

НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Цифровая обработка сигналов

В.Н. Васюков

Быстрое преобразование Фурье

Рассмотрим ДПФ длины $N = 2^r$, где r — целое число:

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}, \quad k = \overline{0, N-1}.$$

Общепринято обозначение $W_N = e^{-j\frac{2\pi}{N}}$.

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = \overline{0, N-1}.$$

 W_N^{kn} при фиксированном k можно рассматривать, как последовательность $\tilde{w}[n] = W_N^{kn}$, $n = \overline{-\infty, \infty}$, периодичную с периодом N/k, при фиксированном nможно рассматривать $W_N^{\ \ kn}$, как последовательность $\tilde{w}[k] = W_N^{kn}, \quad k = \overline{-\infty, \infty}, \ N / n$ -периодичную по k.

Разобьем выражение на слагаемые с четными и нечетными номерами

$$Y[k] = \sum_{k=0}^{N-2} y[n]W_{-k}^{kn} + \sum_{k=0}^{N-1} y[n]W_{$$

$$X[k] = \sum_{n=0}^{N-2} x[n]W_N^{kn} + \sum_{n=1}^{N-1} x[n]W_N^{kn}, \ k = \overline{0, n}$$

Введем $\nu = 0, \frac{N}{2} - 1$, так, что $n = 2\nu$ для четных n, а

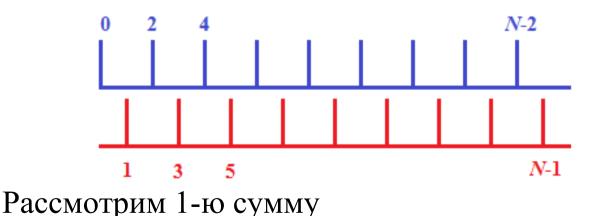
для нечетных $n = 2\nu + 1$. Тогда можно записать

 $X[k] = \sum_{n=0}^{N} x_{10}[\nu]W_N^{2\nu k} + \sum_{n=0}^{N} x_{11}[\nu]W_N^{(2\nu+1)k},$

(нечётные)

(чётные)

где $x_{10}[\nu] = x[2\nu] = x[n]$ — последовательность отсчётов из x[n] с четными номерами n, а $x_{11}[\nu] = x[2\nu+1] = x[n]$ — последовательность отсчётов с нечетными номерами. Таким образом, x[n] представляет собой две nodnocnedoвamenbhocmu, как бы «вдвинутые» друг в друга.



$$=\sum_{\nu=0}^{N}x_{10}[\nu]W_{N}^{\ \nu k}-\text{это }N/2\text{-точечное ДП}\Phi\;.$$

 $\sum_{v=0}^{N-1} x_{10}[v]W_N^{2vk} = \sum_{v=0}^{N-1} x_{10}[v]e^{-j\frac{2\pi}{N}2vk} = \sum_{v=0}^{N-1} x_{10}[v]e^{-j\frac{2\pi}{N}2vk}$

Аналогично 2-я сумма:

$$\sum_{v=0}^{N} x_{11}[v]W_N^{(2v+1)k} = W_N^k \sum_{v=0}^{N-1} x_{11}[v]e^{-j\frac{2\pi}{N}2vk} = W_N^k \sum_{v=0}^{N-1} x_{11}[v]e^{-j\frac{2\pi}{N}2vk} = W_N^k \sum_{v=0}^{N-1} x_{11}[v]W_N^{vk}.$$

Таким образом, ДПФ последовательности x[n] может быть выражено через ДПФ двух подпоследовательностей вдвое меньшей длины:

$$X[k] = X_{10}[k] + W_N^{\ k} X_{11}[k]$$
, если $k = 0, \frac{N}{2} - 1$.

