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Techniques for Testing the Constancy of 
Regression Relationships over Time 

By R. L. BROWN J. DURBIN and J. M. EVANS 
Central Statistical Office London School of Economics Central Statistical Office 

and Political Science 

[Read before the ROYAL STATISTICAL SOCIETY at a meeting organized by the RESEARCH SECTION 
on Wednesday, December 4th, 1974, Professor R. L. PLACKETT in the Chair] 

SUMMARY 
Methods for studying the stability over time of regression relationships are 
considered. Recursive residuals, defined to be uncorrelated with zero 
means and constant variance, are introduced and tests based on the cusum 
and cusum of squares of recursive residuals are developed. Further 
techniques based on moving regressions, in which the regression model is 
fitted from a segment of data which is moved along the series, and on 
regression models whose coefficients are polynomials in time are studied. 
The Quandt log-likelihood ratio statistic is considered. Emphasis is placed 
on the use of graphical methods. The techniques proposed have been 
embodied in a comprehensive computer program, TIMVAR. Use of the 
techniques is illustrated by applying them to three sets of data. 

Keywords: CUSUM; REGRESSION RESIDUALS; RECURSIVE RESIDUALS 

1. INTRODUCTION 
THIS paper describes and exemplifies a set of techniques for detecting departures 
from constancy of regression relationships over time when regression analysis is 
applied to time-series data. All the techniques described have been embodied in a 
computer program, TIMVAR. Enquiries about the availability of this program should 
be addressed to the Computer Development for Statistics Unit of the Central 
Statistical Office. A "User's Guide" to the program (Evans, 1973) is available from 
the Central Statistical Office. In what follows, the name TIMVAR will be used 
indifferently to describe either the set of methods used or the computer program 
written to implement them. 

The theory underlying the paper was developed jointly by Brown and Durbin who 
gave a preliminary account of it in Brown and Durbin (1968). The original version 
of the program was written by C. E. Rogers and later work on it was done by 
R. P. Bayes and Evans. Mr Brown unfortunately died in 1972 so the actual writing 
of the paper was done by Durbin and Evans who accept full responsibility for the 
final version. However, since they have made substantial use of material left by 
Mr Brown they feel that he should be regarded as a co-author of the paper. 

Regression analysis of time-series data is usually based on the assumption that 
the regression relationship is constant over time. In some applications, particularly 
in the social and economic fields, the validity of this assumption is open to question, 
and it is often desirable to examine it critically, particularly if the model is to be used 
for forecasting. 

TIMVAR includes formal significance tests but its philosophy is basically that of 
data analysis as expounded by Tukey (1962). Essentially, the techniques are designed 
to bring out departures from constancy in a graphic way instead of parametrizing 
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particular types of departure in advance and then developing formal significance tests 
intended to have high power against these particular alternatives. From this point 
of view the significance tests suggested should be regarded as yardsticks for the 
interpretation of data rather than leading to hard and fast decisions. 

The problem we consider is a special case of a general class of problems concerned 
with the detection of changes of model structure over time, but we shall not attempt 
to review here the extensive literature dealing with the whole range of problems. 
Apart from citing references which have specific relevance to our own treatment we 
merely call attention to two papers of special importance, those of Chernoff and 
Zacks (1964) and Hinkley (1972). 

The next section begins by specifying the basic regression model and the null 
hypothesis under consideration. It goes on to show how this hypothesis can be 
investigated by constructing plots of cumulative sums and sums of squares of the 
so-called recursive residuals. These are the standardized residuals from the regression 
of each observation yt, the regression coefficients being calculated from the obser- 
vations Yi, . . Yi-, for t = k+ 1, ..., T, where k is the number of regressors and T is 
the number of observations. It is shown that on the null hypothesis the recursive 
residuals are uncorrelated with zero mean and constant variance and are therefore 
independent under the normality assumption. Suitable formulae for carrying out 
the recursive calculations in a highly economical way are presented. 

Other methods of transforming least-squares residuals to independent N(0, a2) 
variables have been given by several authors including Theil (1965, 1968) and Durbin 
(1970). However, the recursive residuals seem preferable for detecting the change of 
model over time since until a change takes place the recursive residuals behave exactly 
as on the null hypothesis. When the change does occur, one hopes that signs of it 
will soon be apparent. With the other methods one would normally expect the 
effects of the change to be spread over the full set of transformed residuals. 

In section 2'5 further techniques based on plotting the coefficients obtained by 
fitting the model to a segment of n successive observations and moving this segment 
along the series are presented. The plots are supplemented by a homogeneity test 
based on the analysis of variance. Section 2.6 considers the fitting and testing of 
time-trending regressions in which each coefficient is represented as a polynomial in 
time. The final technique considered is the plotting of Quandt's log-likelihood ratio 
statistic, intended to detect the single time-point, if any, at which there is a dis- 
continuous change from one constant set of regression parameters to another. 

In Section 3 the techniques developed are applied to three sets of real data taken 
from the field of economics. These examples illustrate how TIMVAR can be used in 
the model-building process to investigate the stability of models over time. The 
first example refers to data from the Post Office on the growth in the number of 
local telephone calls, the second uses data from the International Monetary Fund on 
the demand for money and the third deals with a model for forecasting manpower 
requirements using data provided by the Civil Service Department. Section 4 out- 
lines the structure of the TIMVAR program and indicates the options available. 

2. THE TECHNIQUES PROPOSED 

2.1. The Regression Model under Study 
The basic regression model we consider is 

yv= x'.,+ ut t = 1, ......... T. 1 
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where at time t, yt is the observation on the dependent variable and xt is the column 
vector of observations on k regressors. The first regressor, xlt, will be taken to equal 
unity for all values of t if the model contains a constant. The other regressors are 
assumed to be non-stochastic so auto-regressive models are excluded from con- 
sideration. The column vector of parameters, PI, is written with the subscript t to 
indicate that it may vary with time. We assume that the error terms, ut, are indepen- 
dent and normally distributed with means zero and variances At, t = 1, ...,T. The 
hypothesis of constancy over time, which will be denoted by Ho, is 

P1= P2= = PT= P 
Gr2 = Gr2 = = s2 _ Gr2 1 2 T 

We shall be more concerned with detecting differences among the P's than among 
the a's though we do give a procedure which permits the investigation of variance 
changes. We have not considered the effects of serial correlation in the u's on the 
performance of the tests proposed. 

It is natural to look at residuals to investigate departures from model specification, 
and a variety of procedures for doing this have been proposed in the literature (see, 
for example, Anscombe, 1961; Anscombe and Tukey, 1963). However, experience 
has shown that in the present situation the plot of the ordinary least-squares residuals, 
or the plot of their squares, against time is not a very sensitive indicator of small or 
gradual changes in the P's. In this respect the problem resembles that of detecting 
changes in the mean in industrial quality control for which the cumulative sum or 
cusum technique, introduced by Page (1954) and discussed further by Barnard (1959) 
and by Woodward and Goldsmith (1964), has been found to be a more effective tool 
for detecting small changes than the ordinary control chart in some circumstances. 

This suggests that instead of plotting out the individual least-squares residuals 
zt the cusums Zr E-l zi r = 1, ..., T, should be plotted, where we have divided 
by the estimated standard deviation a to eliminate the irrelevant scale factor. The 
difficulty about this suggestion is that there seems no way of assessing the significance 
of the departure of the observed graph of Zr against r from the mean-value line 
E(Zr) = 0. The intractability of the problem arises from the fact that in general the 
covariance function E(ZrZS) does not reduce to a form that is manageable by standard 
Gaussian process techniques (cf. Mehr and McFadden, 1965). For instance, for the 
simple case of regression on a linear time trend with zero intercept, the covariance 
function is asymptotically r - 3r2s2/4T3 (r < s), which is an unmanageable form. 

An alternative is to consider the standardized cusum of squares, -2Er z2. 
Although more tractable, this is still difficult to deal with. Instead of considering it 
we prefer to make the transformation to recursive residuals given in the following 
section which enables us to treat the problem in terms of standardized cusums and 
cusums of squares of independent N(O, 2) variables. 

2.2. The Recursive Residuals and their Properties 
Assuming Ho to be true, let br be the least-squares estimate of ,3 based on the 

first r observations, i.e. br = (X Xr)-l X'Yr where the matrix Xr Xr is assumed to be 
non-singular, and let 

w ~~yr - xr bri,rkl 2 r 1( + (X'X)r-l)Xr-r)k-1.Xr),T, (2) 

where Xr-1 = [xl, ...,xri1] and Yr = [Yl' ., Yr]. 
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Lemma 1. Under Ho, Wk+l, ..., WT are independent, N(O, (J2). 
Proof. The unbiasedness of wr is obvious and the assertion V(Wr) = U2 follows 

immediately from the independence of Yr and bri-. Also, 

= (8r - xr(Xr1 X-1)X_ x1 1xi) (1 + x(Xr-1 Xr-1) 
j=1 

Since each wr is a linear combination of the normal variates uj, the wj's are jointly 
normally distributed. Now 

E[Ur - xr(Xri-1 Xr1) x }u- xI(X X-) -1 xiui) 

= cr2[0 _0-_Xs(Xs1 Xs1) Xr+ Xr(Xr_1 Xr-1(Xr_1 Xr_1) (X-1 X1)- xl] x 0 ( ) 

It follows that Wk+, ..., WT are uncorrelated and are therefore independent in view 
of their joint normality. The transformation from the ur's to the wr's is a generalized 
form of the Helmert transformation (Kendall and Stuart, 1969, p. 250). 

Let Sr be the residual sum of squares after fitting the model to the first r 
observations assuming Ho true, i.e. Sr = (Yr-Xrbr)'(Yr-Xrbr). 

Lemma 2. 

(X' - Xr)X1 = (X r-1 Xr1)1 - 1+Xr-()X1 XrXr)-1 Xr-1) (3) rXr) -( r-lXr-1) - 1 + xr(Xlr_lXr-1)_ xr 

br = br-I + (Xr Xr)-1 Xr(Yr - Xr br-), (4) 

Sr = Sr_i+W2, r=k+1, ... , T. (5) 
The relation (3) was given by Plackett (1950) and Bartlett (1951). It is used in the 
program to avoid having to invert the matrix (XrXr) directly at each stage of the 
calculations. It is proved by multiplying the left-hand side by XrKXr and the right- 
hand side by Xr-1 Xr-1 + XrXr = Xr Xr. 

Proof of (4). Since br is the least-squares estimate it satisfies 

X'Xrbr = X'r Yr = X'r1 Yr1 + Xryr = Xri1 Xr-1 br-1 + XrYr 

= Xr Xr br-1 + Xr(Yr - Xr1 br-). 

Proof of (5). 

Sr = (Yr-, Xbr)'(Yr-Xr br) 
= (Yr X bri1)'(Yr - Xr br1) - (br -br-)' Xr Xr(br -br-1) 

= Sr-1 + (Yr X br_)2 - x(Xr X7X)-1 Xr(Yr_X br)2 

which gives (5) on substituting for (X' Xr)-l from (3). 
An alternative proof of (3), (4) and (5) may be derived from the results of Heyadat 

and Robson (1970) since their quantities fr are multiples of our quantities wr. Note 
that wr is the standardized prediction error of Yr when predicted from Yi, . . ,yr- 

A situation arising frequently in practice is one where the regression model contains 
a constant and one of the regressor variables is itself constant for the first r1 obser- 
vations, where r1 > k. Even though, in this case, the recursive residuals cannot be 
calculated from direct application of (2) above because of multicollinearity, it is 
possible to derive them in the following manner. The basic idea is to drop the initially 
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constant regressor (which must be supplied to the program last) at the beginning of 
the recursions, reducing the number of regressors to k-1. Then recursive residuals 
wok, , w?,, are derived from estimates b?7,1, ..., b,?,_4 of the regressor vector PO, the 0 
denoting the fact that only k-I regressors have been used. (The first component of 
each of these estimates will of course be an estimate of (/1 + 1Bk d) where d is the initial 
value of the last regressor.) When the last regressor has changed it is brought into the 
regression and recursive residuals are calculated from then on by formula (2). If, for 
r=k+l,...,rl, wr is defined to be wrLj then we again have a set of T-k values 
Wk+, ..., wr, which may be shown to be independent N(O, a2) as before. When the 
kth regressor is brought into the regression the extra degree of freedom absorbed 
means that there is no increase in the residual sum of squares, i.e. Sri+i = S ; more- 
over, apart from the constant term, the first k-1 components of br,+i are equal to 
the corresponding components of b?.. Having made the transition from k-I to k 
regressors, the recursion proceeds as in the standard case. 

2.3. The Cusum Test 
If t is constant up to time t = to and differs from this constant value from then 

on, the wr's will have zero means for r up to to but in general will have non-zero means 
subsequently. This suggests examination of plots intended to reveal departures of 
the means of the w<'s from zero as one travels along the series through time. 

The first plot we consider is the plot of the cusum quantity 

W1 
r 

Wr 

= 1?i, 

against r for r = k +1, ..., T, where a denotes the estimated standard deviation 
determined by a2 = STI(T-k). We require a method of testing the significance of 
the departure of the sample path of Wr from its mean value line E(Wr) = 0. A suitable 
procedure is to find a pair of lines lying symmetrically above and below the line 
Wr= 0 such that the probability of crossing one or both lines is a, the required 
significance level. 

