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1. Example

We analyse ads about sales of Toyota Corolla cars at www.ngs.ru
on 02.06.2012. We investigate dependence of price Yi against
production year Xi . Ads are ordered by the year. The order is
random for cars of a same year.
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Prices of right-wheeled cars (in roubles, 382 ads)
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The model is

lnYi = aXi + b + εi , i = 1, . . . , n. (1)

Here εi are independent and identically distributed, have zero
mean and non-zero finite variance. Estimates of a and b are
approximately

â = 0.1089, b̂ = −205.3.
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Logarifms of prices
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We estimate Yi and calculate regression residuals. The sample
standard deviation of regression residuals is S = 0.2469.

Logarifms of prices with a trend line
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Logarifms of prices after 3-sigma procedure

The linear model is not appropriate
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2. Basic concepts and theorems of probability

Probability theory studies mathematical models of random
experiments, that is, experiments with an unpredictable result but
with convergent frequency.
A random experiment is associated with a space of elementary
outcomes, an arbitrary non-empty set Ω. Measurable subsets of Ω
are called events.
Definition Probability space is a space of elementary outcomes
with a probability measure (probability) P on its subsets such that:
1) P(A) ≥ 0 for any event A (non-negativity);
2) P(A1 ∪ A2 ∪ . . .) = P(A1) + P(A2) + . . . for any finite or
countable set of disjoint events A1, A2, . . . (countable additivity);
3) P(Ω) = 1 (normalization).
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Conditional probability of the event A provided that the event B
has occurred is defined as P(A|B) = P(AB)/P(B).

Definition Random vector X = (X1, . . . ,Xn) is a mapping from
the space Ω to n-dimentional arifmetic space Rn such that set
{ω ∈ Ω : X(ω) < t} is an event for any t = (t1, . . . , tn) ∈ Rn, that
is, probability of the set is defined.
Multidimensional cumulative distribution function (cdf) of random
vector X is the probability as a function of the vector variable t:

FX( t ) = P{ω ∈ Ω : X(ω) ≤ t } = P{X ≤ t }.
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Inequality X ≤ t is understood coordinate-wise, that is, it means
the system of inequalities X1 ≤ t1, . . . ,Xn ≤ tn.
For n = 1 we obtain definitions of a random variable and a
cumulative distribution function.
A random vector X is called discrete if it takes a finite or a
countable number of values t1, t2, . . .. One can determine its
distribution by its distribution table, that is, by a collection of
probabilities P{X = tj}. In 2-dimensional case (if n = 2) one can
write the distribution table of discrete vector X = (X ,Y ) as
X\Y b1 b2 . . .

a1 p11 p12 . . .
a2 p21 p22 . . .
. . . . . . . . . . . .
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Here pij = P{X = ai , Y = bj}.
Properties of the table of distribution of a two-dimensional discrete
vector:
1) all ai are distinct;
2) all bj are distinct;
3) all pij are nonnegative;
4) the sum of all pij is 1.

Exercise
Let first player wins with probability 1/4, second player wins with
probability 1/4, too. Nobody win with probability 1/2. Let X and
Y be indicators of wins of first and second player, respectively.
Write a distribution table of random vector (X ,Y ).
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In one-dimensional case, distribution of a discrete random variable
is written in the form of a table, containing its values a1, a2, . . .
and probabilities pi = P{X = ai}. The table of one-dimensional
distribution of random variable X is obtained from two-dimensional
distribution table by formula P{X = ai} =

∑
j pij .
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Example Poisson distribution
P{ξ = k} = λk

k! e
−λ, k = 0, 1, . . ..

Here λ > 0 is a parameter of Poisson distribution.

Random vector X is said to have multidimensional absolutely
continuous distribution if there exists an multidimensional
probability density function (pdf) fX(t) such that for any Borel set
B ⊆ Rn

P{X ∈ B} =

∫
B

fX(t)dt

(hereinafter, we use the notation dt = dt1 . . . dtn).
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So if X has multidimensional absolutely continuous distribution
then for any t ∈ Rn

FX(t) =

∫
u≤t

fX(u)du.