Вспомним, что коэффициенты ДПФ образуют последовательность, периодичную с периодом, равным количеству отсчётов преобразуемой последовательности. Поэтому $X_{10}[k]$ и $X_{11}[k]$ имеют период $\frac{N}{2}$,

следовательно, вторая половина отсчётов может быть найдена с учётом этой периодичности при

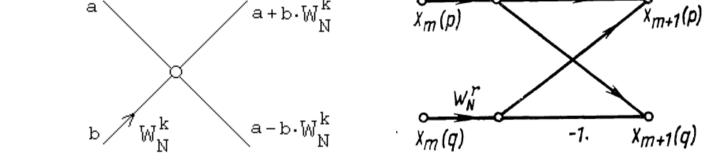
оыть наидена с учетом этои периодично
$$k = \frac{N}{2}, N-1$$

$$X[k + \frac{N}{2}] = X_{10}[k + \frac{N}{2}] + W_N^k W_N^{N/2} X_{11}[k + \frac{N}{2}] =$$

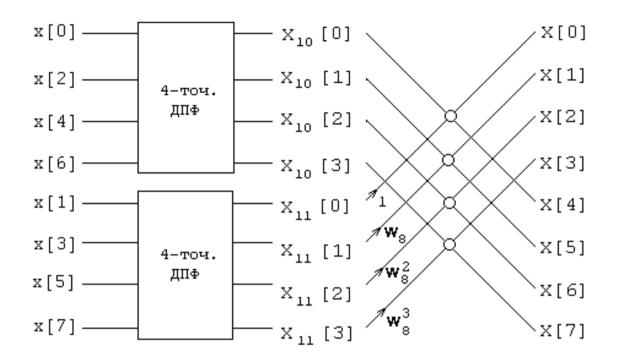
$$= X_{10}[k] - W_N^k X_{11}[k].$$

 $\label{eq:MTak} \text{MTak}, X[k] = \begin{cases} X_{10}[k] + W_N^{k} X_{11}[k], \, k = \overline{0,N/2-1}, \\ X_{10}[k] - W_N^{k} X_{11}[k], \, k = \overline{N/2,N-1} \end{cases}$

Введём схематическое обозначение операции («бабочка»)

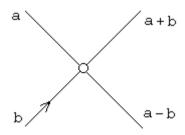


ДПФ последовательности x[n] может быть выражено через ДПФ четной и нечетной подпоследовательностей при всех значениях k.

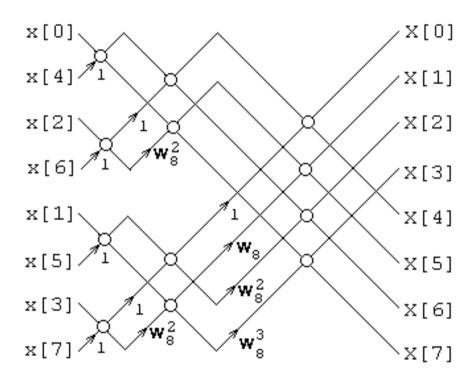


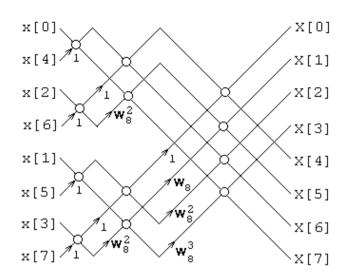
4-точечные ДПФ можно таким же способом свести x_{10} две

подпоследовательности — с четными x_{100} и нечетными x_{101} номерами, в последовательности x_{11} выделяются две подпоследовательности — с четными x_{110} и нечетными x_{111} номерами и т.д.). Двухточечное ДПФ изображается «бабочкой» наиболее простого вида



Граф-схема 8-точечного ДПФ





Каждый «слой» схемы требует выполнения примерно N/2 комплексных умножений. Если $N=2^r$, то «слоев» $r=\log_2 N$, поэтому всего требуется $\frac{N}{2}\log_2 N$ умножений и $N\log_2 N$ сложений (вычитаний).

Для вычисления ДПФ

$$X[k] = \sum_{n=0}^{N-1} x[n]e^{-j\frac{2\pi}{N}kn}, \quad k = \overline{0, N-1}$$

необходимо N^2 умножений. По алгоритму БПФ нужно $\frac{N}{2}\log_2 N$ умножений, т.е. в $\frac{2N}{\log_2 N}$ раз меньше.

Например, при $N = 64 = 2^6$ выигрыш составляет

$$\frac{2^{12}}{2^5 \cdot 6} = \frac{128}{6} \approx 21,3; при N = 1024 = 2^{10} выигрыш будет$$

уже
$$\frac{2^{20}}{2^9 \cdot 10} = \frac{2^{11}}{10} = 204,8.$$

выигрыш тем значительнее, чем больше N.