From the properties of the wr's, under Ho the sequence Wk+,, ..., Wr is a sequence 
of approximately normal variables such that 

E(Wr) = 0, V(W1) = r-k and C(QW, WW) = min (r, s)-k, 

to a good approximation. To derive the test, Wr is approximated by the continuous 
Gaussian process {Zj, k < t < T} with these mean and covariance functions. This is 
in fact the Brownian motion process starting from zero at time t = k. The form of 
straight line to choose was decided in two stages. The standard deviation of Zt is 
1(t-k). Consequently, if we wished to find a curve such that under Ho the probability 
that the sample path lies above the curve at any point between t = k and t = T is 
constant, we should choose curves of the form ? A 1(t- k) where A is constant. 
However, since we wish to limit ourselves to straight lines, the crossing probability 
cannot be constant for all t and the procedure adopted is to choose the family of 
lines tangent to the curves + A 1(t- k) at the points halfway between t = k and 
t = T. This leads to the family of pairs of straight lines through the points 
{k, ? a V(T- k)}, {T, ? 3a V(T- k)}, where a is the parameter. For any given line in 
this family, the probability that the point (r, Wr) lies outside the line is a maximum for 
r halfway between r = k and r = T. We want to find a member of this family such 
that the probability that a sample path Zt crosses it is lot. Known results in Brownian 
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motion theory give for the probability that a sample path Zt crosses the line 
y = d + c(t-k) for some t in (k, T) the value 

Q c(T- k) + exp (-2dc) Q ( k) 
where V~~(T- k) Q(d(T-k)) 

where 

Q(z) =s( J fexp (-l u2) du 

(see, for example, Durbin, 1971, Lemma 3). Substituting d =a V(T-k) and 
c = 2a/4(T- k) we obtain the equation 

Q(3a) + exp (-4a2) (1-Q(a)) =6 
to be solved for a. 

It has been assumed that the probability that W, crosses both lines is negligible, 
which will be justifiable for values of as normally used for significance testing, say 0-1 
or less. Useful pairs of values of a and oc are 

a = 001, a = 1P143, 
cX = 0 05, a = 0948, 
oc = 010, a = 0850. 

From the standpoint of data analysis, the function of these lines is to provide a yard- 
stick against which to assess the observed behaviour of the sample path, though of 
course they can be used to provide a formal test of significance by rejecting if the 
sample path travels outside the region between the lines. 

2.4. The Cusum of Squares Test 
This test uses the squared recursive residuals, w2, and is based on the plot of the 

quantities 

sr (L W12w ) ) | =SIrST, r = k+ 1, ..., T. 
The test provides a useful complement to the cusum test, particularly when the 
departure from constancy of the Pi1's is haphazard rather than systematic. On Ho, 
sr may be shown to have a beta distribution with mean (r-k)/(T-k). This suggests 
drawing a pair of lines s. = + co + (r -k)/(T- k) on the diagram parallel to the mean- 
value line such that the probability that the sample path crosses one or both lines 
is of, the required significance level. 

To find the significance values, c0, it is convenient to consider first the case when 
T- k is even. Then the joint distribution of the 1(T- k) -1 statistics Sk+2, Sk+4, * * *, ST-2 
is the same as that of an ordered sample of (T- k) -1 independent observations 
from the uniform (0, 1) distribution. This may be shown by writing 

n= (T-k)-I and zj=(wk+2j + wk2_1)/2a2, j=l,...,n+1. 

Then the zj's are independent, exponentially distributed random variables with mean 
one. If Z is the sum of the zj's we have 

Sk+2j = (Zl + ... +Zj)Z, j =, ..., n. 
The required result follows by transforming the variables zl, zn1 to give the 
joint distribution of Sk+29 ... ST-2, Z and then integrating out Z. 
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The distribution of an ordered sample of independent observations from the 
uniform (0,1) distribution plays an important part in the theory of non-parametric 
statistics, and the distribution of each of the statistics c+ and c-, defined by 

c= max (Sk+2j -ji/m), c- = max (/m - sk+2j) 
j=l,...,m-1 i=l,1...-,m-1 

where m = l(T-k), can be recognized as being equivalent to that of Pyke's (1959) 
modified Kolmogorov-Smirnov statistic, C+., with n = mr-1. The statistics c+ and 
c- are the maximum positive and negative deviations respectively of the set of 
statistics (Sk+2, . . ., ST-0 from their mean-value line. 

A table of significance values of the quantity C. for n = mr-1 is given by Durbin 
(1969) (Table 1, p. 4). The procedure suggested for the cusum of squares test is to 
take these values as approximations to the significance values of 

i=1,...,T-k-1( T-k) and c = ma --k 
which are the maximum positive and negative deviations of the whole set of s,'s 
from the mean-value line. For the value of the significance level, a, normally chosen, 
say 0-1 or less, the probability of crossing both lines is negligible, so that given a 
significance level a, to find the value of c0 we may take the value obtained by entering 
the table at n = '(T- k) -1 and -.a If T- k is odd the procedure suggested is to 
interpolate linearly between the values for n -(T-k)- 2 and n -(T-k) . 
Monte Carlo runs made by M. C. Hutchison have shown that this test gives significant 
results more often than the exact test would give, but that the discrepancy is very 
small when (T- k) exceeds 30. 

It may sometimes be appropriate to consider a one-sided test. For example, if it 
is assumed that Pt = p* for t r and t= p**p* for t>r while ut2= u2 for all t, 
then E(w,2) = a2 for t < r and E(wt2)> a2 for t> r. One would therefore expect the 
departure from the null hypothesis to be indicated by a tendency for the sample path 
sr to lie below the mean value line, and would therefore use a one-sided test. For this 
purpose, one would take the significance value of c0 corresponding to significance 
level a, not Ia. However, whether the two- or one-sided situations are envisaged we 
ourselves prefer to regard the lines constructed in this way as yardsticks against which 
to assess the observed sample path rather than providing formal tests of significance. 

If the two plots described above do indicate departures from constancy it may be 
useful to examine plots of the components of b7 against time to try to identify the 
source. Further, to help locate the point of change it is often informative to look at 
the set of plots which are obtained by running the analysis backwards through time 
as well as forwards. 

2.5. Moving Regressions 
Another useful way of investigating the time-variation of Pt is to fit the regression 

on a short segment of n successive observations and to move this segment along the 
series. The graphs of the resulting coefficients against time provide further evidence 
of departures from constancy. In addition, the estimated residual variance may be 
computed and plotted to investigate the constancy of C2. 

The quantities required for each new segment are computed by first adding a new 
observation to the segment just dealt with using formulae (3)-(5) and then allowing 
for the effect of dropping an observation from the beginning by means of the following 
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analogues of (3)-(5): 

(K' :n)-1 = (Xn+l Xn+l)-1 + (X +1 Xn+l)-1 X1M JlXn-1/0 - lX'M+1 Xn+0)-1 Xi), 

bn = bn+i-(Xn Xn)-' xj(y1 - x1 b+), 

Sn = Sn+- (Y1- x bn)2/(l + X( Rn)1 x1), 
where 9n, bn Sn are the values of the regressor matrix, the coefficient vector and the 
residual sum of squares based on observations from t = 2 to n + 1. For simplicity of 
notation we have given the formulae for the first update only but the further formulae 
are, of course, similar. Proofs are similar to those of (3)-(5). 

A significance test for constancy based on this approach, called by us the 
homogeneity test, is derived from the results of regressions based on non-overlapping 
time segments, using the analysis of variance. The time segments used by the program, 
for a moving regression of length n, are (1, n), ((n + 1), 2n), ..., ((p -2) n + 1, (p - 1) n), 
((p-1) n + 1, T), where p is the integral part of T/n, and the variance ratio considered, 
called by us the homogeneity statistic, is 

(T-kp) S(1, T)-{S(1, n) + S(n + 1, 2n) +... + S(pn-2n + 1, pn-n) + S(pn-n + 1, T)} 
(kp-k) {S(1,n)+S(n+ 1, 2n)+... +S(pn-n+ 1, T)} 

where S(r, s) is the residual sum of squares from the regression calculated from 
observations from t = r to s inclusive. This is equivalent to the usual "between 
groups over within groups" ratio of mean squares and under Ho is distributed as 
F(kp - k, T- kp). 

The TIMVAR program also calculates the quantity M1, the mean square prediction 
error one period ahead. This is defined as 

T 

ml = {Ym - x b(m - n, m - 1)}2/(T- n), 
m=n+l 

where the vector b(mn - n, m - 1) is the estimate of the vector of regression coefficients 
from the time segment (m - n, mr-1). When calculated for moving regressions of several 
different lengths its minimum value gives a useful criterion for the length of record 
to use when predicting one period ahead. Also calculated are M2, defined by 

T-n 
M2-=E {ym-x xb(m + 1, m + n)}2/(T-n), 

m=1 

which is equivalent to M1 calculated from a moving regression passed in the reverse 
direction, and M the sum of M1 and M2. Of these M1 will normally be the most 
useful. Finally, M3 is calculated. This is T=n +n(Ym-xm b(m-n, m-1))2/(T-n) 
where n1 is the maximum length of regression considered. This fulfils the same 
function as M1, except that the different regression lengths are now compared over 
the same part of the record, namely that from n1 to T. 

2.6. Time-trending Regressions 
This technique introduces time variation into the regression model explicitly 

by allowing the regression coefficients to become polynomials in time. To determine 
whether this extended model will produce a significantly better fit than one based on 
constancy, and further to determine what degree of polynomial should be employed, 
the program calculates the sum of squares removed by each of the following nested 
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hypotheses: 

(0): Yt=X1 0=, 

(1): y1 =xi,AO) +r(I)t)+ 8i 

(e): yt =Xt(P(0) +P(1) t+ *+ P(e) te)+81t 
The P's are all vectors of length k, and e is a positive integer specified by the user. 

Comparison of the mean-square increase in the explained variation with an estimate 
of the error variance gives a test for determining whether each model gives a 
significantly better fit than the one before. This estimate of the error variance may 
be derived from either the residual sum of squares from the model in the next higher 
degree in t or from the residual sum of square of the full model (e) and so two 
F-ratios are calculated, one for each estimate. 

2.7. Quandt's Log-likelihood Ratio Technique 
This technique, described in two papers by Quandt (1958, 1960), is appropriate 

when it is believed that the regression relationship may have changed abruptly at an 
unknown time point t = r from one constant relationship specified by P(l), a2, to 
another constant relationship specified by P(2), a2. For each r from r = k+ 1 to 
r = T- k -1 the program computes and plots 

Amax likelihood of the observations given Ho\ 
Ar = log10max likelihood of the observations given H1!, 

where H1 is the hypothesis that the observations in the time segments (1, ..., r) and 
(r +1, ..., T) come from two different regressions. This is the standard likelihood 
ratio statistic for deciding between the two hypotheses Ho and H1, and it is easy to 
show that 

^r=ilg(2 + !(T- r) log a^2-To ^2 A, 2r lo T'lg 
where 2j, a2 and &2 are the ratios of the residual sums of squares to number of 
observations when the regression is fitted to the first r observations, the remaining 
T-r observations and the whole set of T observations, respectively. The estimate of 
the point at which the switch from one relationship to another has occurred is then the 
value of r at which Ar attains its minimum. Unfortunately, no test has yet been 
devised for min Ar since its distribution on Ho is unknown. However, the behaviour 
of the graph of Ar against r sheds light on the stability of the regression and in 
particular indicates whether changes have occurred as an abrupt transition or 
gradually. 

3. EXAMPLES OF THE APPLICATION OF TIMVAR 

In this section we present three examples which illustrate the use of TIMVAR 
techniques. The first and third examples reveal evidence of change while the second 
does not. The graphs have been chosen to illustrate different kinds of TIMVAR output 
but in each case the graphs shown are only a small fraction of the total output 
available. 

Example 1. This example was made available by the Statistics and Business 
Research Department of the Post Office. As part of a wider study of posts and 
telecommunications described in Turner (1973), a regression model was developed to 
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explain growth in the number of local telephone calls (i.e. the differences between the 
numbers of calls in consecutive years) in terms of a linear model involving a constant 
and four independent variables. These four variables, which were used in first 
difference forms, were a measure of economic activity, the number of residential 
telephones, the "real" price of local calls and the "real" price of residential telephones. 
(The deflator used to arrive at the "real" prices was the retail price index.) The data 
ran from 1950/51 to 1971/72, but it had been felt that the estimates of the number of 
local calls and hence of local call growth were subject to some uncertainty after 
1964/65; however, the 1971/72 figure was thought to be reliable. In order to use this 
model as part of a larger model, reliable estimates for the growth of local calls were 
required for the whole period. Thus it was important that the stability of the relation- 
ship over time should be investigated. 

