# Занятие 13. Тепловые машины. Цикл Карно. Второе начало термодинамики. Влажность воздуха

1. Для любой тепловой машины (ТМ) за один цикл

$$\Delta U = 0$$
,  $A = Q_1 - Q_2$  (1)

A — работа ТМ за цикл,  $\mathit{Q}_1$  — теплота, полученная ТМ от нагревателя,  $\mathit{Q}_2$  — теплота, отданная ТМ холодильнику

2. Коэффициент полезного действия ТМ есть

$$\eta = \frac{A}{Q_1} = \frac{Q_1 - Q_2}{Q_1} \ (2)$$

**3. Коэффициент полезного действия идеальной** ТМ, работающей по циклу Карно есть

$$\eta = \frac{T_1 - T_2}{T_1} \ (3)$$

где  $T_1, T_2$  - температуры нагревателя и холодильника, соответственно.

4. Коэффициентом преобразования холодильника (КПХ)

$$\eta_2 \equiv \frac{|Q_3|}{|A|}, \ \eta_2^* = \frac{T_2}{T_1 - T_2}$$
 (4)

5. Коэффициентом использования энергии (КИЭ)

$$\eta_3 = \frac{|Q_3|}{|A|}, \ \eta_3^* = \frac{T_2}{T_1 - T_2}$$
 (5)

6. Коэффициент передачи теплоты (КПТ)

$$\eta_4 \equiv \frac{|Q_4|}{|A|}, \ \eta_4^* = \frac{T_1}{T_1 - T_2}$$
 (6)

7. Энтропия

$$dS = \frac{\delta Q}{T}, \ \Delta S = \int_{1}^{2} \frac{\delta Q}{T} \ (7)$$
$$S = k \ln(\Gamma_{0}) \ (8)$$

- **8. Насыщенный пар** пар, находящийся в термодинамическом равновесии с жидкостью. Давление и плотность насыщенного пара зависит только от температуры
- 9. Относительная влажность воздуха есть

$$\alpha = \frac{p}{p_s} = \frac{\rho}{\rho_s} \tag{4}$$

где  $p, \rho$  давление и плотность водяного пара,  $p_s, \rho_s$  давление и плотность насыщенного водяного пара при той же температуре. При температуре 100 градусов давление насыщенного пара равно 1 атм.

## Примеры решения задач

**1.** Некоторое количество идеального газа совершает цикл, состоящий из двух изобар 12 и 34 при давлениях  $p_1$  и  $p_2$  и двух изотерм при температурах  $T_1$  и  $T_2$ . Докажите, что КПД этого цикла меньше чем у цикла Карно.

#### Решение



Каждая вершина цикла характеризуется макросостоянием  $p_j$ ,  $V_j$  и  $T_j$ . Вершина: 1 -  $p_1,T_2,V_1$ ; 2 -  $p_1,T_1,V_2$ ; 3 -  $p_2,T_2,V_3$ ; 4 -  $p_2,T_2,V_4$ . КПД тепловой машины  $\eta = A/Q_1$ , полная работа за цикл  $A = A_{12} + A_{23} + A_{34} + A_{41}$ , количество теплота переданное нагревателем рабочему телу (газ в цилиндре с подвижным поршнем) за цикл

рабочему телу (газ в цилиндре с подвижным поршнем) за цикл  $Q_1=Q_{12}+Q_{23}$  (на стадии сжатия газа теплота передается холодильнику). Работа на каждом участке цикла  $A_{12}=p_1(V_2-V_1)=vR(T_1-T_2)$  ,  $A_{23}=vRT_1\ln(p_1/p_2)$  ,  $A_{34}=p_2(V_4-V_3)=-vR(T_1-T_2)$  ,  $A_{41}=-vRT_2\ln(p_1/p_2)$  . Итак, работа за цикл  $A=vR(T_1-T_2)\ln(p_1/p_2)$  . Найдем таким же образом  $Q_1$  :  $Q_{12}=vC_p(T_1-T_2)$  и  $Q_{23}=A_{23}=vRT_1\ln(p_1/p_2)$  . КПД тепловой машины найдем из полученных заготовок  $\eta=vR(T_1-T_2)\ln(p_1/p_2)/(vC_p(T_1-T_2)+vRT_1\ln(p_1/p_2))$  или  $\eta=(T_1-T_2)/(T_1+vC_p(T_1-T_2)/R\ln(p_1/p_2))$  . Второе слагаемое больше нуля, следовательно, КПД меньше КПД машины работающей по циклу Карно

**Ответ:**  $\eta^* > \eta$ .

 $\eta^* = (T_1 + T_2) / T_1$ , что и требовалось доказать.