Рассмотренный алгоритм называется БПФ с прореживанием по времени. При этом отсчёты переставляются в опрделённом порядке — двоично-инверсном

Номер	Двоичное п редста влен ие	Двоичная инверсия	Двоично-инвер- сный номер
0	000	000	0
1	001	1 00	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	11 0	011	3
7	111	111	7

БПФ с прореживанием по частоте

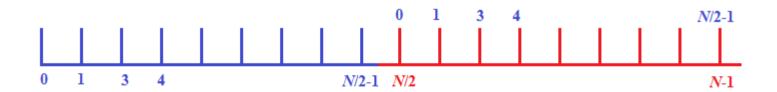
Как и раньше,

$$X[k] = \sum_{n=0}^{N-1} x[n] W_N^{kn}, \quad k = \overline{0, N-1}, W_N = e^{-j\frac{2\pi}{N}}$$

Разобьём последовательность на две части:

$$x_1[n] = x[n], n = 0, N/2-1,$$

$$x_2[n] = x[n+N/2], n = 0, N/2-1.$$



Тогда

$$X[k] = \sum_{n=0}^{N/2-1} x[n]W_N^{kn} + \sum_{n=N/2}^{N-1} x[n]W_N^{kn}, \quad k = \overline{0, N-1}$$

ИЛИ

$$X[k] = \sum_{n=0}^{N/2-1} x_1[n] W_N^{kn} + \sum_{n=0}^{N/2-1} x_2[n] W_N^{k(n+N/2)} = \sum_{n=0}^{N/2-1} x_1[n] W_N^{kn} + W_N^{kN/2} \sum_{n=0}^{N/2-1} x_2[n] W_N^{kn}$$
 Учитывая $W_N^{kN/2} = e^{-j\frac{2\pi kN/2}{N}} = e^{-jk\pi} = (-1)^k$

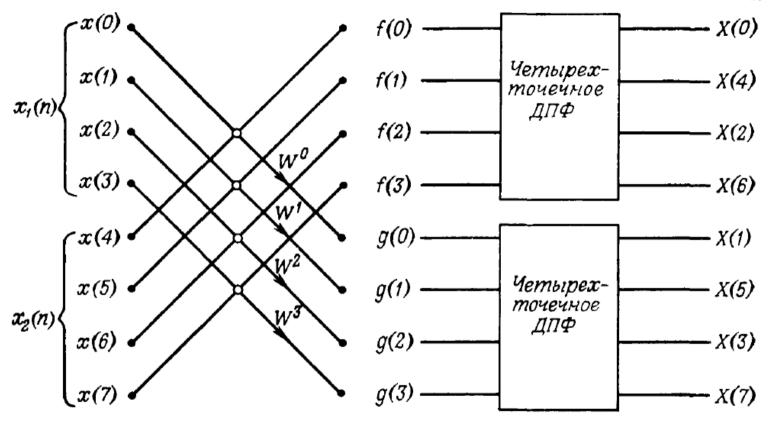
Получим
$$X[k] = \sum_{n=0}^{N/2-1} \left\{ x_1[n] + (-1)^k x_2[n] \right\} W_N^{kn}$$

Для чётных
$$X[2k] = \sum_{n=0}^{N/2-1} \{x_1[n] + x_2[n]\} W_N^{2kn} = \sum_{n=0}^{N/2-1} \{x_1[n] + x_2[n]\} W_{N/2}^{kn}$$
, для нечётных

n=0

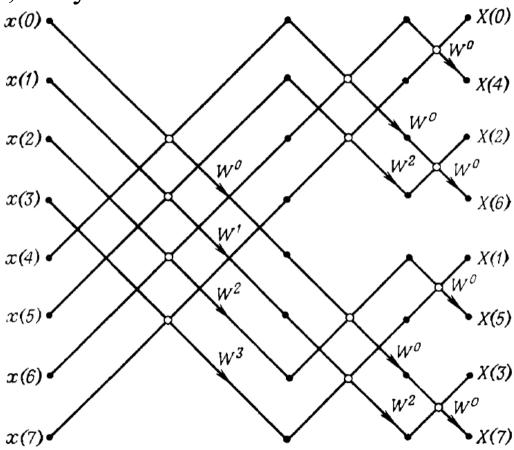
n=0

$$\begin{split} X[2k+1] &= \sum_{N/2-1}^{N/2-1} \left\{ x_1[n] - x_2[n] \right\} W_N^{(2k+1)n} = \\ &= \sum_{N/2-1}^{N/2-1} \left\{ x_1[n] - x_2[n] \right\} W_N^n W_{N/2}^{kn} \end{split}$$



