ellipse x2/4 + y2/9 = 1, oriented counterclockwise.

17. The portion of the parabola x = y2 joining (1,−1) and
(1, 1), oriented down to up.

18. The circle of radius 4, centered at (1,−3), oriented coun-
terclockwise.

19. (a) Use a graphing utility to generate the trajectory of a par-
ticle whose equations of motion over the time interval
0 ≤ t ≤ 5 are

x = 6t − 1
2 t

3, y = 1 + 1
2 t

2
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(b) Make a table of x- and y-coordinates of the particle at
times t = 0, 1, 2, 3, 4, 5.

(c) At what times is the particle on the y-axis?
(d) During what time interval is y < 5?
(e) At what time does the x-coordinate of the particle reach

a maximum?

20. (a) Use a graphing utility to generate the trajectory of a
paper airplane whose equations of motion for t ≥ 0 are

x = t − 2 sin t, y = 3 − 2 cos t

(b) Assuming that the plane flies in a room in which the
floor is at y = 0, explain why the plane will not crash
into the floor. [For simplicity, ignore the physical size
of the plane by treating it as a particle.]

(c) How high must the ceiling be to ensure that the plane
does not touch or crash into it?

21–22 Graph the equation using a graphing utility.

21. (a) x = y2 + 2y + 1
(b) x = sin y, −2π ≤ y ≤ 2π

22. (a) x = y + 2y3 − y5

(b) x = tan y, −π/2 < y < π/2

23. (a) By eliminating the parameter, show that the equations

x = x0 + (x1 − x0)t, y = y0 + (y1 − y0)t

represent the line passing through the points (x0, y0)

and (x1, y1).
(b) Show that if 0 ≤ t ≤ 1, then the equations in part (a)

represent the line segment joining (x0, y0) and (x1, y1),
oriented in the direction from (x0, y0) to (x1, y1).

(c) Use the result in part (b) to find parametric equations for
the line segment joining the points (1,−2) and (2, 4),
oriented in the direction from (1,−2) to (2, 4).

(d) Use the result in part (b) to find parametric equations for
the line segment in part (c), but oriented in the direction
from (2, 4) to (1,−2).

24. Use the result in Exercise 23 to find
(a) parametric equations for the line segment joining the

points (−3,−4) and (−5, 1), oriented from (−3,−4)
to (−5, 1)

(b) parametric equations for the line segment traced from
(0, b) to (a, 0), oriented from (0, b) to (a, 0).

25. (a) Suppose that the line segment from the point P(x0, y0)

to Q(x1, y1) is represented parametrically by

x = x0 + (x1 − x0)t,

y = y0 + (y1 − y0)t
(0 ≤ t ≤ 1)

and that R(x, y) is the point on the line segment corre-
sponding to a specified value of t (see the accompanying
figure). Show that t = r/q, where r is the distance from
P to R and q is the distance from P to Q.

(b) What value of t produces the midpoint between points
P and Q?

(c) What value of t produces the point that is three-fourths
of the way from P to Q?

t = 0

t

t = 1

P(x0, y0)

Q(x1, y1)

R(x, y)

Figure Ex-25

26. Find parametric equations for the line segment joining
P(2,−1) and Q(3, 1), and use the result in Exercise 25
to find
(a) the midpoint between P and Q
(b) the point that is one-fourth of the way from P to Q
(c) the point that is three-fourths of the way from P to Q.

F O C U S O N CO N C E PTS

27. In each part, match the parametric equation with one of
the curves labeled (I)–(VI), and explain your reasoning.
(a) x = √

t , y = sin 3t (b) x = 2 cos t , y = 3 sin t
(c) x = t cos t , y = t sin t

(d) x = 3t

1 + t3
, y = 3t2

1 + t3

(e) x = t3

1 + t2
, y = 2t2

1 + t2

(f ) x = 1
2 cos t , y = sin 2t

x

y

V

III

IV

x

y

VI

x

y

x

y

x

y

III

x

y

Figure Ex-27

28. Use a graphing utility to generate the curves in Exercise
27, and in each case identify the orientation.

29. Explain why the parametric curve

x = t2, y = t4 (−1 ≤ t ≤ 1)

does not have a definite orientation.

30. (a) In parts (a) and (b) of Exercise 23 we obtained para-
metric equations for a line segment in which the pa-
rameter varied from t = 0 to t = 1. Sometimes it is
desirable to have parametric equations for a line seg-
ment in which the parameter varies over some other
interval, say t0 ≤ t ≤ t1. Use the ideas in Exercise 23
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to show that the line segment joining the points (x0, y0)

and (x1, y1) can be represented parametrically as

x = x0 + (x1 − x0)
t − t0

t1 − t0
,

y = y0 + (y1 − y0)
t − t0

t1 − t0

(t0 ≤ t ≤ t1)

(b) Which way is the line segment oriented?
(c) Find parametric equations for the line segment traced

from (3,−1) to (1, 4) as t varies from 1 to 2, and check
your result with a graphing utility.

31. (a) By eliminating the parameter, show that if a and c are
not both zero, then the graph of the parametric equations

x = at + b, y = ct + d (t0 ≤ t ≤ t1)

is a line segment.
(b) Sketch the parametric curve

x = 2t − 1, y = t + 1 (1 ≤ t ≤ 2)

and indicate its orientation.

32. (a) What can you say about the line in Exercise 31 if a or
c (but not both) is zero?

(b) What do the equations represent if a and c are both zero?

33–36 Use a graphing utility and parametric equations to
display the graphs of f and f −1 on the same screen.