Properties of multidimensional pdf: fX( t ) ≥ 0;
∫
Rn

fX( t )dt = 1.
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One-dimensional pdfs of components of a random vector are
calculated by integrating of the multidimensional pdf over all
values of all other components.
Components of a random vector are called independent if for any
subsets B1, . . . , Bn of the real line

P{X1 ∈ B1, . . . , Xn ∈ Bn} = P{X1 ∈ B1} · . . . · P{Xn ∈ Bn}.

The distribution of a vector with independent components is
determined by the distributions of the components.
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If a discrete random vector takes values t1, t2, . . ., then its
expectation is a vector

EX =
∑
j

tjP{X = tj}.

If series ∑
j

|tj |P{X = tj}

is divergent then one said that the mathematical expectation does
not exist. Here, | · | denotes the Euclidean norm of the vector.
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If g : Rn → Rm be a vector function, m ≥ 1, then

Eg(X) =
∑
j

g(tj)P{X = tj}.

In the absolutely continuous case, expectation is defined by formula

EX =

∫
Rn

tfX( t )dt.

Expectation does not exist if∫
Rn

| t |fX( t )dt

is divergent.
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Calculation of expectation:

Eg(X) =

∫
Rn

g( t )fX( t )dt.

If components of vector g are written in the form of a matrix, the
corresponding formulas give mathematical expectation of the
random matrix.
The covariance matrix of random vector column X is the matrix

C (X) = E(X− EX)(X− EX)T .
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Matrix C (X) is symmetric and nonnegatively definite. Its diagonal
elements are variances of components of the random vector, and
the off-diagonal elements are covariances of the corresponding
pairs of components. The root-mean-square (standard) deviation
of a component is the root of its variance. The correlation
coefficient of two components is their covariance divided by the
product of standard deviations.
Let random vector X have a multidimensional standard normal
distribution, that is, its multidimensional pdf is

fX(t) =
1

(2π)n/2
exp

(
−1

2
t T t

)
,

t = (t1, . . . , tn)
T , t T t = t21 + . . .+ t2n .
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Let column vector Y be expressed in terms of column vector X
linearly:

Y = a+ BX,

a is a non-random column vector, B is a square matrix. Then Y is
said to have a multidimensional normal distribution.
Normal vector Y has an expectation vector EY = a and a
covariance matrix C = C (Y) = BBT . The distribution of the
normal vector Y is completely determined by the mathematical
expectation and the covariance matrix. The matrix B is defined by
a given multidimensional normal distribution up to an orthogonal
matrix.
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A multidimensional normal distribution is said to be nondegenerate
if the matrix B is non-degenerate, that is, detB ̸= 0, or,
equivalently, detC > 0.
In this case, there is a multidimensional pdf

fY(t) =
1

(2π)n/2(detC )1/2
exp

(
−1

2
(t− a)TC−1(t− a)

)
.
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Definition A sequence of random variables {Yn} is said to
converge almost surely (a.s.) to a random variable Y if

P{ω : Yn(ω) → Y (ω)} = P{Yn → Y } = 1.
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Designation Yn
a.s.→ Y .

Theorem (strong law of large numbers, SLLN) Let random
variables X1, X2, . . . be independent and identically distributed,
and E|X1| <∞. Let a = EX1, Sn =

∑n
i=1 Xi . Then

Sn
n

a.s.→ a

as n → ∞
Definition A sequence of random vectors {Yn} is said to converge
in distribution (weakly) to a random vector Y if

FYn(x) → FY(x)

for all points x in that FY is continious.
Designation Yn ⇒ Y .
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Central limit theorem (CLT) Let X1, X2 . . . be independent and
identically distributed random variables. Let Sn = X1 + . . .+ Xn,
a = EX1, σ