**2.** Холодильная машина работает по обратному циклу Карно в интервале температур от 250 до 310 К. Рабочее тело - азот, масса которого 0.2 кг. Найти количество теплоты  $Q_3$ , отбираемого от охлаждаемого тела, работу внешних сил  $A^*$  за цикл и КПХ машины.

#### Решение

Обратный цикл Карно состоит из: 12 - изотермического расширения при температуре  $T_2$  в тепловом контакте с охлаждаемым телом, при этом рабочим телом производится работа  $A_{12}$  и отбирается  $Q_3$  теплоты от холодильника; 23 - адиабатического сжатия, при этом температура рабочего тела возрастает до  $T_1$ , над рабочим телом совершается работа  $A_{23}$ ; 34 - изотермического сжатия при температуре  $T_1$ , при этом в теплообменнике выделяется  $Q_4$  теплоты и передается в термостат (комнатный воздух); 41 - адиабатического расширения, при этом температура понижается до  $T_2$ , рабочее тело совершает работу  $A_{41}$ . Выпишем формулы, описывающие этот цикл:

12: 
$$A_{12} = vRT_2 \ln(V_2 / V_1)$$
,  $Q_3 = A_{12}$  ( $\Delta U_{12} = 0$ )

23: 
$$Q_{23} = 0$$
,  $A_{23} = -\Delta U_{23}$ ,  $A_{23} = -\nu C_V (T_1 - T_2)$ 

34: 
$$A_{34} = vRT_1 \ln(V_4 / V_3)$$
,  $Q_4 = A_{34} (\Delta U_{34} = 0)$ 

41: 
$$Q_{41} = 0$$
,  $A_{41} = -\Delta U_{41}$ ,  $A_{41} = -\nu C_V (T_2 - T_1)$ 

Полная работа за цикл:  $A=A_{12}+A_{23}+A_{34}+A_{41}$ ,  $A=A_{12}+A_{34}$ ,  $A_{23}+A_{41}=0$ ,  $A=\nu RT_2\ln(V_2/V_1)+\nu RT_1\ln(V_4/V_3)$ 

Для цикла Карно известно, что  $V_2/V_1=V_3/V_4$ , тогда работа  $A=\nu R(T_2-T_1)\ln(V_2/V_1)$ . Найдем отношение объемов из условия задачи  $V_2/V_4=n=5$ , а  $V_4$  связан с  $V_1$  уравнением Пуассона  $TV^{\gamma-1}=\mathrm{const}$ , тогда  $T_1V_4^{\gamma-1}=T_2V_1^{\gamma-1}$ ,  $V_1=V_4(T_1/T_2)^{1/(\gamma-1)}$ ,

Тогда  $V_2/V_1=nV_4/(V_4(T_1/T_2)^{1/(\gamma-1)})=n(T_2/T_1)^{1/(\gamma-1)}$ . Итак, полная работа за цикл равна  $A=vR(T_2-T_1)\ln(n(T_2/T_1)^{1/(\gamma-1)})=-3817$  Дж, тогда работа внешних сил (компрессора) равна  $A^*=-A=3.8$  кДж, количество теплоты отнятой у охлаждаемого тела равна  $Q_3=vRT_2\ln(n(T_2/T_1)^{1/(\gamma-1)})=1.59\times10^4$  Дж, холодильный коэффициент  $\eta_2=Q_3/|A|=4.167$ .

**3.** Смешали воду массой 5 кг при температуре 280 К с водой массой 8 кг при температуре 350 К. Найти: 1) температуру смеси; 2) изменении энтропии, происходящее при смешивании. Теплоемкость воды  $c=4190\,\mathrm{Дж/krK}$ .

#### Решение

1) Известный писатель Жюль Верн в романе «80 дней вокруг света» поставил задачу перед Паспарту, пришедшему наниматься на работу – приготовить воду строго определенной температуры. Паспарту эту задачку решил, а Вам слабо?

Решим подобную задачку. Количество теплоты, которым обмениваются эти части  $\Delta Q_1 = cm_1(T-T_1)$  и  $\Delta Q_2 = cm_2(T_2-T)$  численно равны  $\Delta Q_1 = \Delta Q_2$ , т.е.  $cm_1(T-T_1) = cm_2(T_2-T)$ , тогда  $m_2(T_2-T) = m_2(T_2-T)$ ,  $T = (m_1T_1+m_2T_2)/m$ , где  $m=m_1+m_2$ . Подставляем численные значения в расчетную формулу, получаем T=4200/13=323 К. Так, Паспарту должен иметь две части воды, одна часть воды при температуре меньшей требуемой, а вторая – большей температуры, чем требуемая.

