План работы

Виды и	содержание учебных зап	нятий				
Неделя	Лекции	Кол.	Практические	Кол.	Номер и	Кол.
		час.	(семинарские	час.	название	час.
			занятия)		лабораторных	
					работ	
6	Описание движения в	2	Практикум 6. Задачник Штыгашева	2		
	неинерциальных		Закон сохранения момента импульса			
	системах отчета. Силы					
	инерции. Сила		Трофимова Т. И. Курс физики: учеб. пособие для			
	Кариолиса.		вузов / Т.И. Трофимова. –11-е изд. – М.:			
			Издательский центр Академия, 2006. С.19-21, 23-33,			
			38-40.			
7	Принцип	2	Практикум 7. Задачник Штыгашева	2	Лабораторная	4
	относительности в		Силы инерции. Сила Кориолиса. Движение тел		работа №3	
	механике. Принцип		переменной массы, реактивная сила		(Маятник	
	относительности				обербека)	
	Галилея.					
	Преобразования					
	Галилея. Инварианты					
	преобразования.					
	Основы					
	релятивистской					
	механики. Принцип					
	относительности в					
	релятивистской					
	механике.					
	Преобразование					
	Лоренца для					
	координат и времени и					
	их следствия.					

8	Релятивистский	4	задачник Стрельцова: занятие 8 (1,2,3) и занятие	2	
	импульс. Уравнение		9 (1,2,3)		
	движения		Задачник доступен по ссылке:		
	релятивистской		https://ciu.nstu.ru/kaf/of/a/file_get/297006?nomenu=1		
	частицы.		Релятивистская кинематика и динамика.		
	Инвариантность		Преобразования Лоренца		
	уравнений движения				
	относительно				
	преобразований				
	Лоренца. Полная				
	энергия частицы.				
	Четырехмерный				
	вектор энергии –				
	импульса частицы.				
	Закон сохранения				
	четырехмерного				
	вектора энергии –				
	импульса.				
	Макроскопическая				
	система. Микро- и				
	макроскопические				
	параметры системы;				
	статистический и				
	термодинамический				
	методы описания				
	свойств				
	макросистемы.				
	Состояния и				
	процессы.				

9	Кинетическая теория	2	Практикум 10. Практикум 11. Задачник	4	
	идеальных газов.		Штыгашева		
	Смеси, закон		Уравнение состояния идеального газа.		
	Дальтона. Давление и		Распределение энергии по степеням свободы.		
	температура		Внутренняя энергия газа		
	идеального газа.				
	Основное уравнение				
	молекулярно-				
	кинетической теории				
	газов. Опытные				
	законы идеального				
	газа. Число степеней				
	свободы молекулы.				
	Распределение				
	энергии по степеням				
	свободы. Внутренняя				
	энергия газа				
	многоатомных				
	молекул.				
10	Распределение	4	Практикум 12. Распределения Максвелла,	2	
	Максвелла молекул по		Больцмана	-	
	скоростям.		Bondinana		
	Среднеквадратичная,				
	среднеарифметическая				
	и наиболее вероятная				
	скорости молекул.				
	Распределение				
	Больцмана;				
	барометрическая				
	формула.				
	Распределение				
	Максвелла-Больцмана.				
	тутаковолла-вольциана.				<u> </u>

11	Первое начало	2	Практикум 13. Явления переноса	2	Лабораторная	4
	термодинамики.				работа № 6	
	Работа газа при				(Опыт	
	изменении его объема.				«Перрена»)	
	Теплота.					
	Теплоемкость.					
	Изопроцессы в рамках					
	первого начала					
	термодинамики.					
	Адиабатический					
	процесс. Уравнения					
	адиабаты.					

12	Второе начало	4	Практикум 14. Практикум 15. Задачник	2	
	термодинамики.		Штыгашева		
	Энтропия, принцип		Первое начало термодинамики. Теплоемкость.		
	возрастания энтропии.		Работа при изопроцессах.		
	Энтропия и		Циклы. Цикл Карно. Энтропия. Закон Кулона.		
	вероятность; формула				
	Больцмана.				
	Флуктуации;				
	статистический смысл		DED 1/2 (70 10 HOTOTH)		
	второго начала		РГР Кр3 (до 18 недели)		
	термодинамики.				
	Третье начало				
	термодинамики.				
	Тепловые двигатели и				
	холодильные машины.				
	КПД. Цикл Карно.				
	Кинетические				
	явления. Длина				
	свободного пробега.				
	Диффузия,				
	теплопроводность,				
	вязкость. Явления				
	переноса в природе и				
	технике.				