Figs 1-4 give respectively the plots of the least-squares residuals, the cusum of 
least-squares residuals, the cusum of recursive residuals and the cusum of squares of 
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FIG. 1. Example 1: Ordinary least-square residuals. 
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FiG. 2. Example 1: Cusum of ordinary least-squares residuals. 
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FiG. 3. Example 1: Cusum of recursive residuals, forward recursion. 
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FIG, 4. Example 1: Cusum of squares of recursive residuals, forward recursion. 

least-squares residuals. These plots provide increasing indication of evidence of 
instability after 1964/65, 1 per cent significance being attained in Fig. 4. The fact that 
significance is achieved by the cusum of squares plot but not by the cusum of recursive 
residuals suggests that instability may be due to a shift in residual variance than to 
shifts in values of regression coefficients. However, examination of the plots of 
coefficients and residual variance estimated from moving regressions showed that the 
instability was due to local changes in the regression coefficients and not to changes 
in variance. The model shows no sign of instability in the years up to 1964/65 and it 
was further found that a forecast of the 1971/72 figure from the model fitted to the 
data up to 1964/65 was very close to the actual 1971/72 estimate, which had been 
accepted as reliable. In the circumstances it was decided to ignore the suspect 
estimates between 1964/65 and 1971/72, to use the model fitted from the remaining 
data to provide the explanatory equation required and to replace the discarded data 
by forecasts derived from it. 

Example 2. The second example, using data made available by Dr M. S. Khan 
of the International Monetary Fund, is based on a study of the demand for money 
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function for the United States, 1901-65 in Khan (1974). In this paper, Khan considers 
several possible specifications for the function and uses TIMVAR tests to investigate 
their stability over time. He argues that the question of stability of the function over 
time is of crucial importance for the effectiveness of monetary policy. The particular 
model considered here expresses the "narrow" real per capita stock of money Mt 
in terms of the long-term interest rate Rt and the permanent real per capita income 
Yt in an equation of the form 

AlogMt = a+PlogARj+ylogAYj+w1, 
where A is the first difference operator and w1 is an error term with the property 
wjNID(0,cr,2,). This is the one of eight specifications tested in the paper using 
annual data from 1901 to 1965. 

None of the TIMVAR results were significant at 5 per cent. Figs 5 and 6 show the 
cusum and cusum of squares graphs from the forward recursion. The results are 
clearly consistent with the hypothesis of stability over time. In his paper Khan goes 
on to draw conclusions from the results for this and the other model specifications. 
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FIG. 5. Example 2: Cusum of recursive residuals, forward recursion. 
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FIG. 6. Example 2: Cusum of squares of recursive residuals, forward recursion. 
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Example 3. This example uses data provided by the Civil Service Department 
and is concerned with the staff requirement St of an organization expressed as a 
function of workloads of 9 different categories. The example is studied in detail in 
Cameron and Nash (1974) and uses quarterly data from the first period of 1960 to 
the third quarter of 1970 (43 observations). Cameron and Nash found that the 9 
workload categories were highly intercorrelated so they employed factor analysis to 
reduce them to three uncorrelated factors F1, F2, F3. They then fitted the regression 
model: 

3 

St = I3o+ 3fl1 Fjt + et, 
j=1 

where et is a disturbance term. 
Forward and backward cusum and cusum squared recursive residuals plots showed 

strong evidence of instability. Fig. 7 gives the graph of Quandt's log likelihood ratio 
and this indicates clearly that an abrupt change took place just after the 27th quarter. 
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FIG. 7. Example 3: Quandt's log-likelihood ratio. 

In fact two separate bodies were amalgamated during this quarter to form the 
organization under study so there was an obvious administrative explanation in this 
case for the results observed. However, the example serves to illustrate the way in 
which the Quandt log-likelihood ratio can serve to pinpoint a change in the relation. 
Fig. 8 gives the graph of estimates of P3 calculated from segments of length six 
quarters moved along the series. These graphs show the consequences of the abrupt 
change in the relation just after the 27th quarter. As a result of these and other tests 
Cameron and Nash decided to fit the model for forecasting purposes from the last 
14 observations only. 

4. THE TIMVAR PROGRAM 

The TIMVAR program was written to calculate all the results necessary for the tests 
and techniques described in the paper and to produce a considerable amount of 
graphical output to aid the interpretation of the results. Any or all of the following 
results are available: 

(a) The standard regression. The analysis of variance over the whole time span 
and the DW statistic. Tables and plots of the residuals and regression 
estimates. 
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(b) The results of the time-trending regressions (see Section 2.6). 
(c) The results of the recursive regressions, both forward and backward, giving 

tables and plots of the successive regression estimates, the recursive residuals 
and their cusums, and the test statistics (see Sections 2.2, 2.3, 2.4). 

(d) The values of Quandt's log-likelihood ratio (see Section 2.7). 
(e) The results of the moving regressions for each specified length giving tables 

and plots of the successive regression estimates, mean square errors, the 
quantities M1, M2, M and M3, and the statistic for the homogeneity test 
(see Section 2.5). 

10,000 

5 ~~~20 
01 I0 5 25 30 35 

Number of observation at start of 
-10,000 segment used in regression 

FIG. 8. Example 3: Estimate of coefficient of third independent variable derived from moving 
regression of length 6. 

The program makes full use of the formulae described in Sections 2.2 and 2.5 
during the calculations of the recursive and moving regressions. Because of the large 
number of successive matrix operations performed during these calculations there is 
a danger that some of the matrices may become ill-conditioned. Any such tendency 
is usually reduced by subtracting the means from each of the variables and this is 
done automatically by the program if the model contains a constant. The value of 
the constant term is then recovered by another mechanism. In the case where the 
model contains a constant and one of the other regressors is constant at the beginning 
or end of the record for a number of observations greater than k, this regressor, if 
supplied last, is dealt with by the program during the recursive regressions in the 
manner described in Section 2.2. If it is constant at the start only it can be dealt with 
in a similar fashion during the moving regressions. The extension to the case where 
two or more regressors are constant at the beginning or end of the record has not 
been programmed. 
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DISCUSSION OF THE PAPER BY DR BROWN, PROFESSOR DURBIN AND MR EVANS 

Professor D. R. Cox (Imperial College): This is an important and interesting paper; 
it deals with a common practical problem, gives valuable new methods and their theory and 
concludes with cogent illustrations. 

My comments concern two theoretical aspects of the paper. First there is the efficiency 
of the procedures in idealized situations which, notwithstanding the remarks in Section 1 
of the paper, seems of some interest in understanding the applicability of the methods. I 
shall deal only with the very simplest situation, in particular where the fitted model contains 
just a constant term, so that the recursive residuals are defined by the standard Helmert 
transformation and are 

Y2-Y1 2y3-Y2-- Yl 
42' 4 6 

Suppose further that E(y ) = Z (i = 1, ..., m), E(ym+j) = + 8 (j = 1, ..., n). 
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The simplest analogue of the procedures of the paper is to use the cumulative sum of the 
last n recursive residuals as a test statistic for 8 = 0, the change-point being regarded as 
known and the amount of data fixed, both assumptions in contrast with the situations 
contemplated by the authors. Both for the cumulative sum statistic and for the efficient 
test, the ratio of the expectation of the test statistic to its standard deviation can be found. 
The values are respectively 

8M n ,I /nE{(M + s -1) (m + s)}-, 
and 

8( mn \i 
uaVr+nJV 

Thus the ratio can be found, simple results emerging in the limit m, n -> so, n/m = k. The 
relative efficiency is somewhat conventionally defined as the square of the ratio and 
asymptotically this is 

(1 + k) {log (1 + k)}2 k-2. 
This is close to 1 except for large k, some representative values being 

k 1 2 5 10 
ARE 0-961 0 905 0-770 0-632. 

For small k, the asymptotic relative efficiency is 1 - k2/12 + 0(k3). Very similar results 
hold for small m, n. Thus except in the untypical case when the discontinuity emerges 
relatively close to the start of the data, the cumulative sum method is very efficient. 

A similar calculation can be made for the departure E(ym+j) = , ++j/ (j = 1, ..., n) 
comparing the efficient test both with the cumulative sum of the last n recursive residuals 
and with their regression coefficient on time. There is no difficulty in principle in making 
similar calculations for more general models. 

A second theoretical point concerns the effect of serial correlation. It would, of course, 
be possible to define recursive residuals relative to an assumed or estimated covariance 
matrix; a simpler possibility is to keep to the definitions of the paper and to examine the 
effect of serial correlation in the data. While general formulae can be written down, I have 
investigated again only the case where the fitted model contains just an unknown mean. 
It can then be shown that for large m 

var (wvm) = a2{1 + O(m-1)}, corr (Wm, Wm+h) Ph, 

where {ph} is the autocorrelation function of the data. This suggests that the standard 
deviation of sums of w's is inflated over its value in the independent case by the factor 

1 +h 
in particular, for a first-order autoregressive process this factor is {(I + plJ/(l - PP. 
Provided this holds also for more general models, it would be reasonable to inflate the 
limits of the paper by a rough estimate of this factor. 

I propose a most cordial vote of thanks to the authors. 

Mr P. R. FISK (University of Edinburgh): I should like to start by paying homage to 
Dr R. L. Brown who, as Professor Durbin has said, was the first Director of the Research 
and Special Studies Unit in the Central Statistical Office. The CSO was very fortunate to 
have him in that position because during his period of office he demonstrated what the 
unit was capable of doing. His untimely death was regretted by all who knew him. It is 
noteworthy that this evening's paper is the first to be read before the Society from that unit. 
It is my earnest hope that we will receive more contributions, either of read or published 
papers, on methodology from this or other sources in the Government statistical service. 
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A basic feature of the procedures given in the paper is the set of recursive residuals 
described in equation (2). Various properties of these have been mentioned by the authors. 
One notable feature mentioned in the paper is that under the assumptions made about the 
terms in equation (1) the recursive residuals have zero correlation between any pair. It may 
prove of some interest to give a little attention to the nature of the transformation involved. 
I always tend to operate here in terms of matrix transformations, which is implicit in the 
paper but not spelt out. 

As Professor Durbin said, the transformation is clearly linear from a T-dimensional 
space to a (T- k)-dimensional space. It is possible to write the transformation matrix in 
such a way that it is orthogonal to the regressor matrix XT. This is sufficient to show that 
the recursive residuals may be described in terms of the same transformation matrix applied 
to the vector of dependent variables, or to the vector of least-squares residuals, or to the 
vector of errors in the equation provided the assumptions underlying the model in 
equation (1) are correct. This variety of ways in which the recursive residuals may be 
described makes it conceptually possible to describe the nature of the distribution of the 
recursive residuals, and so of statistics based on those residuals, under alternative 
assumptions such as heteroscedasticity of the errors. 

The transformation matrix mentioned above has some nice properties. One that is 
implied in the paper is that when post-multiplied by its transpose we get an identity matrix. 
When pre-multiplied by its transpose we get the idempotent matrix used in the definition 
of least-squares residuals. The structure of the transformation matrix makes the 
interpretation of the statistic sT in the paper as a residual sum of squares obvious at a glance. 

Interest in the transformation matrix does not stop there. This matrix, of order 
(T- k) x T, may be partitioned by the first k columns. The remaining (T- k) columns 
form a square matrix, D say, which is lower triangular and satisfies the equation 

D[I+ ZZ'] D' = I, 
where I is an identity matrix of order (T- k) and Z = XT-k X-1. Here I have partitioned 
XT as (X: X-0k) in which Xk must be non-singular for recursive residuals to be derivable 
at all. It is evident from the properties of the transformation matrix mentioned above that 
recursive residuals, are members of the Theil system of residual transformations. The 
distinction is that whereas Theil, and those who follow his particular approach, have used 
the spectral resolution of the matrix (I+ ZZ'), the authors of the present paper have used 
the Choleski factorization. I have been told, although I have seen no published demonstra- 
tion, that the Householder transformation recommended by Golub yields transformed 
residuals which are also members of the Theil system of transformations. This leads me to 
wonder whether when one attempts any linear transformation of the least-squares residuals 
to a set of uncorrelated random variables we are perhaps producing just another member 
of the Theil system. 

One noticeable feature of the recursive residual transformation is that it is not unique. 
The rows of XT can be arranged in any order we please, so long as the first k rows given by 
Xk forms a non-singular matrix. The authors have a natural order in their examples which 
is induced by time, but there is no reason why they should be inhibited from trying some 
other order. Thus, before the analysis was conducted there was a suspicion in Example 1 
that 1971/72 was more like the earlier periods than the period after 1964/65. That particular 
observation could have been inserted between those for 1964/65 and 1965/66 for the 
purpose of the test applied. 

I have not looked very closely at the moving regressions described in the paper. I 
confess that I find the procedures appealing, possibly because I have used similar techniques 
without any attempt at a theoretical justification. I was examining the errors in preliminary 
estimates of economic time series, defined as the difference between the first published 
figure of the value of the series and the figure published three years hence. I was interested 
in detecting any marked changes in the values of variances and first-order autoregression 
coefficients over the length of the observed record. I think this kind of non-stationarity 
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may be expected with such error series and might be found with other types of economic 
time series also. Simple procedures, such as moving regressions, are of benefit in searching 
for marked changes, although I confess that I had some difficulty in interpreting the meaning 
of the charts that I constructed. This was mainly because I could recognize that the 
patterns observed could have been induced by changes in the series other than the one of 
prime interest. I experienced a similar feeling when looking at the authors' examples. 

The authors are to be congratulated on their very interesting paper. 
I am very pleased to second the vote of thanks. 

The vote of thanks was passed by acclamation. 