2) Найдем изменение энтропии при смешивании двух частей воды, для этого используем (5) и учитывая, что изменение энтропии при смешивании равно сумме изменения энтропий смешиваемых частей  $\Delta S = \Delta S_1 + \Delta S_2$ , тогда

$$\Delta S_{1} = \int_{1}^{2} \frac{\delta Q}{T} = c m_{1} \int_{T_{1}}^{T} \frac{dT}{T} = c m_{1} \ln \frac{T}{T_{1}}, \quad \Delta S_{2} = \int_{1}^{2} \frac{\delta Q}{T} = c m_{2} \int_{T_{2}}^{T} \frac{dT}{T} = c m_{2} \ln \frac{T}{T_{2}}$$

$$\Delta S = c m_{1} \ln \frac{T}{T_{1}} + c m_{2} \ln \frac{T}{T_{2}}, \quad \Delta S = 302 \text{ Дж/K}$$

**Ответ:** 1) T = 323 K; 2)  $\Delta S = 302$  Дж/К.

## Самостоятельная аудиторная работа.

- 1. Паровая машина мощности  $14.7~{\rm кBT}$  потребляет за один час работы  $8.1~{\rm к}$ г угля с удельной теплотой сгорания  $3.3{\times}10^7~{\rm Дж/к}$ г. Температура котла  $473~{\rm K}$ , холодильника  $331~{\rm K}$ . Найти КПД этой машины и сравнить его с КПД тепловой машины работающей по циклу Карно
- **2.** Идеальная тепловая машина передает холодильнику 80% теплоты, полученной от нагревателя. Найдите температуру нагревателя, если температура холодильника 248 К.
- **3.** Домашний холодильник потребляет из электрической сети 200 Вт. Температура окружающей среды (воздух в комнате) равно 293 К. Определите температуру в камере холодильника, если количество отведенного тепла в 5 раз превышает количество

затраченной энергии. Холодильник работает по циклу Карно (244 К).

- **4.** Идеальный газ, расширяясь изотермически при температуре 400К, совершает работу 800 Дж. Что происходит при этом с энтропией?
- **5.** Для повышения относительной влажности на 20 % при температуре  $20^{\circ}$  С в комнате понадобилось испарить  $180 \ \Gamma$  воды. Найдите плотность насыщенных паров при этой температуре.
- **6.** Масса водорода равная  $6.6\ \Gamma$  изобарически расширяется от V до 2V. Найти изменение энтропии при этом расширении.
- **7.** Для обогрева дома используется тепловой насос с КПТ=12, потребляющий мощность 100 Вт. Сколько теплоты отбирается от холодного наружного воздуха тепловым насо-сом за час его работы.

#### Задание на дом

- 1. КПД идеальной тепловой машины равен 0,4. На сколько уменьшится этот коэффициент, если температуру нагревателя увеличить в 1,2 раза, а холодильника в 1,5 раза?
- 2. КПД тепловой машины, работающей по циклу Карно, равен 80%. Во сколько раз абсолютная температура нагревателя больше абсолютной температуры холодильника?
- 3. В одном сосуде объемом 10 л находится воздух с относительной влажностью 40%, а другом сосуде объемом 30 л воздух при той же температуре, но при относительной влажности 60%. Сосуды соединены тонкой трубкой с краном. Какая относительная влажность установится после открытия крана?
- 4. Масса водорода равная  $6.6\ \Gamma$  изобарически расширяется от V до 2V. Найти изменение энтропии при этом расширении.

## Приложение

### Размерности физических величин

 $\dim(p) = MLT^{-2}$   $\dim(v) = LT^{-1}$   $\dim(E) = L^2MT^{-2}$   $\dim(V) = L^3$ 

## Литература

- [1]. Баранов А. В. Физика. Теория, задачи, тесты: учеб. пособие / Б. Б. Горлов, А. В. Баранов, Г. Е. Невская Г.Е. —: Издательство НГТУ, 2006. 280 с.
- [2]. Трофимова Т. И. Курс физики: учеб. пособие для вузов / Т. И. Трофимова. 11-еизд., стер. М.: Издательский центр «Академия», 2006. 560 с.
- [3]. Трофимова Т. И. Физика в таблицах и формулах Учеб. пособие для студентов вузов / Т. И. Трофимова. М.: Дрофа, 2002. 432 с.