2 = VarX1, and 0 < σ2 <∞. Then
(Sn − na)/σ

√
n ⇒ Z, Z has standard normal distribution. That is,

for any x ∈ R

P

{
Sn − na

σ
√
n

≤ x

}
= F Sn−na

σ
√

n
(x) → Φ0,1(x) =

1
√
2π

x∫
−∞

e−t2/2 dt

as n → ∞.
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Multidimensional central limit theorem Let X1, X2 . . . be
independent and identically distributed random m-dimensional
vectors with expectation vector a and non-degenerate covariance
matrix C . Let Sn = X1 + . . .+ Xn. Then

Sn−na√
n

⇒ Z, that is, for

any x ∈ Rm

P

{
Sn − na√

n
≤ x

}
→ P{Z ≤ x}

as n → ∞, Z is a normal random vector with expectation 0 a
covariance matrix C .

25 / 179



3. Elements of the theory of stochastic processes

A stochastic process is a set of random variables indexed by time:
ξ = {ξ(t), t ∈ G}. Here G ⊆ R.

Poisson process {Π(t), t ≥ 0}:

P{Π(t) = k} =
(λt)k

k!
e−λt , t > 0, k = 0; 1; . . . .

λ > 0 is an intensity of the Poisson process.
Thus the Poisson process at time t > 0 has Poisson distribution
with parameter λt.
The Poisson process has many amazing properties. We need the
splitting property.
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Theorem (on a Poisson infinite urn scheme) Let the total number
of balls ξ is a Poisson random variable with parameter λ. Each of
the balls independently of the others is placed in an urn with
number i with probability pi > 0, i = 1, 2, . . .,

∑∞
i=1 pi = 1. Let

ξi be a number of balls in i-th urn. Then ξi , i = 1, 2, . . ., are
independent Poisson random variables with parameters λpi .
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Proof
For any m <∞ let qm = pm + pm+1 + . . .,
ξ≥m = ξm + ξm+1 + . . .. Then

P{ξi = ki , i = 1, 2, . . . , m − 1, ξ≥m = km}

= P{ξ = k1 + . . .+ km}
(k1 + . . .+ km)!

k1! . . . km!
pk11 . . . p

km−1

m−1 q
km
m

=
λk1+...+kmpk11 . . . p

km−1

m−1 q
km
m

k1! . . . km!
e−λ

=
(λp1)

k1

k1!
e−λp1 . . .

(λpm−1)
km−1

km−1!
e−λpm−1 . . .

(λqm)
km

km!
e−λqm .

So ξ1, . . . , ξm−1 are Poisson and independent for any m. So all
ξ1, ξ2, . . . are Poisson and independent.
The proof is complete.
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This result is valid for a finite Poisson urn scheme, too.
Corollary (on the splitting of a Poisson flow) Let
Π = {Π(t), t ≥ 0} be a Poisson process with intensity λ, pi > 0,
i = 1, 2, . . .,

∑∞
i=1 pi = 1. Let form stochastic processes Πi ,

i = 1, 2, . . ., according to the following rule: every moment of
time, when Π(t) grows by one, we assign with probability pi to
process Πi (independently of the others moments of growth).
Then processes Πi , i = 1, 2, . . ., are independent Poisson
processes with intensities λpi .

Exercise
Prove it for splitting on 2 processes.
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Gaussian process X = {X (t), t ∈ G} is a stochastic process with
normal finite-dimensional distributions, that is, for any
t1, . . . , tm ∈ G vector (X (t1), . . . ,X (tm)) have m-dimensional
normal distribution.
Distribution of a Gaussian process is defined by its expectation
a(t) = EX (t) and its covariance function
K (s, t) = EX (s)X (t)− EX (s)EX (t). A stochastic process is
called centered if its expectation equals to 0, that is, a(t) ≡ 0. We
have K (s, t) = EX (s)X (t) for a centered process.
One can define m-dimensional Gaussian process with vector
function of expectation a(t) and covariance matrix function
K (s, t) = (Kij(s, t)).
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Let us describe the conditions under which a Gaussian process has
continuous a.s. sample paths. Continuity of its correlation function
does not guarantee the continuity of sample paths. A correct
description of the continuity conditions uses an entropy approach.
We give only a sufficient condition in terms of the correlation
function.