Sir MAURICE KENDALL (World Fertility Survey): I fully endorse what previous speakers 
have said about the merits of this paper. It is the most important contribution to regression 
problems that we have had for some time. I should like to ask three questions about the 
paper itself and make three suggestions for further work. 

The procedure suggested for computing successive residuals relies on the result given 
by our Chairman and Professor Bartlett enabling the covariance matrix of regressors to be 
up-dated when a new observation becomes available. If this were not so the arithmetic 
would be very tedious. However, the up-dating does require matrix multiplication and if 
it is done over a fairly long sequence there are dangers of cumulative rounding-off errors. 
My inclination would be, having arrived at the end of a series, to recalculate the covariance 
matrix and to check whether the iterative process has arrived at the correct result. The 
point applies equally and possibly more strongly to moving regressions. 

A point which was not entirely clear to me was how the authors distinguish between 
departures from the null hypothesis concerning the regression coefficients and those 
concerning the magnitude of the residual errors. I should be glad to know how they decide 
between one or the other explanation of a significant result. 

A third point on which I should value the authors' comments concerns the application 
of their technique to data which do not have a temporal order. So far as I can see, one 
could use their method for data arising in any order, but if the order were to be determined 
by reference to the values of the regressor variables, which of them should one choose? 

I think further examination is required of Quandt's method of testing where a regression 
changes routine. Maximizing likelihood has the disadvantage that maxima are flat, by 
which I mean that much the same maximum value is reached for a fairly wide range of the 
variables. In certain cases, as for example when a metal changes molecular shape, it is 
important to narrow down the point of change with great accuracy and some further 
research on this subject is desirable. 

Finally, two directions in which an extension of the work in this paper would be very 
valuable. One would be an application to autoregressive series. The other would be an 
extension to the case where all variables are subject to error. Both cases are more likely to 
arise in practice than the one of pure regression on non-autocorrelated regressors. 

Professor M. B. PRIESTLEY (University of Manchester Institute of Science and 
Technology): The problem discussed by the authors is indeed an interesting one, and they 
have presented us with a rich variety of techniques for its solution. Essentially, what they 
seem to be saying is that in the real world one would expect relationships between variables 
to be "dynamic" rather than "static"; hence simple approximations (such as "static" 
linear models) cannot be expected to remain valid over indefinitely long periods of time 
unless we are prepared to modify continually the values of the parameters so as to allow 
these models to adapt themselves to "local" conditions. The proposed techniques for 
monitoring and testing changes in the parameter values should therefore prove extremely 
useful in many fields of application. 

However, although the authors assume at the outset that the x variables are deterministic 
(so that, presumably, model (1) may be treated within the framework of classical 
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regression theory), this would seem to be a rather unnatural assumption-particularly in 
the context of the examples discussed in Section 3. Indeed, the independent variables in 
Examples 1 and 2 seem just as "stochastic" as the dependent variable! Moreover, although 
the dynamic element is incorporated via the possible time dependence of the parameter, it 
would seem more natural to express this notion in the more conventional manner by 
introducing lagged terms into the regression relationships. (These would allow, for example, 
for the effects of "inertia" in the interrelationships between the variables.) If we now 
combine both these ideas we are led to a more general form of equation (1), namely, 

k a) 

Yt = I :(jt )XWS + ut. (*) 
j=1 s=O 

Equations of the form (*) are familiar in the study of relationships between time series, 
and arise, for example, in the context of linear stochastic control systems. Model (1) 
reduces to a special case of (*) in which only fl,(t) is non-zero, all the remaining P's being 
zero. 

Of course, if only finitely many of the f(l) are non-zero, (*) may still be expressed in the 
form (1) where now the xt?)S are simply regarded as additional variables. However, this 
would, in general, lead to a model with an extremely large number of parameters, and if 
the x(j) are regarded as stationary processes, the serial correlation within each process and 
the cross-correlation between x(i), x(j), would no doubt invalidate the distribution theory 
of the various test statistics. More importantly, if the original relationship between Yt and 
the {xWj)} involved lagged values of {Yt}, the formulation (*) would requile an infinite set 
of the parameters {f(lt}. For these reasons it is usually more convenient to transform (*) 
into its equivalent frequency domain representation. If we assume, for the moment, that 
the f(l) are time invariant, i.e. flM = P?), all t, then the inter-relationships between Yt and 
{x(?)} are completely characterized by the sequence of transfer functions, 

(c)Q) = (l) e-iws j = 1, 2,. 
s=O 

If each f")(cw) is a sufficiently "smooth" function of co it is then possible to estimate all 
these functions "non-parametrically", i.e. without making any specific assumptions about 
the form of the {P(l%}, and this, in turn, provides estimates of the complete set of parameters 
{/3?)}. It is well known, for example, that if there is no cross-relation between the {x(?)} 
processes, then the least-squares estimate of /M')(c) is (asymptotically) given by 

PUVO() = 3v ?J(C0)1fjs(0), 
where A8,(cw) is the estimated cross-spectral density function between Yt and {x(j)} and 
fjj(v) is the estimated spectral density function of xWj). When the P(l) are time-dependent 
Yt is, in general, no longer a stationary process, but the essential point is that the same 
basic ideas may still be used to obtain a frequency domain description of (*) even in this more 
general case. The transfer functions themselves now become time-dependent, i.e. in place 
of the {f)(cv)} we now have the "generalized transfer functions" 

()= z / e-iws, 
s=0 

but, assuming that the P(/3 do not vary "too rapidly" over time, the /3M')(w) may still be 
estimated "non-parametrically" by introducing the notion of evolutionary (i.e. time- 
dependent) spectra and cross-spectra. This approach has been studied by myself and my 
colleagues, Dr Subba Rao and Dr Tong, and the main ideas were reported in Priestley 
(1965) and Priestley and Tong (1973). Moreover, although models of the form (*) are 
more complicated than (1) in that they involve "lagged" regressor variables, it is still 
possible to construct tests for the constancy over time of the complete sequence of transfer 
functions, {/3P)(w)}, using a MANOVA approach. Such tests have been applied and tested 
on "real data", and were described in recent published papers by Subba Rao and Tong 
(1972, 1973). In a very loose sense the ideas underlying this approach are not unlike those 
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discussed in Section 2.5 on "moving regressions", but its advantage is that it allows one to 
examine possible variations over time of the complete form of each of the transfer functions, 
/3(Aw(w). (The authors' model (1) assumes, in effect, that each /3M)(w) is a constant, 
independent of w.) 

The more general approach described above does, of course, require the availability of 
fairly long series of observations on Yt and the {x(}, but this requirement is surely inherent 
in the basic nature of the problem, irrespective of the approach adopted for its solution. 
There is, after all, a limit to the amount of information which one can extract from a 
finite amount of data; once the parameters are allowed to become time-dependent the 
accuracy of the estimators is related in quite a fundamental way to the maximum rate at 
which the parameters can be allowed to change-cf. the "Uncertainty Principle" (Priestley, 
1965). It may well prove to be false economy to try to extract additional information from 
the data by over-simplifying the model. 

It is well known (for example, Rosenbrock, 1965), that the recursive relations for 
updating regression coefficients-due to Plackett and Bartlett and mentioned in Section 
2.2-are very closely related to the recursive relations which arise in Kalman filtering 
theory, and it may be interesting, therefore, to investigate whether the (now massive) 
literature on Kalman filtering could be exploited to provide further results on the properties 
of the recursive residuals, {Wr}. It may be noted also that both Harrison and Stevens 
(1971) and Bohlin (1968) have considered models of the form (*) in which the coefficients 
f() are themselves stochastic processes, and Kalman filtering then emerges almost in- 
evitably as the appropriate technique for updating (or more precisely in this case, 
predicting) the coefficients in such models. Models involving "stochastic parameters", 
although not conceived in a true Bayesian spirit, may perhaps be regarded as a first step 
in this direction. 

The points mentioned in the preceding paragraph illustrate the close relationship which 
exists between certain branches of stochastic control theory and problems in time series 
analysis. Unfortunately, much of the control theory literature tends to be written in a 
language and style which, at first sight, may seem unfamiliar to statisticians, and this may 
account for the fact that many statisticians are unaware of the full potentialities of this 
work. It would bXe to the mutual advantage of both control theorists and statisticians to 
foster closer collaboration between workers in these two fields. On the other hand, it 
would be wholly regrettable if, by adopting a parochial and introverted approach to their 
work, statisticians failed to appreciate the relevance and importance of much of the recent 
control theory research. 

Dr PETER C. YOUNG (Centre for Resource and Environmental Studies, Australian 
National University, Canberrat): It has been suggested (Kailath, 1974), although without 
specific reference, that lying somewhere in the Collected Works of C. F. Gauss there is a 
recursive formulation of the least-squares equations. In recent years, however, there can 
be no doubt that the development of the recursive least-squares algorithm is due, in large 
part, to the work of our Chairman tonight, R. L. Plackett, who published an important 
paper on the subject in 1950. Indeed Professor Plackett's paper was to me, as a very young 
research worker in the early nineteen sixties, a great revelation and it had an important 
influence on my future work; an influence for which I am extremely grateful and for which 
I am, after more than a decade, now able to thank him personally. 

But like most works of innovative quality Professor Plackett's paper was, in many ways, 
ahead of its time and its significance was rather lost on the pre-computer statistical 
audience of the day. Indeed it was left to a control theorist, Rudolf Kalman, to continue the 
saga of recursive least squares in 1960 when he published his influential paper on state 
variable estimation theory. In effect, Kalman utilized the principle of orthogonal projection 
to evolve a more general form of the recursive least-squares equations for the case where 

t Formerly at Control Division, Department of Engineering, University of Cambridge. 
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the unknown parameters are no longer considered constant coefficients (as assumed 
implicitly in Professor Plackett's formulation) but are treated as time variable states of a 
dynamic system described by a set of linear stochastic state equations of a Gauss-Markov 
type. 

Since 1960 many papers have appeared in the control literature on both recursive least 
squares and state variable estimation (or filtering as it is referred to in the literature), 
certainly too many to discuss here: it will suffice merely to mention a recent survey paper 
on filtering theory by Kailath (1974), which lists 390 references from both the control and 
statistical literature and provides an excellent appreciation of the subject, albeit somewhat 
orientated towards the information and communication theory audience to whom it was 
principally directed. It is a little surprising, however, that the statistical literature has not 
been similarly influenced by the early work on recursive least-squares methods, particularly 
now that the availability of electronic computers makes the recursive formulation so 
attractive in practical terms. With this in mind, it is especially welcome to hear a paper 
read at the Royal Statistical Society which recognizes the importance of the recursive 
least-squares formulation in analysing data with general non-stationary statistical 
properties and, in particular, which discusses how the recursive residuals can be used to 
detect the possibility of temporal change in the coefficients of a regression relationship. 
The paper tonight will, I am sure, prove of practical use in day-to-day statistical analysis 
for I know from experience with real data from a variety of different sources that the 
possibility of parameteric non-stationarity is ever present and classical methods of block 
data analysis simply do not have the flexibility to handle such problems. 

One minor criticism of the paper, which I may perhaps be allowed to voice, is its 
notable lack of reference to parallel developments in the control literature; developments 
which have considerable bearing on the type of analysis suggested by the authors and 
which should, I believe, be brought to the attention of the audience. I have attempted, at 
a previous meeting of the Society (Young, 1971), to correct the apparent lack of contact 
between the disciplines but, apart from some exceptions, I have clearly failed to get my 
message across and, with the Chairman's indulgence, I will try again. 

Much of the paper tonight is concerned with the statistical properties of a normalized 
function wr of the recursive residuals Yr - Xr b7-1. In the control literature these recursive 
residuals have been termed the innovations process; a term that appears to have been first 
introduced in this connection by Wiener and Masani in the mid-fifties (see Kailath, 1974). 
It was not until 1968, however, that Kailath showed that this process (or its continuous- 
time equivalent), is, under assumptions similar to those of regression analysis, zero mean, 
gaussian and serially uncorrelated, (although it should be emphasized that these properties 
are to a certain extent implicit in the orthogonal projection arguments of Kalman). 

Bearing the "white noise" properties in mind, it is not surprising that statistical tests on 
the recursive residuals have been the basis of many methods of verifying the efficacy of 
recursive estimation schemes. In our own work on autoregressive-moving-average 
time-series model estimation (see, for example, Young et al., 1971), for instance, it is normal 
to compute the sample autocorrelation function of the residuals and assess whether the 
statistical assumptions are satisfied; in particular whether the recursive residuals are 
serially independent. And in recent years, there has been considerable research into the 
statistical properties of the innovations process when, for example, a sub-optimal Kalman 
filter-estimation algorithm is applied to a stochastic system (as is often the case, since the 
optimal algorithm requires apriori information on the nature of the dynamic system and the 
covariance properties of the stochastic disturbances; information which, if it is available 
at all, can be subject to considerable uncertainty). Such research has produced algorithms 
for both (a) explicitly estimating either the statistical properties of the stochastic distur- 
bances, or the gain matrix of the Kalman filter, from the sample correlations of the 
innovations process (for example, Mehra, 1970; Carew and Belanger, 1973; Neethling and 
Young, 1974) or (b) implicitly adapting the Kalman filter to ensure a satisfactory innova- 
tions process (Neethling, 1974). 
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The authors, with their experience of statistical hypotheses testing, suggest various 
checks that can be applied to the normalized innovations process which appear to be of 
great value in assessing the existence of non-stationarity. A somewhat similar approach 
to detecting the possibility of parametric change using a serial correlation test has been 
suggested by Hancock (1971). But hypothesis tests are only diagnostic tools and they do 
little to tell us how, having discovered the existence of parametric non-stationarity, we are 
able to modify our analysis to account for its presence. In this sense, I think the authors 
have erred in not recommending that the user refers more often to the recursive estimation 
of the parameters in the regression relationship, as well as to the recursive residuals. 
Certainly our own work over the past ten years shows that such information can be 
particularly useful in practical terms providing, as it does, information not only on the 
existence of time variability but also, and perhaps more important, on the physical cause 
of such non-stationarity; information which could well be used, often in an iterative 
manner, to "identify" better the process under investigation, in some cases removing the 
cause of non-stationarity completely and so yielding a model of greater practical utility. 

