УРОВНИ ПЕРЕДАЧИ

УРОВНИ ПЕРЕДАЧИ

Уровень - размер величины, выраженный в виде логарифма отношения значения этой величины к опорному значению.

Обязательное условие для вычисления уровня - принятие некоторой величины оцениваемого параметра **за эталон сравнения** ("нулевой уровень" или "уровень сравнения"). Единицы измерения уровней:

- □ децибелы (дБ) для десятичного логарифма;
- □ неперы (Нп) для натурального логарифма.

Вид уровня зависит от того, какое значение оцениваемого параметра сигнала выбрано в качестве эталона сравнения.

- □Виды уровней:
- □ относительный;
- □ абсолютный;
- □ измерительный.

ОТНОСИТЕЛЬНЫЙ УРОВЕНЬ

Относительный уровень мощности (p_{OM}) -

отношение, выраженное в децибелах, значения мощности сигнала в какой-либо точке линии передачи относительно значения мощности этого же сигнала, в точке линии, выбранной для сравнения.

точке линии, выбранной для сравнения. Относительные уровни передачи:
$$p_{\scriptscriptstyle oM} = 10\lg\frac{W_{\scriptscriptstyle x}}{W_{\scriptscriptstyle 0}}\partial E_{\scriptscriptstyle oM}$$
 по напряжению:
$$p_{\scriptscriptstyle oM} = 20\lg\frac{I_{\scriptscriptstyle x}}{I_{\scriptscriptstyle 0}}\partial E_{\scriptscriptstyle oM}$$
 по току:
$$p_{\scriptscriptstyle oM} = 20\lg\frac{I_{\scriptscriptstyle x}}{I_{\scriptscriptstyle 0}}\partial E_{\scriptscriptstyle oM}$$

$$p_{oH} = 20 \lg \frac{U_x}{U_0} \partial E_{oH}$$

$$v_0$$
 по напряжению:
$$p_{om} = 20 \lg \frac{I_x}{I_0} \partial E_{om}$$

Точка нулевого относительного уровня (ТНОУ) точка, относительно которой определяются уровни. Собственный уровень этой точки равен О.

ОТНОСИТЕЛЬНЫЙ УРОВЕНЬ

Взаимосвязь между численными значениями уровней передачи по мощности, напряжению и току

$$p_{\scriptscriptstyle OM} = p_{\scriptscriptstyle OH} - 10 \lg \frac{R_{\scriptscriptstyle X}}{R_{\scriptscriptstyle 0}}$$
 $p_{\scriptscriptstyle OM} = p_{\scriptscriptstyle OM} + 10 \lg \frac{R_{\scriptscriptstyle X}}{R_{\scriptscriptstyle 0}}$

Переход к абсолютным величинам мощности, напряжения или тока:

$$W_{x} = W_{0} \cdot 10^{0.1 p_{om}}$$

$$U_{x} = U_{0} \cdot 10^{0.05 \, p_{oh}}$$

$$I_{x} = I_{0} \cdot 10^{0.05 \, p_{om}}$$

АБСОЛЮТНЫЙ УРОВЕНЬ

Абсолютный уровень - уровень величины, вычисленный по отношению к **опорному** значению этой величины.

Опорная мощность – это активная мощность $W_0 = 1$ мВт; Сопротивление R = 600 Ом

$$U_0^2 = W_0 R = 0.6 B^2$$

Опорное напряжение – это эффективное напряжение $U_0 = 0,775\ B$ на сопротивлении $R = 600\ Om$

$$I_0 = W_0 / U_0 = 1,29 \text{ MA}$$

Опорный ток – это эффективное значение тока I_0 = 1,29 мA, протекающего через сопротивлении $R=600~\rm{OM}$. 5

АБСОЛЮТНЫЙ УРОВЕНЬ

Абсолютный уровень мощности ($дБ_{M}$) - отношение, выраженное в дБ, значения мощности сигнала в какой-либо точке линии передачи к опорному значению мощности этого же сигнала (1 мВт).

Абсолютный нулевой уровень мощности 0 дБ_м соответствует 1 мBт.