Theorem (sufficient condition for the continuity a.s. of a Gaussian
process)
If there are 0 < C <∞, α > 0, η > 0 such that

E(X (s)− X (t))2 = K (s, s) + K (t, t)− 2K (s, t) ≤ C

| ln |s − t||1+α

for all s, t from a compact set G ⊂ R such that |s − t| < η, then
Gaussian process X = {X (t), t ∈ G} has continious a.s. sample
paths.
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Standard Wiener process W = {W (t), t ∈ G} is a centered
Gaussian process with covariance function KW (s, t) = min(s, t).
We let G = [0, 1].
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So W is a Gaussian process with independent increments, zero
expectation and variance VarW (t) = t. The standard Wiener
process with probability 1 has everywhere continuous but nowhere
differentiable sample paths. Continuity a.s. of sample paths follows
from the above theorem:
E(W (s)−W (t))2 = |s − t|, and η ln1+α η → 0 as η → 0 for any
α > −1.
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4. Brownian bridge

Standard Wiener process W = {W (t), t ≥ 0} played an
important role in the preceding chapter. We recall that it is a
Gaussian process with independent increments, for which the
expectation is zero, and the variance at any time t ≥ 0 is equal to
t. Its covariance function

KW (u, v) = EW (u)W (v) = min(u, v), u, v ≥ 0.

Brownian bridge W 0 = {W 0(t), 0 ≤ t ≤ 1} is defined by
W 0(t) = W (t)− tW (1). From definition, W 0(1) = 0. Brownian
bridge is also a Gaussian process with zero expectation but with
dependent increments. From the definition, using properties of
expectation, we obtain covariance function of Brownian bridge

K 0
W (u, v) = EW 0(u)W 0(v) = min(u, v)− uv , 0 ≤ u, v ≤ 1.
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So VarW 0(t) = t(1− t), t ∈ [0, 1].
Equivalent definition of the Brownian bridge: this is a Wiener
process, provided that W (1) = 0, that is,

P{J(W 0) ≤ x} = lim
ε→0

P{J(W ) ≤ x |W (1) ∈ (−ε, ε)}

= lim
ε→0

P{J(W ) ≤ x , W (1) ∈ (−ε, ε)}
P{W (1) ∈ (−ε, ε)}

=
√
2π lim

ε→0

P{J(W ) ≤ x , W (1) ∈ (−ε, ε)}
2ε

.

Here J is continuous in the uniform metric functional in C (0, 1),
and x is any real number.
The last equality is true because W (1) ∼ N0,1, and the pdf of the
standard normal law at the point 0 is 1/

√
2π.
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A sample path of W (t)
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A sample path of W 0(t)
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5. Integral functionals

For any u ≥ 0, du ≥ 0 let designate dW (u) = W (u+ du)−W (u).
Due to independence of increments dW (u) ∼ N0,du.
Let function g(t) be Riemann integrable on [0, 1]. Let integral∫ 1
0 g(t)dW (t) be a Gaussian random variable with expectation and
variance equal to limits of expectations and variances of the
corresponding integral sums.
The expectation of integral

∫ 1
0 g(t)dW (t) is 0.

Theorem If g , h are Riemann integrable on [0, 1] then

cov

(∫ 1

0
g(t)dW (t),

∫ 1

0
h(t)dW (t)

)
=

∫ 1

0
g(t)h(t)dt.
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Proof
As

EdW (u)dW (v) = du

for u = v , du = dv , and

EdW (u)dW (v) = 0,

if (u, u + du) and (v , v + dv) don’t intersect, we have

cov

(∫ 1

0
g(t)dW (t),

∫ 1

0
h(t)dW (t)

)
= E

∫ 1

0
g(t)dW (t)

∫ 1

0
h(t)dW (t)

=

∫ 1

0

∫ 1

0
g(u)h(v)EdW (u)dW (v) =

∫ 1

0
g(t)h(t)dt.

So

Var

∫ 1

0
g(t)dW (t) =

∫ 1

0
g2(t)dt.

The proof is complete.