13	Предмет классической	2	Практикум 15. Практикум 16. Задачник	4	
	электродинамики.		Штыгашева		
	Электрический заряд		Циклы. Цикл Карно. Энтропия. Закон Кулона.		
	и его дискретность.		Напряженность.		
	Идея близкодействия.		-		
	Границы				
	применимости				
	классической				
	электродинамики.				
	Электростатика.				
	Заряды и их свойства.				
	Закон Кулона.				
	Напряжённость				
	электрического поля				
	Поле точечного				
	заряда. Принцип				
	суперпозиции полей.				
	Электрическое поле				
	диполя.				
14	Поток вектора	4	Практикум 17. Задачник Штыгашева		
	Теорема Гаусса в		Потенциал электростатического поля. Теорема		
	интегральной и		Гаусса. Применение теоремы Гаусса для расчета		
	дифференциальной		поля.		
	формах и её				
	применение к расчету				
	полей.				

15	Работа по	2	Практикум 18. Задачник Штыгашева		
	перемещению заряда в		Диэлектрики в электрическом поле		
	поле.				
	Потенциальность				
	электростатического				
	поля. Теорема о				
	циркуляции вектора				
	напряженности.				
	Потенциал				
	электрического поля,				
	разность потенциалов,				
	эквипотенциальные				
	поверхности.				
	Напряженность как				
	градиент потенциала.				

16	Диэлектрики в	4	Практикум 19. Задачник Штыгашева		
	электрическом поле.		Проводники в электрическом поле. Электроемкость		
	Поляризация		проводников. Конденсаторы. Энергия		
	диэлектриков.		электрического поля		
	Поведение диполя во				
	внешнем				
	электрическом поле.				
	Вектор поляризации.				
	Вектор				
	электрического				
	смещения. Теорема				
	Гаусса для вектора				
	электрического				
	смещения. Основные				
	уравнения				
	электростатики				
	диэлектриков.				
	Граничные условия на				
	поверхности раздела				
	"диэлектрик-				
	диэлектрик".				

17	Проводники в	2	Практикум 20. Задачник Штыгашева		
	электростатическом		Постоянный электрический ток. Законы Ома.		
	поле. Поверхностные		-		
	заряды.				
	Электрическое поле в				
	объеме проводника.				
	Электрическое поле у				
	поверхности				
	проводника.				
	Коэффициенты				
	емкости и взаимной				
	емкости проводников.				
	Конденсаторы.				
	Емкость				
	конденсатора. Энергия				
	взаимодействия				
	электрических				
	зарядов. Энергия				
	заряженного				
	конденсатора.				
	Плотность энергии				
	электростатического				
	поля.				

18	Постоянный	4	Практикум 21. Задачник Штыгашева		
	электрический ток.		Закон Джоуля – Ленца. Правила Кирхгофа		
	Сила и плотность				
	тока. Закон Ома в				
	интегральной и				
	дифференциальной				
	форме. Работа и				
	мощность тока. Закон				
	Джоуля - Ленца.				
	Сторонние силы. ЭДС.				
	Закон Ома для				
	неоднородного				
	участка цепи.				
	Напряжение и				
	разность потенциалов.				
	Правила Кирхгофа				

Канал на Discord: https://discord.gg/wg4Fu2 (действует 1 день): Буду отвечать на вопросы по лекциям на вебинарах в Dispace. Курсы в DiSpace:

- 1. Mexaникa: https://dispace.edu.nstu.ru/didesk/course/show/6598
- 2. Молекулярная физика: https://dispace.edu.nstu.ru/didesk/course/show/8137
- 3. Молекулярная физика: https://dispace.edu.nstu.ru/didesk/course/show/5668

Учебники:

- 1. Савельев И. В. Курс общей физики. [В 3 т.]. Т. 1 : [учебное пособие для вузов по техническим (550000) и технологическим (650000) направлениям] / И. В. Савельев. СПб. [и др.], 2011. 432 с.
- 2. Савельев И. В. Курс общей физики. [В 3 т.]. Т. 2 : [учебное пособие для вузов по техническим (550000) и технологическим (650000) направлениям] / И. В. Савельев. СПб. [и др.], 2011. 496 с.

- 3. Трофимова Т. И. Курс физики: учеб. пособие для вузов / Таисия Ивановна Трофимо-ва. 11-е изд., стер. М.: Издательский центр «Академия», 2006.
- 4. Вопросы для самоконтроля знаний по физике: методическое пособие. Часть 1 / Новосиб. гос. техн. ун-т ; [сост.: А. В. Баранов, В.В. Давыдков, В.В. Христофоров]. Новосибирск, 2014. 24 с.

Ссылка на лекции (пароль: 19735): https://ciu.nstu.ru/kaf/persons/50842/a/file_get/305091?nomenu=1

Виртуальные лабораторные работы: https://ciu.nstu.ru/kaf/of/virutalne_laboratorne_rabot

Кафедральные пособия: https://ciu.nstu.ru/kaf/of/uchebnometodicheskie_i_uchebne_posobiya_

Образцы решения задач по кр3: https://ciu.nstu.ru/kaf/persons/21255/a/file_get/305060?nomenu=1

Дополнительная теория:

- Лекция №10
- Лекция №9
- Лекция по физике №11
- Лекция по физике №12
- Лекция по физике №13
- Лекция по физике №14

Каталог физических демонстраций: https://mephi.ru/students/vl/physics/index.php#open1