33. f(x) = x3 + 0.2x − 1, −1 ≤ x ≤ 2

34. f(x) = √
x2 + 2 + x, −5 ≤ x ≤ 5

35. f(x) = cos(cos 0.5x), 0 ≤ x ≤ 3

36. f(x) = x + sin x, 0 ≤ x ≤ 6

37. Parametric curves can be defined piecewise by using differ-
ent formulas for different values of the parameter. Sketch
the curve that is represented piecewise by the parametric
equations

x = 2t, y = 4t2
(
0 ≤ t ≤ 1

2

)
x = 2 − 2t, y = 2t

(
1
2 ≤ t ≤ 1

)
38. Find parametric equations for the rectangle in the accom-

panying figure, assuming that the rectangle is traced coun-
terclockwise as t varies from 0 to 1, starting at

(
1
2 ,

1
2

)
when

t = 0. [Hint: Represent the rectangle piecewise, letting t

vary from 0 to 1
4 for the first edge, from 1

4 to 1
2 for the second

edge, and so forth.]

1
2

1
2(  ,    )1

2
1
2(–  ,    )

(  , –   )1
2

1
2(–  ,  –  )1

2
1
2

x

y

Figure Ex-38

39. (a) Find parametric equations for the ellipse that is centered
at the origin and has intercepts (4, 0), (−4, 0), (0, 3),
and (0,−3).

(b) Find parametric equations for the ellipse that results by
translating the ellipse in part (a) so that its center is at
(−1, 2).

(c) Confirm your results in parts (a) and (b) using a graph-
ing utility.

40. We will show later in the text that if a projectile is fired from
ground level with an initial speed of v0 meters per second
at an angle α with the horizontal, and if air resistance is
neglected, then its position after t seconds, relative to the
coordinate system in the accompanying figure is

x = (v0 cosα)t, y = (v0 sin α)t − 1
2gt

2

where g ≈ 9.8 m/s2.
(a) By eliminating the parameter, show that the trajectory

is a parabola.
(b) Sketch the trajectory if α = 30◦ and v0 = 1000 m/s.

x

y

a

Figure Ex-40

41. A shell is fired from a cannon at an angle of α = 45◦ with
an initial speed of v0 = 800 m/s.
(a) Find parametric equations for the shell’s trajectory rel-

ative to the coordinate system in Figure Ex-40.
(b) How high does the shell rise?
(c) How far does the shell travel horizontally?

42. A robot arm, designed to buff flat surfaces on an automo-
bile, consists of two attached rods, one that moves back and
forth horizontally, and a second, with the buffing pad at the
end, that moves up and down (see Figure Ex-42 on the next
page).
(a) Suppose that the horizontal arm of the robot moves

so that the x-coordinate of the buffer’s center at time
t is x = 25 sin πt and the vertical arm moves so that
the y-coordinate of the buffer’s center at time t is
y = 12.5 sin πt . Graph the trajectory of the center of
the buffing pad.

(b) Suppose that the x- and y-coordinates in part (a) are
x = 25 sin πat and y = 12.5 sin πbt , where the con-
stants a and b can be controlled by programming the
robot arm. Graph the trajectory of the center of the pad
if a = 4 and b = 5.

(c) Investigate the trajectories that result in part (b) for var-
ious choices of a and b.

43. Describe the family of curves described by the parametric
equations

x = a cos t + h, y = b sin t + k (0 ≤ t ≤ 2π)
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if
(a) h and k are fixed but a and b can vary

x

y Buffing
pad

Robot
arms

Figure Ex-42

(b) a and b are fixed but h and k can vary
(c) a = 1 and b = 1, but h and k vary so that h = k + 1.

44. A hypocycloid is a curve traced by a point P on the cir-
cumference of a circle that rolls inside a larger fixed circle.
Suppose that the fixed circle has radius a, the rolling circle
has radius b, and the fixed circle is centered at the origin.
Let φ be the angle shown in the accompanying figure, and
assume that the point P is at (a, 0) when φ = 0. Show
that the hypocycloid generated is given by the parametric
equations

x = (a − b) cosφ + b cos

(
a − b

b
φ

)

y = (a − b) sin φ − b sin

(
a − b

b
φ

)

45. If b = 1
4a in Exercise 44, then the resulting curve is called

a four-cusped hypocycloid.
(a) Sketch this curve.

(a, 0)

f x

y

Figure Ex-44

(b) Show that the curve is given by the parametric equations

x = a cos3 φ, y = a sin3 φ

(c) Show that the curve is given by the equation

x2/3 + y2/3 = a2/3

in rectangular coordinates.

46. (a) Use a graphing utility to study how the curves in the
family

x = 2a cos2 t, y = 2a cos t sin t (−2π< t < 2π)

change as a varies from 0 to 5.
(b) Confirm your conclusion algebraically.
(c) Write a brief paragraph that describes your findings.

✔QUICK CHECK ANSWERS 1.8

1. x = 3 + 2 cos t , y = 5 + 2 sin t (0 ≤ t ≤ 2π) 2. x = a cos t , y = b sin t (0 ≤ t ≤ 2π) 3. 3
4 ; 2.75

4. x = f(1 − t), y = g(1 − t) 5. f(t)

CHAPTER REVIEW EXERCISES Graphing Utility

1. Sketch the graph of the function

f(x) =




−1, x ≤ −5√
25 − x2, −5 < x < 5

x − 5, x ≥ 5

2. Use the graphs of the functionsf and g in the accompanying
figure to solve the following problems.
(a) Find the values of f (−2) and g(3).
(b) For what values of x is f(x) = g(x)?
(c) For what values of x is f(x) < 2?
(d) What are the domain and range of f ?
(e) What are the domain and range of g?
(f ) Find the zeros of f and g.

-5 5

-5

5

x

y

g

f

Figure Ex-2

3. A glass filled with water that has a temperature of 40◦F
is placed in a room in which the temperature is a constant