Corollary
∫ 1
0 g(t)dW (t) has a normal distribution with

expectation 0 and variance
∫ 1
0 g2(t)dt.
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We now consider functional
∫ 1
0 W (t)dt, it also has a zero

mathematical expectation. Integrating by parts, we obtain∫ 1

0
W (t)dt = tW (t)|10 −

∫ 1

0
tdW (t)

= W (1)−
∫ 1

0
tdW (t) =

∫ 1

0
(1− t)dW (t).

So

Var

∫ 1

0
W (t)dt =

∫ 1

0
(1− t)2dt =

1

3
.

Thus
∫ 1
0 W (t)dt ∼ N0,1/3.

Exercise Prove that
∫ 1
0 W 0(t)dt ∼ N0,1/12.
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6. Exrtemal functionals

In this section we shall discuss distributions of random variables

max
0≤t≤1

W (t), max
0≤t≤1

W 0(t),

max
0≤t≤1

|W (t)|, max
0≤t≤1

|W 0(t)|.

These are functionals of the standard Wiener process and the
Brownian bridge. But their distributions differ from normal.
Formulas for their distribution are derived using a reflection
principle.
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Reflection of W on level 1
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Recall that Φ(x) = 1√
2π

∫ x
−∞ e−u2/2du is the cdf of the standard

normal law, Φ(x) = 1− Φ(x) is the tail of the standard normal
distribution.
Let W̃ be reflected process. From symmetry, distributions of W
and W̃ are the same.
W (1) ∼ N0,1, W̃ (1) ∼ N0,1.

P{ max
0≤t≤1

W (t) > x} = P{W (1) > x}+ P{W̃ (1) > x}

= 2P{W (1) > x} = 2Φ(x).

So
P{ max

0≤t≤1
W (t) ≤ x} = 1− 2Φ(x).

Exercise
Calculate

P{ min
0≤t≤1

W (t) ≤ −1.96}
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Reflection of W 0 on level 1
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Remember that φ(x) = 1√
2π
e−x2/2 is a pdf for standard normal

distribution.

P{ max
0≤t≤1

W 0(t) > x} = lim
ε→0

P{W̃ (1) ∈ (2x − ε, 2x + ε)}
W (1) ∈ (−ε, ε)}

=
φ(2x)

φ(0)
= e−2x2 ,

so
P{ max

0≤t≤1
W 0(t) ≤ x} = 1− e−2x2 .

Exercise
Calculate

P{ min
0≤t≤1

W 0(t) ≤ −2}.
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If we calculate
P{ max

0≤t≤1
|W (t)| > x},

then we have two borders: x and −x .

P{ max
0≤t≤1

|W (t)| > x}

= P{W (1) > x or W̃ (1) > x or W (1) < −x or W̃ (1) < −x}.

But events
{W (1) > x}, {W̃ (1) > x}, {W (1) < −x} {W̃ (1) < −x}
intersect, that is, can take place simultaneusly. So we use multiple
reflections.
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P{ max
0≤t≤1

|W (t)| > x} = 4P{W (1) > x} − 4P{W (1) > 3x} . . .
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P{ max
0≤t≤1

|W (t)| > x} = 4P{W (1) > x} − 4P{W (1) > 3x}

+4P{W (1) > 5x} − . . .
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P{ max
0≤t≤1

|W (t)| ≤ x} = 1− 4
∞∑
k=0

(−1)kP{W (1) > (2k + 1)x}.

So

P{ max
0≤t≤1

|W (t)| ≤ x} = 1− 4
∞∑
k=0

(−1)k Φ((2k + 1)x).
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Analogously,

P{ max
0≤t≤1

|W 0(t)| > x} =
2φ(2x)− 2φ(4x) + 2φ(6x)− . . .

φ(0)

= 2
∞∑
k=1

(−1)k+1e−2k2x2 .

Thus

P{ max
0≤t≤1

|W 0(t)| ≤ x} =
∞∑

k=−∞
(−1)ke−2k2x2 .