Абсолютный уровень напряжения (дБ_н**)** - $U_0 = 0,775~B$

Абсолютный уровень тока (дБ_т)- I_0 =1,29 мА

СВЯЗЬ МЕЖДУ ОТНОСИТЕЛЬНЫМ И АБСОЛЮТНЫМИ УРОВНЯМИ

Относительный уровень сигнала равен разности абсолютных уровней в данной точке линии (p_X) и в точке линии, выбранной для сравнения (p_0) :

$$p_{\scriptscriptstyle OM} = p_{\scriptscriptstyle MX} - p_{\scriptscriptstyle MO}$$
;

$$p_{oH}=p_{HX}-p_{H0}$$
;

$$p_{o\tau}=p_{\tau x}-p_{\tau 0}$$
.

1.Определить величины мощности и напряжения гармонического сигнала на сопротивлении R=150~Ом, если известно, что абсолютный уровень мощности сигнала на этом сопротивлении $p_{\text{м}}=-7~\text{дБ}_{\text{м}}$.

$$W_c = W_0 \cdot 10^{0.1 p_M} = 10^{-3} \cdot 10^{0.1(-7)} \approx 0.2 \text{ MBm}$$

$$W_c = U_c^2 / R$$

$$U_c = \sqrt{W_c R} = \sqrt{0.2 \cdot 10^{-3} \cdot 150} = 173 MB$$

2. Напряжение гармонического испытательного сигнала, измеренное в канале передачи на сопротивлении R = 75 Ом, составляет Uc = 1 мВ. Найти соответствующие этому напряжению абсолютные уровни по мощности и по напряжению (в дБ).

$$p_{H} = 20 \lg \frac{U_{c}}{U_{0}} = 20 \lg \frac{10^{-3}}{0.775} = -57.8 \ \partial E_{H}$$

$$W_c = U_c^2 / R = \frac{(10^{-3})^2}{75} = 1.33 \cdot 10^{-8} Bm$$

$$p_{M} = 101g \frac{W_{c}}{W_{0}} = 101g \frac{1.33 \cdot 10^{-8}}{10^{-3}} = -48.76 \ \partial E_{M}$$

ИЗМЕРИТЕЛЬНЫЙ УРОВЕНЬ

Измерительный уровень - абсолютный уровень в рассматриваемой точке при условии, что в начале линии включен нормальный генератор.

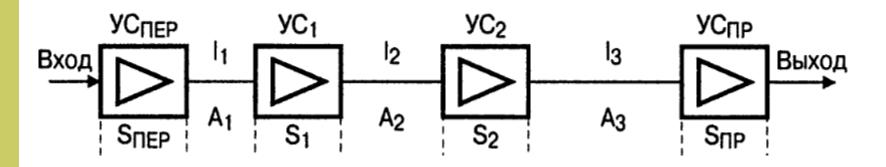
Нормальный генератор - генератор синусоидальных колебаний определенной частоты (обычно 800 Гц) с внутренним активным сопротивлением, равным 600 Ом и ЭДС, равной 1,55 В $(2*U_0=2*0.755 \text{ B})$.

Если входное сопротивление канала активно и равно 600 Ом, то при подключении нормального генератора на входе линии оказывается абсолютный нулевой уровень:

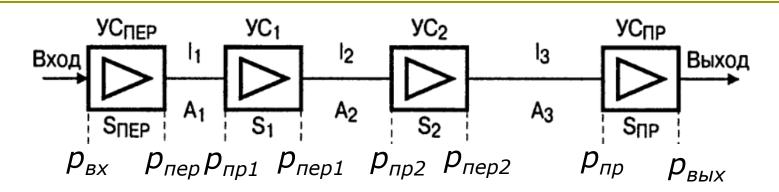
 $W_0 = 1 \text{ MBT}; \ U_0 = 0,775 \text{ B}; \ I_0 = 1,29 \text{ MA}.$

Уровни по мощности, отнесенные к точке с нулевым измерительным уровнем, обозначают через *дБм0*.