As an example of this latter approach consider the rainfall (uk)-runoff (Yk) data shown 
in Fig. 1 for a stretch of the River Ouse near Bedford, in the year 1972. (This example has 
arisen in connection with a systems analysis study of water quality in the Great Ouse River 
system; a study being carried out by Paul Whitehead and myself in collaboration with the 
Great Ouse River Division of the Anglian Water Authority and the Department of 
the Environment; see Whitehead and Young, 1975.) The recursive estimates of the 
moving average parameters b, and b2 in an autoregressive-moving average model relating 
Yk and uk are shown in Fig. 2. These estimates were, in fact, obtained from a special 
recursive instrumental variable (I.V.) algorithm which may be interesting to Professor 
Durbin whose early paper on the instrumental variable method (Durbin, 1954) proved 
useful in our initial development of this approach to time-series analysis. The algorithm 
is special in the sense that it can be given the ability to estimate parametric non-stationarity 
if the user has reason to believe that significant changes may occur over the observation 
interval. In this present case, it is clear that the parameters show a marked tendency to 
both long- and short-term variation. Reference to the physical nature of the system 
indicates that such non-stationarity is probably due to the effects of evaporation etc. (in 
the long term) and soil moisture deficit (in the short term) and suggest that the system might 
be "purged" of its non-stationary behaviour by pre-processing or filtering the data with 
these factors in mind in order to yield an effective rainfall input, as shown in Fig. l(b), 
such that the resulting estimates are, at least approximately, time-invariant as shown in 
Fig. 2(b). In this figure the estimates do not indicate strict time invariance because of the 
nature of estimation algorithm: in effect, the ability to track parameter variation is only 
obtained at some cost in estimation efficiency unless the exact nature of the time variation 
is known a priori. In this case such information is not available and the algorithm is 
instructed to expect only random variation in the b parameters between samples, with the 
result that the estimates have a fairly high residual variance. But, at the same time, it is 
now clear that the apparent estimated parameter variations are probably due in large part 
to the residual random noise effects that have not been sufficiently "smoothed out" by the 
modified algorithm which, in effect, has difficulty in differentiating between random noise 
effects and any random changes in parameters of the model (see, for example, Young, 
1974). As a result, further analysis can now proceed under the assumption that the parameters 
are now sensibly constant over the observation interval. In this case, such analysis was 
carried out using an iterative version of the I.V. algorithm which is able to refine the 
estimates by making multiple passes through the data, each time updating the instrumental 
variables and so improving the statistical efficiency. 

The success of the stationary time-series model obtained from the iterative I.V. 
algorithm is demonstrated in Fig. 3, which shows the forecasted river flow compared with 
the observed flow for the year 1972, and Fig. 4, which gives similar results for the following 
year on a different reach of the river but using the model as fitted to the 1972 data. 
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Before leaving the topic of time-series analysis, I think it is a little misleading to a 
general audience when the authors, in the first sentence of their paper, refer to time-series 
data, so tending to give the impression that the techniques they describe are particularly 
useful for time-series analysis. And yet it is well known that, except in special cases, 
regression analysis yields asymptotically biased estimates when applied to more general 
time-series problems such as the example I have just outlined, where there are clearly 
problems of errors in variables. (This is probably no problem in the examples quoted in 
the paper since the authors are not, apparently, interested in the structural parameters 
but only in the forecasting ability of the models.) 

I merely wish to note here that recursive techniques of time-series analysis that are not 
prone to such disadvantages are, as we have seen, available and have been applied 
successfully to real data from a variety of systems, in addition to the water resources 
problem discussed above. Descriptions of these IV-AML (Instrumental Variable- 
Approximate Maximum Likelihood) methods of time-series analysis have appeared both 
in the control literature (Young and Hastings-James, 1970; Young, 1972) and, more 
recently, in the mathematical literature (Young, 1974), while a report describing the 
techniques in detail is available from the author (Young et al., 1971). In addition, a paper 
emphasizing their importance in general dynamic systems analysis will be submitted to this 
Society in the near future and will deal not only with single input-single output systems 
of the conventional time-series type (see, for example, Box and Jenkins, 1970) but also 
with multi-input, multi-output systems of the kind met so often in practice (Young and 
Whitehead, 1975). 

Mr G. PHILLIPS (University of Kent): I found the paper extremely interesting, and it 
clearly indicates the usefulness of the recursive residuals in testing for specification errors 
in linear regression models. Further evidence for thisis provided in two forthcoming 
papers, the first of which (Phillips and Harvey, 1974) discusses tests for serial correlation 
using recursiv e resals,an t second (Harvey and Phillips, 1974) which discusses 
tests for heteroscedasticity. 
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However I find some difficulty in deciding the likely usefulness of the proposed tests in 
the absence of any investigations of their power under a range of alternative hypotheses. 
I noticed that the authors referred to the fact that they have not investigated the problem 
of serial correlation on their tests. There is some evidence in a paper by R. A. Johnson 
and M. Bagshaw, in Technometrics (1974), 16, 103-112, which suggests that the cusum tests 
are not robust to departures from independence. 

A further point is that the recursive residuals are independent only when disturbances 
are normal. When there is a departure from normality perhaps recursive residuals may be 
no more effective than the ordinary least-squares residuals. 

Finally, in the first example of an application of TIMVAR, the problem as posed appeared 
to be one of errors of measurement on the dependent variable. I was not clear how the 
analysis came to its conclusion that the instability was due to local changes in regression 
coefficients although I agree with the course of action taken. 

Dr T. W. ANDERSON (Stanford University and London School of Economics): This 
paper was interesting to me on many counts because its contributions touch several of my 
own areas of research. Let me comment on different aspects. I thought it would be 
amusing to suggest to Professor Durbin that the recursive residuals could be used to 
construct tests of serial correlation which would be alternative to the well-known Durbin- 
Watson procedure, but that idea has already come up earlier in the discussion. 

The generalization of the Helmert transformation is particularly useful in its natural 
time sequence for indefinitely long series. Before reading the paper I had used the trans- 
formation to prove the following theorem. (My reading of the discussions in the JRSS 
indicate that not infrequently the opportunity is used for the discussant to display his own 
results, and I seldom get the chance.) In the model of the paper, with Ho true, bT -+ ,3 as 
T-o co with probability 1 if and only if (X'T XT)'1 - 0. 

Another aspect of the paper that struck a familiar note was the use of the continuous 
Gaussian process to approximate the probability that the cusums lie between two lines for 
r =k +1, ..., T. At one time I worked very hard to obtain the probability that the 
Brownian motion process remain between two specified lines. (Apparently, these RSS 
discussions permit a discussant to refer to his earlier work as well.) Using Corollary 4.2 
of "A modification of the sequential probability ratio test to reduce the sample size" 
(Annals of Mathematical Statistics (1960), 31, 165-197) I find, for example, that when 
a = 0-850, the probability of going out of the interior region is 0-0987, which the authors 
use for 10 per cent significance. This is an error of only 1-3 per cent. Since the error will 
decrease with significance level, my calculations justify the authors' assumption that the 
probability that W. crosses both lines is negligible. It might be noted that the continuous 
time computation exaggerates the probability of cusums calculated discretely crossing a 
line. 

It was instructive to me to write (4) as 

r- br-1 = Wr x (X; Xr)-' xr 4{1 + x'(X'-1 Xr-1)-' x7}. 
This shows that the recursive residuals are based on changes in the estimate of the 
regression parameter vector and w2 is a quadratic form in the difference. 

Dr A. F. M. SMITH (University College London): The topics dealt with in this paper 
are of considerable practical importance and provide a number of challenging problems 
for the theoretical statistician. The authors have adopted an unashamedly exploratory, 
data-analytic approach, and are careful to point out that their proposals "should be 
regarded as yardsticks for the interpretation of data rather than leading to hard and fast 
decisions". 

I wonder if this is really satisfactory? Data exploration is certainly a necessary 
preliminary, but it seems to me that sooner or later one must provide a more formal, 
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theoretical framework within which to assess the outcomes of the significance tests, or 
the departures occurring in the cusum plots. Other contributors have already touched on 
the problems of assessing power against particular alternatives, distinguishing changes in 
regression coefficients from changes in variances, and taking into consideration the effects 
of autocorrelated errors. The latter point, in particular, seems crucial given the type of 
problem under consideration. Have the authors any idea of how procedures based on 
recursive residuals are affected by the introduction of serial correlation? 

Turning more specifically to the cusum techniques, -is it not possible to improve the 
procedure by adopting a moving V-mask? Considering Fig. 5, for example, one notices 
that the plot has returned to the origin by about observation 35. Could this information 
not be utilized by resetting the mask (or some modification thereof) in order to begin again 
at this point ? 

As they stand, the procedures put forward by the authors seem to require a great deal 
of informal use of personal judgment (as evidenced in Section 2.4, for example, where we 
encounter such phrases as "we ourselves prefer", "it may be useful to examine" and 
"it is often informative to"). The Bayesian approach offers a more formal framework for 
the inclusion of personal judgments, and I should like to bring to the authors' attention 
two such Bayesian offerings. 

The first of these is due to Harrison and Stevens (1971), and was developed in a time- 
series context. Basically, they take as their model a weighted average of submodels, the 
latter being selected to cover the range of potential behaviour of the process in question. 
The weights are the continuously updated probabilities of the submodels. Changes in the 
underlying relationship are reflected in changes in the weights, and the submodels can be 
chosen to include a whole range of possible departures. The method has been applied, in 
particular, to forecasting demand in a mail-order context where fashions are prone to 
sudden change (see Green and Harrison, 1973). 

The second approach is one I have been working on myself in the general context of 
change-point inference. The simplest version concerns a series of n observations which 
may all follow the same distribution, with density f1(. I Al), or may have changed at some 
(unknown) point to a different distribution, with density f2(.1 02). A change at time r 
would generate a likelihood 

r 
l(r, 01, 02 | X1, X2, ..., Xn) = I fl(Xi I 01) I f2(Xi 1 02). 

i=1 i=r+l 

If po(r) represents the prior probability of a change at time r, then pn(r), the posterior 
probability given the data, is defined by 

pn(r)/po(r) oc j(r, 01, 02 1 Xl, x2, ..., Xn)p(01, 02) d01 dO2, 

where p(6l, 02) denotes the joint prior density for 01 and 62. The pn(r) provide a starting 
point for inferences about r, 01 and 62 

In the particular case of detecting a possible change in the regression coefficients 
corresponding to a particular set of regressor variables, if X,, X"_r denote the portions of 
the design matrix corresponding to the first and r the last n - r observations, respectively, 
and SSr and SS,-, the corresponding residual sums of squares, the assignment of standard 
vague priors for the regression coefficients and the variance (assumed constant throughout) 
leads to the result 

Pn(r)/po(r) oc I Xr X,r | x| . XI . I ix (SSr + SSn_r) , 

where d is a function of n and the number of regression coefficients. In so far as there is 
any connection here with the authors' analysis, the Bayesian approach would seem to 
favour techniques based on the squares of the recursive residuals (cf. the authors' 
equation (5)). 
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More complicated situations involving a number of possible change points can be 
dealt with straightforwardly by performing a similar prior to posterior analysis for 
appropriate k-tuples (rl, r2, .. ., rk), where 1 < r1 < r2 < ... < rk< n. 

The authors are to be congratulated on stimulating this evening's discussion. By their 
own admission, a number of problems remain unsolved, but, as was said of St Denis when 
he walked some considerable distance with his head in his hand: "La distance n'y fait 
rien; il n'y a que le premier pas qui coute". 

The following contributions were received in writing, after the meeting. 

Mr M. R. B. CLARKE (University of London): I have a brief comment to make about 
the updating formulae for moving regressions in Section 2.5. Many people have pointed 
out possible dangers arising from numerical ill-conditioning in forming sums of squares and 
products in order to solve the normal equations. More recently updating formulae such as 
those quoted at the beginning of Section 2.5 have come in for severe criticism, notably by 
Chambers, when used for numerical rather than theoretical computations. Broadly 
speaking such problems can be avoided by using one of the orthogonal decomposition 
methods such as Householder or Gram-Schmidt. These decompose the data matrix 
into the form 

[X IY] =[Q][OW 
where Q is (n x n) orthogonal and U is the (k x k) upper triangular square root of X'X. 
Q need not be known explicitly as all the information required is in U and v, the 
coefficients being the roots of Up = v and the regression sum of squares v'v. 