Рабинер Л., Гоулд Б. Теория и применение ЦОС, 1979.

Повторяя, получим



Вычисление обратного БПФ с помощью прямого

Обратное ДПФ

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X[k] W_N^{-kn}.$$

Применим комплексное сопряжение

$$x[n] = \frac{1}{N} \left(\sum_{k=0}^{N-1} X^*[k] W_N^{kn} \right)^*$$

Таким образом, последовательность действий:

- 1) комплексное сопряжение частотных отсчётов
- 2) прямое БПФ
- 3) комплексное сопряжение полученных временных отсчётов
- 4) нормировка (деление на N)

Двумерное БПФ

$$X[k,l] = \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} x[n,m] e^{-j\frac{2\pi}{N}kn} e^{-j\frac{2\pi}{M}lm},$$

 $k = \overline{0, N-1}, l = \overline{0, M-1}; \ N^2 M^2$ умножений можно вычислить в два этапа

$$V[n,l] = \sum_{m=0}^{M-1} x[n,m]e^{-j\frac{2\pi}{M}lm}, \ n = \overline{0,N-1}, \ l = \overline{0,M-1}$$

$$N-1 \qquad \vdots 2\pi$$

$$X[k,l] = \sum_{n=0}^{N-1} V[n,l]e^{-j\frac{2\pi}{N}kn}, \ k = \overline{0,N-1}, \ l = \overline{0,M-1}$$

Количество умножений $M \cdot N \times N = MN^2$

$$V[n,l] = \sum_{m=0}^{M-1} x[n,m]e^{-j\frac{2\pi}{M}lm}, \ n = \overline{0,N-1}, \ l = \overline{0,M-1}$$

и ещё $M \cdot N \times M = M^2 N$

$$X[k,l] = \sum_{n=0}^{N-1} V[n,l]e^{-j\frac{2\pi}{N}kn}, \ k = \overline{0,N-1}, \ l = \overline{0,M-1}$$

Всего $MN^2 + M^2N = MN(M+N) < M^2N^2$

Это следствие разделимости ДПФ,

но если можно применить БПФ (если M и N – степени двойки), то можно получить большую экономию

с использованием БПФ $M \cdot \frac{N}{2} \log N$

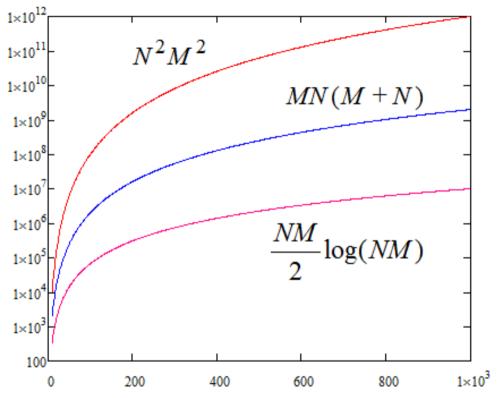
$$V[n,l] = \sum_{m=0}^{M-1} x[n,m]e^{-j\frac{2\pi}{M}lm}, \ n = \overline{0,N-1}, \ l = \overline{0,M-1}$$

и ещё $N \cdot \frac{M}{2} \log M$

$$X[k,l] = \sum_{n=0}^{N-1} V[n,l]e^{-j\frac{2\pi}{N}kn}, \ k = \overline{0,N-1}, \ l = \overline{0,M-1}$$

Всего
$$M \cdot \frac{N}{2} \log N + N \cdot \frac{M}{2} \log M = \frac{NM}{2} \log(NM)$$

n=()



По горизонтали N = M, по вертикали количество умножений