ЗАТУХАНИЕ И УСИЛЕНИЕ В КАНАЛЕ ПЕРЕДАЧИ


Усиление устройства - логарифм отношения значения величины, измеряемой на выходе устройства, к значению величины, измеряемой на входе этого устройства.

$$S=10lg(W_{BHX}/W_{BX})$$
, дБ $S=10lg(W_H/W_\Gamma)=p_H-p_\Gamma$, дБ

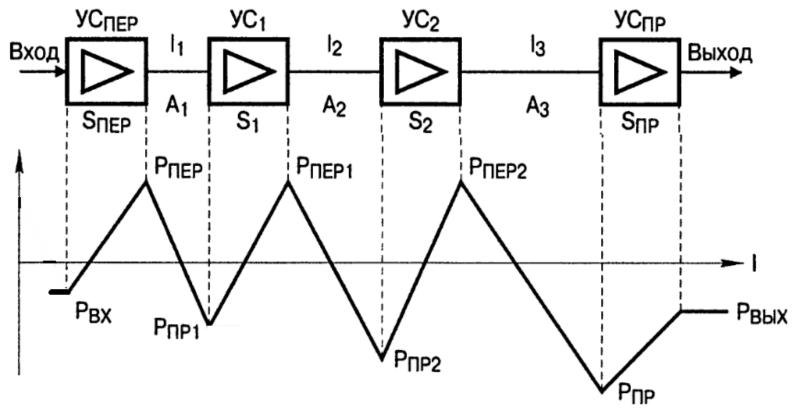

Затухание устройства - логарифм отношения значения величины, измеряемой на входе устройства, к значению величины, измеряемой на выходе этого устройства (или цепи)

$$A = 10 lg(W_{BX}/W_{BMX})$$
 , дБ $A = 10 lg(W_{\Gamma}/W_{H}) = p_{\Gamma} - p_{H}$, дБ

Диаграмма уровней - график, показывающий распределение уровней передачи вдоль тракта передачи.

 $\mathit{YC}_{\mathit{пер}}$ - усилитель с усилением равным $S_{\mathit{пер}}$; I_1 , I_2 , I_3 - участки линии связи (среды распространения) с затуханием, равным A_1 , A_2 A_3 ; YC_1 , YC_2 - промежуточные усилители с усилением S_1 , S_2 ; $\mathit{YC}_{\mathit{пр}}$ - усилитель с усилением равным $S_{\mathit{пр}}$

Уровни передачи на выходе і-го усилителя:


$$p_{nepi} = p_{npi} + S_i$$

Уровни приема на входе і-го усилителя:

$$p_{npi} = p_{nep(i-1)} - A_i$$

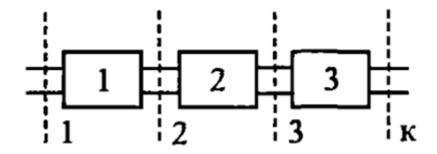

Остаточное затухание равно разности между суммой всех рабочих затуханий, имеющихся в канале, и суммой всех рабочих усилений: $A_r = \Sigma A_{pi}$ - ΣS_{pk} .

Диаграмма уровней - график, показывающий распределение уровней передачи вдоль тракта передачи.

Измерительная диаграмма уровней соответствует измерительному уровню мощности на входе р_{изм} **Относительная диаграмма уровней** – это диаграмма, при которой уровень в произвольной точке системы сравнивается с уровнем передачи в определенной выбранной точке. Она показывает, на сколько уровень сигнала в произвольной точке больше (меньше) опорного уровня

Дано: трехкаскадная система состоит из двух усилителей и одного фильтра. Входная мощность Wвх = 0,1 мВт. Абсолютные коэффициенты усиления по мощности $S_1 = 100$, $S_2 = 40$ и $S_3 = 0,25$.

Определить: 1) абсолютный уровень входной мощности:

$$p_{ex} = 10 \lg \frac{0.1 \cdot 10^{-3}}{10^{-3}} = -10 \partial E_M$$

$$S_1 = 100, S_2 = 40 \text{ u } S_3 = 0.25$$

2) выходную мощность Wвых в Вт и дБм;

$$W_{_{GbLX}} = W_{_{GX}} \cdot 100 \cdot 40 \cdot 0.25 = 0.1Bm$$

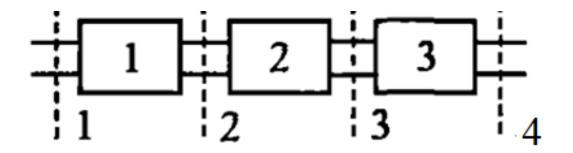
$$p_{\text{вых}} = 10 \lg \frac{0.1}{10^{-3}} = 20 \partial \mathcal{E}_{M}$$