If we now add another observation (x, y) we have 

U v 

and since [ Q, 1 ] is orthogonal we need only write down some simple equations to 
determine the k-plane rotations that annihilate the x part of (x, y). These updating formulae 
are numerically stable being linear in the data and very nearly as economical, once the 
original decomposition is completed, as those quoted in the paper. 

Professor A. S. C. EHRENBERG (London Business School): I welcome a paper addressing 
itself to practical problems in regression analysis, but I have difficulties with it. For 
example, I do not understand the data-analysis "'yardsticks" which the authors proffer in 
place of classical tests of significance. In what probabilistic or other units are the yardsticks 
calibrated ? 

My main difficulty, however, arises from the assumption at the beginning of Section 2 
that the regressors are non-stochastic. This is obviously not true in most practical cases, 
and certainly not in the authors' own examples in Section 3. The failure of this assumption 
leads not merely to minor technical difficulties or small biases, but radically affects the 
authors' null hypothesis and indeed the applicability of regression analysis as a whole. 
This can be readily demonstrated in terms of the ";moving regression" approach developed 
in Section 2.5. 

Here regressions are fitted to non-overlapping sets of n successive observations. The 
authors' null-hypothesis is that the regression for the first n readings is the same as that 
for another n, say the last n. This is illustrated in Fig. A for two variables, y and x. (For 
simplicity I consider only two variables here, but the argument generalizes to more than 
two.) 

7 
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If x is non-stochastic (as assumed in the paper) this null-hypothesis says that the 
expected values of y for each x in the first set of n readings lie on a straight line and that the 
expected values of y for each x in the second set of data lie on the same straight line. This 
is of course perfectly feasible and would therefore be worth testing against any data. 

y 

The last 
.- n readings 

e first n readings 

x 
FIG. A. The null-hypothesis with a non- 

stochastic x-variable. 

y 

n/2 readings,. 

"l/2 readings 

x 
FIG. B. Regressions of y on x for the first 
and last n readings, and for the first and last 

n/2 readings. 

But this null-hypothesis is inherently impossible if the x-variable is stochastic (other 
than in trivial cases). It is then well known that the regression of y on x for the first n 
readings will generally differ from the regression for a systematic subset of the readings, 
such as the first n/2. Similarly, the regression of y on x for the last n readings will be 
different from that for the last n/2 readings. This is illustrated in Fig. B. 

y 

xS 

*~~~~~ X 

x 
FIG. C. A line fitted to means of the first and 

last n readings. 

y 

j - X~~~~~~ 

x 
FIG. D. The regressions of y on x and of x 

on y for the first and last n readings. 

It follows that if the null-hypothesis that the regressions of y on x are the same holds for 
the first n and last n readings, the corresponding hypothesis cannot hold for the first n/2 
and last n/2 readings. But n is an arbitrary number. Hence the regressions of y on x with 
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stochastic x-variables cannot in general be the same for any two sets of n readings. The 
null-hypothesis is therefore untrue, and this can be seen without any data-analysis, or 
even without the data. The distinction between the non-stochastic situation considered in 
the paper and the realistic one where the regressors are in some sense stochastic is therefore 
crucial. 

An alternative formulation which avoids the above dilemma is discussed more generally 
elsewhere (Ehrenberg, 1975). In terms of the approach of analysing separate sets of n 
readings as developed in Section 2.5 it is that for a straight line to hold for both the first 
and the last sets of n successive readings (and for any other sets of readings), the line must 
go through the mean values of each set of readings, as shown in Fig. C.. This is both a 
necessary and a sufficient condition. 

Such a line is in general not a regression equation for any of the data. This is illustrated 
in Fig. D which indicates the regressions of y on x and of x on y for both sets of n readings. 

Since the line in Fig. C is fitted without recourse to the residuals from the line (i.e. with 
no minimization procedures), the residuals are in practice relatively easy to examine for 
systematic deviations. The line is also not affected by unbiased errors (of measurement or 
the like) in either of the variables. 

Dr A. C. HARVEY (University of Kent at Canterbury): Recursive residuals have two 
great attractions; one is their simplicity, and the other, which is perhaps more important, 
is their flexibility. For a given set of T observations, there are T!/k! different sets of 
recursive residuals. Which set is actually computed depends on the result of two closely 
connected decisions. The first concerns which k observations should be used to form the 
"basis" (i.e. used to form the initial estimate of P); the second concerns how the remaining 
T- k observations should be ordered. If the basis is chosen in a certain way it is possible 
to obtain a set of recursive residuals which follow a similar pattern to that produced by 
the O.L.S. residuals. Exact tests against such alternative hypothesis as serial correlation 
(Phillips and Harvey, 1974) and heteroscedasticity (Harvey and Phillips, 1974) may then be 
constructed. On the other hand, it is sometimes possible to choose the basis and the 
ordering in such a way that under certain misspecifications of the model, the recursive 
residuals have a"distinctive pattern, very different to that produced by O.L.S. residuals. 
Tonight's paper has provided one example of this type of distinctive pattern in the context 
of structural change. Another example concerns the case when the functional form of one 
of the regressors is incorrectly specified. Mr P. Collier and myself have recently completed 
a paper (Harvey and Collier, 1975) in which we show that a test based on recursive 
residuals is relatively powerful compared with a number of other tests. The test is based 
on the statistic 

= ((T-k-1)1E(w -W)2} ((T- k)-1 w3}, (1) 
j=k+l j=k+l 

where iw is the arithmetic mean of the recursive residuals. This statistic follows a t- 
distribution with (T-k-1) degrees of freedom under the null hypothesis. Under the 
alternative hypothesis the recursive residuals tend to have the same sign and so b tends to 
be large in absolute value, thus leading to rejection of the null hypothesis. 

Perhaps I can now turn to some specific points on tonight's paper. The first concerns 
the definition of the cusum quantity, W. It is suggested that this be obtained by using, as 
a deflator of the recursive residuals, the estimator a, defined as the square root of 
I wg/(T- k). It seems much more sensible to me, however, to estimate a by the square root 
of I (wj - iV)2/(T- k - 1). This does not affect the theory behind the cusum test, but it is 
likely to make the procedure more effective as the cusum will tend to be larger in absolute 
value under the alternative hypothesis. (Another advantage of defining the cusum in this 
way is that when the last cusum quantity has been obtained it only needs to be divided 
through by (T- k)' in order to yield the statistic b, which, as I have already said, has a 
t-distribution under the null hypothesis.) 
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My second point concerns the type of variation in the ,B's which we. are interested in 
detecting. The authors prefer to leave their specification of the alternative hypothesis in a 
rather vague form. However, if a more concrete alternative is proposed more powerful 
tests are available. For example, the test proposed by Farley and Hinich (1970) is likely 
to be much more powerful than the cusum test against certain special types of structural 
changes in the P's. Now it seems to me perfectly acceptable to leave the alternative 
hypothesis vague, but this leaves us with a test which may be very weak when used in the 
presence of many types of structural change likely to occur in practice. Of course, I think 
the authors implicitly recognize this when they say that the significance lines drawn should 
be interpreted as yardsticks rather than as part of a formal test. However, if the lines 
yield an ineffective test they may well be ineffective as yardsticks also. 

Finally may I suggest an alternative, or rather additional, way of calculating moving 
regressions, which are the subject of Section 2.5 of the paper. Suppose estimates of P 
based on r observations are calculated using an exponential weighting system. In this 
system the current set of observations would receive a weight of unity, the previous set 
of observations would receive a weight of q, the set before a weight of q2 and so on. Of 
course, 0 <q < 1. Successive estimates could be computed recursively since if we define 

I 
Qs= xxxqi-i (2) 

i=l 

we have 
Qr = qQr1+xrx$ (3) 

and so 
-2 -1 1 - 

Q-1 _ q-1 Q-1 q Q' x x' Q'r' (4) r 7-1 1+q'1xI QA1xV 4 

I wonder if the authors have used this type of weighted recursion? It would be interesting 
to know if it is more sensitive to changes in the Pl's than the moving average method. 

Dr AGNES M.> HERZBERG (Imperial College, London): Andrews (1972) proposed a 
simple way of plotting higher dimensional data in two dimensions, i.e. if the data are 
m-dimensional each point x' = (x1, ..., xm) defines a function 

fQ(t) = 2-1 +x2sin t+x3 cos t+x4sin 2t + x5 cos 2t + 
the function being plotted over the range - v < t < r. 

The basic regression model considered in equation (1) is Yt = x' Pt+ ut (t = 1, ..., T). 
In Section 2.5, the authors suggest a way of investigating the time-variation of Pt by fitting 
equation (1) on n successive observations and then on the next n, and so on. They suggest 
that the graphs of the resulting estimates of the coefficients in Pt against time provide 
evidence of departures from constancy. 

Let fGi = (f1i, *--, gkf) be the k x 1 vector of estimates of Pt obtained from the ith set of 
n observations, i.e. P1 is estimated from the first n observations, 02 is estimated from the 
second observation to the (n + I)st observation, et cetera. From each , form the function 
fp,(t) as above. Plot the resulting functions. The plots of the functions should show the 
gradual change of the whole vector of coefficients from constancy by the change of the 
clusters of the plots. 

Mr M. C. HUTCHISON (Department of Health and Social Security): I would like to 
congratulate the authors in providing a most interesting paper which, in the form of TIMVAR 
is especially useful to statisticians working with regressional time series. 

The cusum of squares test is of the form 
j i n 

yI = x/x (j= 1,., ,n), 
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where n = T- K and the xi are distributed as x2 variates under H, The approximate test 
given in the paper essentially considers only half of the yj for even j or equivalently adds 
x,-1 to xj for even jand treats xj- + x as a x2 variate. Obviously this test will give more 
significant results than the exact test because the yi for odd j can overstate the confidence 
limit calculated on even values only while the yj for even j stay within it. The following 
diagram shows this clearly. 

-- Confidence limit for (n/2) X2 variates 

x/2 plot of y, for even 
jonly 

- - , Xl plot of y; for allj 

Even Odd Even 
i i i 

An exact test for y1 can be obtained. Considering the probabilities of sample paths of yj 
(j = 1, ..., n) crossing a linear boundary using Durbin (1971), formulae can be obtained 
for calculating the confidence limits of the joint distribution of the yj for even values of n 
only. A program has been written to calculate these percentage points but unfortunately 
due to the lengthy summations involved in integration by parts combined with an iterative 
process, the running time is prohibitive. Consequently, percentage points for probabilities 
of 005 and 0005 of crossing one boundary have been calculated only for even values 
of n up to 34. Work is in hand to obtain percentage points for further values of n and 
further probabilities. This will give a test for detecting changes in the mean of normal 
variates. 

My other comments concern the use of TIMVAR in practice. I have used TIMVAR in the 
past on regressional time-series data and it has successfully picked a point of discontinuity 
in the regression coefficients which was believed to be highly likely a priori. Since then, 
other data have been brought to my notice for which TIMVAR does not seem readily applic- 
able. First, there is the case of data for a small number of years (say, m < k) but with many 
observations within each year. If one can be certain that data within each year come from 
the same equation then I can find no reason why TIMVAR should not be used, which implies 
a random ordering of observations within each year to give a new "time dimension". Then 
one is concerned with discontinuities at m points only which are the changes of data from 
one year to the next. If one is unsure that the data within each year come from the same 
equation then presumably a simple test between corresponding coefficients calculated from 
regressions on data within years should be applied. Secondly, the "other dimension" need 
not be time. One may want to consider points of discontinuity over an ordered variable, 
say adjusted income (income minus needs) collected from a survey together with other 
variables. One might wish to relate expenditure on luxury goods to other factors as 
adjusted income increases. A point of discontinuity may be suspected for high adjusted 
income. In this case one may not have ready access to more data than just averages 
within adjusted income bands. These averages will almost surely not lie equidistant from 
each other. How robust is TIMVAR to changes in the "other dimension" from a discrete to 
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a continuous variable? One could perhaps use TIMVAR if the deviations of the data from 
discreteness were small in some sense. 

I would be interested to hear the views of the authors on these points. 

Professor MOHSIN S. KHAN (International Monetary Fund): I am very pleased to have 
the opportunity to discuss this interesting paper, although unfortunately I was unable to 
be present at its presentation. I believe that this paper will be of considerable importance 
in the field of applied economics where more and more researchers are becoming interested 
in regression relationships that contain parameters that vary over time. In discussing this 
paper I would like to make two points about the tests of stability that have been proposed, 
particularly the tests utilizing the cusums of residuals. 

Since the authors caution the reader against the use of the tests of significance in any 
rigid way, it may be useful to report the results from some Monte Carlo experiments that 
I have conducted. In these experiments I have examined the cusums tests of the Brown- 
Durbin-Evans paper, for a random coefficients model. It is interesting that the cusums 
tests have reasonably high power even for sample sizes of 20 and 30 as compared to the 
maximum-likelihood ratio test and a test based on the estimated values of the variances 
that is due to Hildreth and Houck (1968). 

My other point has to do with the question of the exclusion of autoregressive models 
from consideration. Since it is precisely these models, namely ones involving the use of 
lagged dependent variables as regressors, that are currently of greatest interest to econo- 
mists, it would be extremely useful to have tests of stability that would be applicable to this 
class of models. In certain special cases it is possible to apply the methods contained in 
the paper, for example, if one has a regression equation of the form: 

Yt = coL+ rx1+Ut, (1) 

where the dependent variable, y, is related to the "expected" value of the independent 
variable, x. The error term, ut, is assumed to have classical properties. The expected 
variable is generated by recursive mechanism such as 

xe = PXt+(1-P)4i, (2) 
where P is the coefficient of expectations, 1 > 3 > 0. Substituting (2) into (1) and eliminating 
xt we obtain: 

Yt = Oto + 01 xt+(1 -)Yt-1+ ut-( -) ut-1. (3) 
Obviously the cusums method cannot be applied to equation (3) because of the appearance 
of Yt-i as a regressor and the moving-average nature of the error process. However, it is 
possible to generate xe from (2) for various values of / (as it is bounded) and substitute the 
generated series of xt into equation (1). Such a procedure would fit into the framework of 
the tests described in the paper although, unfortunately, it is fairly time consuming. With 
other models involving lagged dependent variables even this does not appear to be possible. 

As I said earlier, the cusums tests of Brown et al. have considerable potential use in 
economics. In addition to the applications described by the authors, the techniques have 
been used to evaluate the stability of Phillips' curve relationships in the U.K. and import 
functions for the U.S. 

J. A. NELDER (Rothamsted Experimental Station): The updating procedure given by 
relation (3), and more particularly its analogue for deleting a point, is unstable numerically. 
Chambers (1971) describes better methods based on updating the components of, for 
example, a QR decomposition of the data matrix. 

I would like to make a small protest about the misuse of the word "recursive" in the 
paper. The authors are following what appears to be a well-established practice in talking 
about "recursive residuals" et cetera, but nonetheless the underlying procedures are in no 
sense recursive. A recursive procedure is one that invokes itself in the course of execution; 
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the procedures in the paper are sequential or updating procedures in which new units are 
added to (or dropped from) an existing fit. This type of algorithm also needs to be 
distinguished from an iterative procedure, which is applied sequentially, but to the samne 
set of data. "Sequential" seems as good an adjective as any. 

RICHARD E. QUANDT (Princeton University, N. J.): Parameter variation in 
regression models has recently been considered in a variety of contexts (see Annals of 
Economic and Social Measurement, 1973, entire issue) and econometric model builders 
have increasingly been willing to entertain the notion that regression coefficients may have 
different values corresponding to unknown partitions of the sample (see Davis et al., 1966; 
Fair and Jaffee, 1972). In such cases it is important to be able to test the hypothesis that no 
shift in parameter values has taken place. There are basically two types of mechanisms 
that may be thought to be responsible for shifts: (a) deterministic mechanisms according to 
which the parameter vector fi has the value /3, if some specified function b(z, 7) < 0, where 
z is a vector of some observable exogenous variables and 7 a vector of unknown para- 
meters, and fi has value P2 if b(z,0)>0; (b) stochastic mechanisms among which we 
include random coefficients regression models as well as mixture models according to 
which, for each observation, fi = /3, with probability A and 2 with probability 1-A. Brown, 
Durbin and Evans address themselves to the first case with the further specialization that 
the function 0(z, 7T) is of the form t + vT where the only exogenous variable responsible for 
the shift is the time index t. Their procedures involving recursive residuals are particularly 
appealing because of (a) the particular suitability of the recursive residuals, as contrasted 
with, say, Theil's BLUS residual, for the test at hand; (b) the ease of computation of the 
tests; (c) the fact that the tests serve the combined purpose of testing hypotheses and 
performing data analysis in the Tukey sense; and (d) their adaptability to cases where the 
shift in parameter values occurs according to the values of some extraneous variable other 
then t. If, for example, it were posited that fi = Pi for values of a variable Zt < zo and 
P = /2 otherwise, where Zt is observable and z0 unknown, all that would be necessary for 
the Brown, Durbin and Evans procedures would be to sort the observations according to 
the values of Zt and then apply the tests. It is particularly laudable that their several 
procedures as well as the log-likelihood ratio technique are operational in the TIMVAR 
program. 

Several questions and problems remain, however. Some of these are as follows. 
(1) What are the asymptotic properties of the various procedures? One of the questions 
here is the manner in which one proceeds to the limit. In a recent paper, Farley et al. 
(1973) suggest holding constant the period spanned by the observations and letting the 
intervals between observations converge to zero; only by such a device can one guarantee 
that the fraction of observations belonging to the two regression regimes remains unaltered 
as we pass to the limit. On this basis they indicate that both cusum tests have undesirable 
asymptotic properties, such as the power of the cusum of squares test not converging to 1 
as n goes to infinity. (2) What are the powers of the various procedures in finite samples? 
Some preliminary Monte Carlo experiments by Farley et al. have compared the power of 
their own procedure with that of the Chow test (Chow, 1960) performed on the assumption 
that the shift occurs at the midpoint of the data series and the log-likelihood ratio test 
using empirically derived critical values. Their own procedure involves estimating y = XP + E 
and y = Xp + HA + s, where H has (tj)th element txtj, computing the sum of squares resi- 
duals So and S. from the two regressions and rejecting Ho: 8 = 0 if (S - S1)/S is significantly 
different from zero. Among the three procedures compared they find that there is no 
test most powerful uniformly in the value of the true shift point. Unpublished results by 
Goldfeld and Quandt suggest that the cusum test performs well in samples of size 30-60 
observations and in some cases has power equal to 100 per cent. It seems possible to gain 
additional power by performing the test both "forward" and "backward" on the data 
series, although we have not determined how to use the thus gained information 
"rigorously". It would clearly be desirable to have more systematic information about the 
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several procedures proposed by the authors in contrast with the procedures proposed by 
others. (3) What are sensible procedures if the error terms are serially correlated? It seems 
fairly certain that the tests mentioned heretofore do not remain acceptable in the presence 
of serial correlation, yet it is precisely in time series models that serial correlation is most 
likely to occur. It would be interesting to see to what kind of modification the authors' 
methods would have to be subjected in order to cope with this problem. An approximate 
maximum-likelihood procedure for estimating the parameters of the two regression regimes 
which can then be used in likelihood ratio tests is as follows (see Goldfeld and Quandt, 
1974).t 

Let 

Yt = x' P, + ult if t < to 
Yt = XPt P2 + U2t if t> to 

with 9l 2, to and the error variances unknown. 
Define Dt = 0 if t <to and Dt = 1 otherwise, and posit that the error terms are 

generated by 
Uit = pf{(l - Dt1) ult-i + Dt1 U2til} + ut, 

U2t = P2{( - Dt1) u1ilt + Dt1 U2t_l} + E2t, 

where elt and 52t are jointly normal and 

E(Elt) = E(e2t) = E(s1l clt-u) = E(82t E2t-1) = 0, 

E(82t) = or, E(c2t) = o, E(E1t c2t) = a12- 
The two regression regimes may be combined in obvious fashion to yield 

Yt = (1 - Dt) [x1 P1 + pl{(I - Dt-1) (Yt-u - x'_1 Pl) + Dt-1(yt - x'tl P2)}] 
+ Dt[x2 P2 + P2{(- Dt-1) (Yt-u - x'_1 Pl) + Dt-.u(yt-u - x-l P2)} 
+ (1 - Dt) elt + Dt c2t. 

From this the likelihood function (conditional on yo) can be derived and is a function of all 
the parameters including the discontinuous Dt. It is possible to replace Dt in the likelihood 
function with a continuous approximation with the correct qualitative properties such as 

Dt vl exp (- )de; 
V27T) a x 

the likelihood function then becomes a function of two new parameters to and a but all the 
parameters can now be estimated by fairly routine numerical optimization techniques. 
Preliminary indications seem to be that if we form the likelihood ratio A by dividing the 
maximum of the likelihood function under Ho by the maximum of the likelihood function 
suggested above, the quantity -2 log A has approximately x2 distribution with appropriate 
degrees of freedom as suggested by asymptotic theory even in moderate-sized samples. 

The preceding comments and suggestions are merely intended to give some indications 
of directions in which future research might go. It is clear that the tests proposed in the 
paper are already useful since several researchers have been using them and indeed the 
cusum test has been programmed by several econometricians. 

Dr T. SUBBA RAO (University of Manchester Institute of Science and Technology): The 
problem considered by the authors is interesting, and a similar problem has been considered 
earlier by Subba Rao and Tong (1972, 1973) and Bohlin (1971). By first formulating the 
problem in the conteext of a control system, I will show how the problem considered by the 
authors can be deduced as a particular case of the one considered by Subba Rao and Tong 
(1972, 1973). 
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Let us assume we have a time-dependent system with k inputs {x7t, r = 1, 2, ..., k} and 
a single output {Yt} contaminated by the noise {ut}. The system can be described 
schematically as follows: 

XIt Time- ut noise 

X2t | dependent |- ) - _ {Yt; 

Xrt system 

Further let us assume that the stochastic processes {x7t, r = 1, 2, ..., k}, {Ut}, {yt} are all 
oscillatory processes (Priestley, 1965), with zero mean and spectral representations 

Xrt = eit" At,r(cO) dZx,r(CO) (r = 1, 2, ..., k), ( 
_T (1) 

Ut = eitw At, ,(w) dZ.(co) 

and 

Yt eito? At, ,#) dZ,,(c), 

where {dZ.,,(co)}, {dZ.(c)} and {dZy(w)} are all orthonormal processes. Let the system be 
described by the linear relationship 

k oo 

Yt = I hj,t(l) xj,t-I + ut, (2) 
j=l 1=0 

where it is assumed that {ut} and {xj,8} are independent. We note that by choosing the 
impulse response functions 

hjj1) =-h j,t At(l) ( j = 1, 2, . .., k), (3) 
where 

e(I) 
I if I 

= 
?, 

the model (1) considered by the authors can be obtained. 
By substituting the spectral representations in (2), we can show that 

dZt,y,(ov) = dZ',x(w) Ht(@v) + dZt,.(&), (4) 

where 
dZt,y(co) = At,y(w) dZ,,(w), dZt,.(co) = At,.(v) dZ.(&v), 

dZx,$(cv) = {At,,(c&) dZx,1(co), ..., At,k(w) dZO,k(w)}, 

H'(co) = {Jh,t(o), H2,t(co), Hk(cot)}, 

Hj,t(w) = h,t(l) e-'I (j= 1, 2, .., k). 
1=0 

For the type of impulse response functions given by (3), 

Hj,t(cw) = hj,t (j = 1, 2, ... , k). (5) 

Multiplying both sides of equation (4), by dZ*(wo) and taking expectations, we get 
Ft,$x(w) Ht(co) =Ft,v() 
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whence 
Ht(co) = F-,.(co) Ft,y(co), (6) 

where 
Ft, x(oi) = EfdZtx(clo) dZ',x(c0*) 

Ft,y(w) = E{dZ*x(w) dZt,o(w)}, 
For the type of impulse response functions given by (3) and (5), we have the estimate of 
Ht(co)), 

Ht = Fi%-'X(w0) Pt' O). (7) 

We note Ht (or equivalently Pt) is a gain vector and hence testing the constancy of the 
coefficient vector Ht is equivalent to testing the constancy of gain vector, and this problem 
has been considered by Subba Rao and Tong (1972, 1973). Briefly this approach is as 
follows: Estimate fit at several frequencies, covering the whole frequency range (- iT, iT). 
Since fit is approximately a multivariate normal, we can perform single-factor multivariate 
analysis of variance test for the hypotheses 

Ht1 = Ht2= ... = HtT 

on the lines suggested by Subba Rao and Tong (1972, 1973). From the spectral 
representation of {ut}, we have 

var Ut = dt= f ft,.() dw. 

Testing the constancy of ft,(co) for all co is equivalent to testing the constancy of ot. This 
can be performed following the two-factor analysis of variance technique suggested by 
Priestley and Subba Rao (1969). 

Bohlin (1971) considered the following time domain approach. Consider the time 
series {Yt} generated from the model 

Yt + al(t) Yt-l + ... + an(t) Yt-n = Aeo(t) + kt(t), (8) 
where 

a?(t) = aj(t-1) +qi e?(t) (i = 1, 2, ...,n), 

k(t) = qn+l en+1(t), 

where {e?(t)} is a sequence of i.i.d. random variables N(O, 1). Bohlin (1971, equation 5) 
derived the updating equations for the parameter vector 0'(t) = {ai(t), a2(t), ..., an(t)}, k(t) 
based on the sample (yt, Yt-1, ...). Assuming q1 = q2 = ... = qn = q he obtained the maxi- 
mum-likelihood estimate of q and tested the null-hypothesis q = 0. If the null-hypothesis is 
accepted it implies that the coefficient vector 0(t) is time invariant. 

By choosing A = 0, -Yt-1 = Xlt, -Yt-2 = X2t, ... et cetera we can reduce the model (8) 
to the one considered by the authors, and hence the problem has been solved by Bohlin 
(1971) in a more general set-up. 

Dr H. TONG (University of Manchester Institute of Science and Technology): The 
study of the dependency of regression relationships on time is, of course, a very important 
one and the authors are to be congratulated for bringing forward a very timely paper. 