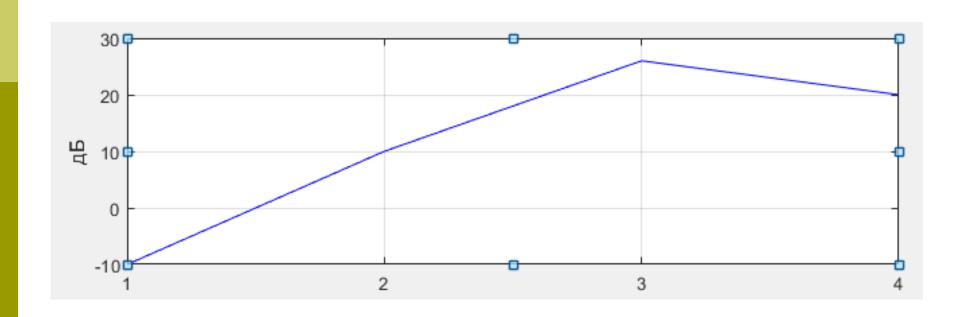
3) усиление дБ каждого из этих трех каскадов;

$$S_1 = 20\partial B$$
 $S_2 = 16\partial B$ $S_3 = -6\partial B$

4) результирующий коэффициент усиления в дБ;

$$S_{pe_3,\partial E} = 10 \lg(100 \cdot 40 \cdot 0.25) = 30 \partial E$$

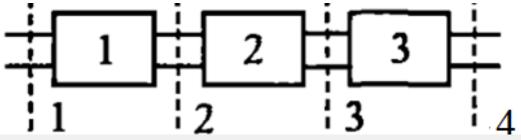

$$S_{pe3,\partial E} = S_{1,\partial E} + S_{2,\partial E} + S_{3,\partial E} = 30\partial E$$

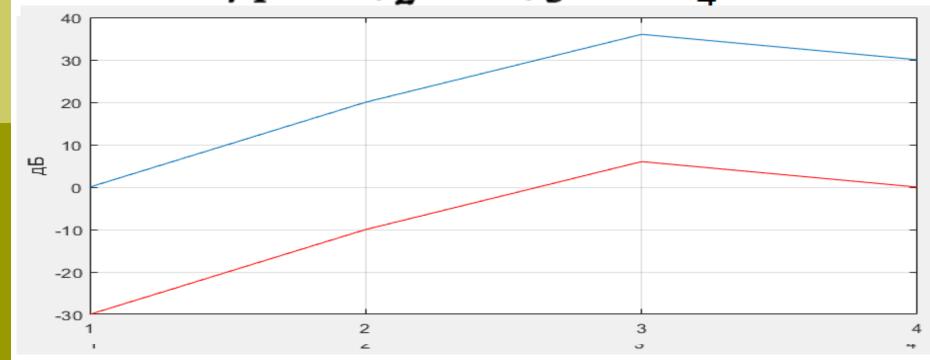

- 5) остаточное затухание; $A_{pes} = -30 \partial E$
- 6) построить диаграммы уровней системы

ПРИМЕР. ДИАГРАММА АБСОЛЮТНЫХ РОВНЕЙ

$$p_{ex} = -10\partial \mathcal{E}_{M};$$

$$S_1 = 20\partial EM;$$
 $S_2 = 16\partial EM;$ $S_3 = -6\partial EM;$ $P_{EMX} = 20\partial EM;$


ПРИМЕР. ДИАГРАММА ОТНОСИТЕЛЬНЫХ УРОВНЕЙ


$$p_{ex} = -10\partial \mathcal{E}_{M};$$

$$S_1 = 20 \partial \mathcal{E}_M;$$

$$S_2 = 16\partial E_M$$

$$S_1 = 20\partial EM;$$
 $S_2 = 16\partial EM;$ $S_3 = -6\partial EM;$ $P_{ext} = 20\partial EM;$