Although the authors have confined themselves to the case of non-stochastic regressors, 
many of the problems studied and some of the results obtained have their counterparts in 
the case of stochastic regressors, as could arise in, for example, a time-dependent system 
with a stochastic input subject to an additive stochastic noise disturbance. This type of 
problem has been systematically studied. See, for example, Subba Rao and Tong (1972, 
1973), Priestley and Tong (1973) and Tong (1974). 
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If we pose the problem in the above general form, with stochastic regressors, then tests 
for constancy of relationships over time have been proposed by Subba Rao and myself 
(1972, 1973). I am glad to report that these tests have been successfully applied to real data. 
(See Subba Rao and Tong, 1973, 1974. The latter paper is currently available in the form 
of a technical report issued from the Department of Mathematics, UMIST.) 

Coming back to the problem considered in the paper, I would make the following 
comments. 

(i) In practice, it would seem that restricting the regression model (1) to a fixed number, 
k, of regressors over all time is sometimes unrealistic. Just as in the case of stationary 
autoregressive model building, the determination of the number of regressors is an 
important problem. In the former case, Dr H. Akaike of the Institute of Statistical 
Mathematics, Japan, has recently obtained important results and practical procedures 
(see, for example, Akaike, 1973). 

(ii) The idea of using W, (r = k + 1, ..., T) to study the adequacy of the proposed model 
has its counterparts in the case of stochastic regressors. For example, Mehra and Peschon 
(1971) have summarized the experiences of control engineers in "Fault detection and 
diagnosis in dynamic systems" and their approach is based on what is commonly known 
as the "innovation sequence" which in the control literature, is defined to be Yr-YI,-_, 
Y7I,-L being the minimum linear mean-square predictor of Y, in terms of YI-1, YI-2, .... 

(iii) In designing moving regressions, it would seem that the choice of the length n is 
quite important. Have the authors any systematic procedure for its selection? If so, is it 
in any way related to something like the "maximum width over which the short segment 
may be regarded to follow one and the same regression relationship"? 

(iv) I would just mention that a similar technique as that based on Quandt's log- 
likelihood ratio has recently been proposed by Ozaki and me in a paper to be presented at 
the Eighth Hawaii International Conference in Systems Science, 1975, for the detection 
of abrupt changes over time in auto-regressive relationships. An alternative approach to 
this problem may be formulated in a Bayesian framework. Recently, some control 
engineers in Russia have studied this problem by the Bayesian method. See, for example, 
Telksnys (1973) and the references quoted there. 

(v) In the case of stochastic regressors, Jones and Brelsford (1967) have considered 
Fourier series expansion of regression coefficients, using an approach due to Gladyshev 
(1961). Here, the problem of determining an optimal number of Fourier terms is important, 
and a Ph.D. student at Manchester (Mrs M. Green) has recently studied this problem. 
This approach is somewhat similar to the polynomial parameterization suggested in 
Section 2.6 of the paper, but must be applied with caution if prediction is the objective. 

Dr W. G. GILCHRIST (Sheffield Polytechnic): Though every facet of daily life proclaims 
that the world is non-stationary, the literature of regression tends to ignore it. The methods 
and plots proposed by the authors provide useful tools that will help those who wish to 
check their assumptions. I would be interested to know what proportion of the data the 
authors have looked at satisfies the assumption of constant ,3. 

The methods used by the authors apply least squares to either all the data up to a time 
r or to a moving sequence of n observations up to that time. Thus the estimates of p treat 
all the data used as being equally important. The deviations from the fitted model, as 
represented by the recursive residuals, are used to indicate possible changes in the f's. An 
alternative approach is to seek to find "local" estimates of the values of Pt. This can be 
done, for example, by using discounted least squares, e.g. Gilchrist (1967). Moving 
forward through time the estimates that minimize the discounted least-squares criteria, 

r a7 Ut2 

are given by 
br = br-I + Pr Xr(Yr- Xr br-1), 
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where 
/ ar-k-1 0 

Pr = [xr A, xr]-, A7r= | a ) r 

~~~ a 

and Pr may be updated by 

p = Pr-1 Pr-1 Xr Xr Pr-1 

a a(a + x Pr-1 Xr)' 
These correspond to equations (4) and (3) in the paper. The above estimate of Pr puts the 
greatest emphasis on data close to time r. The value of this approach is that we can plot 
components of br against time and see how the regression coefficients actually vary over 
time. Clearly the ordinary least-squares estimate is a special case of this when a = 1. 
Where we wish to look at past values of br a criterion that discounts u2+ , by a factor a'T' 

= ..., -1, 0, 1, ...) provides the equivalent to the moving regression. 
An implication of the possible variation in coefficients, that has been explored by 

Singleton (1971), is that, in selecting variables for regression, the best variables to select 
in one locality in time may not be the same as those at a different locality in time. 

Professor DURBIN and Mr EVANS replied briefly at the meeting and subsequently in 
writing as follows: 

We agree with Professors Cox and Quandt that it would be useful to compare the 
powers achieved by a variety of tests, including those we have suggested, against alternatives 
of interest. Professor Cox has made a useful start but takes the cusum of a fixed number 
of terms. Where, as in our case, the number of terms varies the mathematics becomes 
intractable, though of course one could use simulation. 

As Mr Fisk indicates, there are many ways of transforming the least-squares residuals 
into an orthogonal set. This raises the interesting question: which of them is best for a 
given test statistic and a given alternative hypothesis? 

Sir Maurice Kendall, Mr Clarke and Dr Nelder point to the possibility of undesirable 
build-up of rounding errors. In order to guard against this, all the recursive calculations 
in our program are performed in double precision and, if the model contains a constant, 
are carried out on deviations from means. In addition, various checks can be made on 
the output. First, the final estimates of the regression coefficients after all the recursive 
calculations have been performed may be compared with those obtained in one step from 
the entire data set. Secondly, the final cusum of squares may be compared with the 
theoretical value of unity. Thirdly, in the case of the moving regressions the coefficients 
obtained from the final segment of the data after all the recursions have been performed 
may be compared with the corresponding estimates derived from the backward recursive 
regression. These checks have been carried out as a matter of routine and have rarely 
shown any sizeable discrepancies. For the three examples in the paper the discrepancies 
were negligible. 

Sir Maurice Kendall's question about how to distinguish between changes in regression 
coefficients and changes in residual variance lends support to the emphasis we have placed 
on the examination of the data from several different standpoints. The information on 
variance change obtained as part of the output of the moving regression technique 
discussed in Section 2.5 has to be balanced against the information on coefficient changes 
provided by the other tests. The result of this examination will often indicate fairly clearly 
which is the more likely explanation. This was the case with our Example 1 as we stated 
in the paper, notwithstanding Mr Phillips's remark about this example. 

Sir Maurice's suggestions on extensions are well worth following up. As regards 
autoregressive series, Dr Young has referred to his use of recursive residuals for dynamic 
models and Dr Khan has pointed to the need for treatment of the general model including 
both exogenous variables and lagged dependent variables. At present we do not know 
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which of our tests, if any, are valid even asymptotically for models containing lagged 
dependent variables. That the situation requires care is clear from the study of similar 
problems for ordinary least-squares residuals (Durbin, 1970). Models containing errors 
in variables might be amenable to the Kalman technique. 

Mr Fisk, Sir Maurice Kendall, Mr Phillips, Mr Harvey and Professor Quandt all point 
out that the observations can be ordered by criteria other than time. This extends the 
domain of application of the techniques to other tests of model specification. One could 
go further and transform the data first and then order by some appropriate quantity. For 
example, one could follow Duncan and Jones (1966) and transform first to the frequency 
domain and then use TIMVAR to investigate the stability of the regression relationships 
with respect to frequency. 

We recognize the merit of the work on time-varying techniques of time-series analysis 
developed by Professor Priestley, Dr Subba Rao and Dr Tong and are grateful for the 
references to it. For the problem mentioned by Dr Tong of choosing the length n of the 
moving regression our approach is purely pragmatic. We plot the mean-square one-step- 
ahead prediction error, derived as indicated in Section 2.5, as a function of n and choose 
the largest n for which this value has attained its effective minimum. This technique has 
been used to determine the length of base over which to average in seasonal adjustment 
work (Durbin and Murphy, 1975). 

As regards Professor Priestley's comments on the control theory literature and related 
remarks by Dr Young, we of course agree that it is important that communications 
between statisticians and control engineers working on related problems should be kept 
open. Both contributors have done valuable work in this respect. At the same time we do 
not think that statisticians are quite as parochial as their remarks might be understood to 
suggest. The original Kalman (1960) paper was an outstanding achievement which is 
surely well known to all time-series specialists. Papers relating Kalman's work to 
statistical problems were published in British statistical journals by Jones (1966) and Walker 
and Duncan (1967). This Society held an Ordinary Meeting devoted to control theory in 
1969 at which papers were read by Wishart (1969), Whittle (1969) and Bather (1969). The 
principal speaker at the Society's Conference at Nottingham in 1972 was Professor 
K. J. Astrbm who is a leading control theorist. These are just a few examples of the 
influence of control theory on British statistics. 

Having included Kalman's equations in lecture courses we were well aware of the 
relation between them and our relations (2)-(5) and should probably have referred to this. 
The reason we did not was that our relations owe nothing to Kalman historically. The 
definition (2) of recursive residuals was used by us in the form of a generalization of the 
Helmert transformation in lectures in the mid-1950's and is surely "well known" and much 
older. The remaining relations come from the papers of Plackett and Bartlett referred to. 

Dr Young recommends greater emphasis on the recursive estimates of the parameters. 
These are in fact produced by the program and study of the resulting plots along the lines 
he suggests has been found useful in practice. Mention of this and other aspects of the 
work was omitted only in order to try to keep the paper short and simple. We certainly 
agree with him that if time-variation is found, it is important to investigate the physical 
nature of the system in order to seek transformations of the data which will yield a system 
which is time-invariant. 

Mr Phillips questions the robustness of the tests against non-normality. We have not 
investigated this but would conjecture that the tests would be sufficiently robust for most 
practical work. As regards the effects of serial correlation, raised also be Dr Smith and 
Professor Quandt, these are likely to be substantial. It would be worth investigating 
whether simple correction factors along the lines suggested by Professor Cox can be 
developed. 

We thank Professor Anderson for confirming our assertion that at the usual significance 
levels the probability that a sample path crosses both lines is negligible. In fact the results 
in his (1960) paper could be used to produce a complete set of percentage points for a. 
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Dr Smith's suggestion of using a V-mask is a very good one which can certainly be 
expected to lead to a gain in power against some types of alternative. His development 
of related Bayesian techniques is to be encouraged, though we believe that our own 
approach, in which one looks at the data from a variety of standpoints and uses different 
test statistics to measure different types of departure from the null-hypothesis, is more 
informative when there is no specific alternative in mind at the outset. 

We agree with Professor Ehrenberg that in particular practical situations a model 
based on stochastic regressors might well be appropriate. But our approach in such a 
situation would be simply to perform a conditional analysis given the observed values of 
the regressors. This would immediately reduce to the model considered in the paper. 
Leaving aside sampling fluctuations, we cannot follow his argument that when the 
regressors are stochastic two half-samples would necessarily give different regression lines. 

Mr Harvey makes a useful point about the choice of the estimator of a and we agree 
that the use of his estimator should lead to an increase of power. As regards the use of 
exponential weights, suggested by him and also by Dr Gilchrist, we considered this 
possibility and obtained the relevant formulae at an early stage of the work, but gave up 
the idea and we have not, in fact, ever used the formulae in practice. 

Dr Herzberg makes an imaginative suggestion but we have not been able to put it to 
the test and find it hard to evaluate the merit of the idea in the abstract. This is one of 
those cases where the proof of the pudding will be in the eating. 

We wish to encourage Mr Hutchison to produce his table which will be a useful 
contribution. While the use of TIMVAR after randomization within years as he suggests 
will give a test which is valid in the sense of giving the right rejection probabilities on the 
null-hypothesis, we feel that power would inevitably be lost relative to the corresponding 
test based only on year-to-year changes. 

We have some sympathy with Dr Nelder's remarks on the use of the word "recursive" 
but feel that the usage is too well-established to change now. Dr Young has referred to 
the use of the term "innovations process" in the control literature. In the time-series 
literature (Wiener and Masani, 1957; Cramer, 1961) the term "innovation" is normally 
used in connection with stochastic processes whose realizations are of infinite length. 
The innovation at time t is then defined as the difference between the observation at time 
t and its best linear predictor given all the observations up to and including time t -1. 
If one were to regard Yi, *--, YT as a sample from an underlying infinite population, one 
would take ut in (1) as the innovation. Extending the definition to finite samples of data, 
however, one could take as the "sample innovation" at time t the difference between Yt 
and its best linear estimate based on Yi, ..., Yt-1, i.e. Yt-x' bt-1, t = k + 1, ..., T in our 
situation. But it would still be necessary to introduce a new term, such as our term 
"recursive residual", to denote the standardized residual wi. 

We are grateful to Professor Quandt for the brief summary of recent work by him and 
his colleagues. It is a matter for regret that there are no distributional results available for 
the original Quandt log-likelihood ratio statistic considered in Section 2.6. The idea of 
replacing the discontinuous Dt by a continuous approximation is ingenious and we hope 
it will make these difficult problems more tractable. 
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