All these formulas are valid for x > 0. The latter distribution is
called the Kolmogorov distribution.
Exercise
Calculate

P{ max
0≤t≤1

|W 0(t)| ≥ 2}.
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7. Omega squared functional

Let omega squared functional be ω2 =
1∫
0

(
W 0(t)

)2
dt.

Here W 0 is a standard Brownian bridge.
Then random variable ω2 is called to have omega squared
distribution.
To calculate its cdf, we introduce random Fourrier series.
Later we will use this approach for other Gaussian processes.
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We use Smirnov’s formula (Smirnov, 1937).

Theorem If J =
∑∞

k=1
η2k
λk
, η1, η2, . . . are independent and have

standard normal distribution, 0 < λ1 < λ2 < . . ., then

FJ(x) = 1 +
1

π

∞∑
k=1

(−1)k
∫ λ2k

λ2k−1

e−λx/2√
−D(λ)

· dλ
λ
, x > 0.

Here

D(λ) =
∞∏
k=1

(
1− λ

λk

)
,

integrals under summation must go to zero.
So, our task is to calculate λk , k ≥ 1.
We will find a very compact formula for D(λ) in our case.
Integrals are calculated numerically.
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Remember

K 0
W (u, v) = EW 0(u)W 0(v) = min(u, v)− uv , 0 ≤ u, v ≤ 1.

Note that for any k ≥ 1∫ 1

0
K 0
W (u, v) sinπkv dv =

sinπku

π2k2
.

So sinπkv are eigenfunctions of kernel K 0
W (u, v) with eigenvalues

π−2k−2.
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We let W 0(−t) = −W 0(t) by definition, 0 ≤ t ≤ 1.

So we have Fourrier series on [−1, 1]

W 0(t) =
α0

2
+

∞∑
k=1

(αk cosπkt + βk sinπkt) .

From symmetry, αk = 0 for k ≥ 0.
Remember that sinπkv are eigenfunctions and therefore βk for
k ≥ 1 are independent random coefficients.
βk =

∫ 1
−1W

0(t) sinπkt dt = 2
∫ 1
0 W 0(t) sinπkt dt.
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As W 0 is a centered Gaussian process, βk are independent normal
random variables with zero expectations, k ≥ 1.
To correspond Smirnov’s theorem, we let

βk =
ηk
√
2√

λk
,

ηk are independent standard normal random variables, λk are
positive constants, k ≥ 1.
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Really, we have

W 0(t) =
∞∑
k=1

ηk
√
2√

λk
sinπkt,

and

ω2 =

1∫
0

(
W 0(t)

)2
dt =

∞∑
k=1

2η2k
λk

∫ 1

0
sin2 πkt dt =

∞∑
k=1

η2k
λk

due to ortogonality of functions sinπkt and sinπmt on [0, 1] for
m ̸= k .
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As
ηk
√
2√

λk
= 2

∫ 1

0
W 0(t) sinπkt dt,

we have (taking expectations of squares and using linearity of
expectation)

E

(
ηk
√
2√

λk

)2

= 4

∫ 1

0

∫ 1

0
EW 0(s)W 0(t) sinπks sinπkt ds dt.

As Eη2k = 1, LHS is 2/λk . Remember that
EW 0(s)W 0(t) = K 0

W (s, t).
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Thus

λk =
1

2
∫ 1
0

∫ 1
0 K 0

W (s, t) sinπks sinπkt ds dt
.

W 0 is a standard Brownian bridge, and

K 0
W (s, t) = min(s, t)− st.

Exercise Calculate λk .
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λk = π2k2.
Using formula

∞∏
k=1

(
1− z2

k2

)
=

1

zΓ(z)Γ(1− z)
=

sinπz

πz
,

we have

D(λ) =
∞∏
k=1

(
1− λ

λk

)
=

sin
√
λ√

λ
.
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So we have Smirnov’s formula for ω2 cdf

Fω2(x) = 1 +
1

π

∞∑
k=1

(−1)k
∫ π2(2k)2

π2(2k−1)2

e−λx/2√
− sin

√
λ√
λ

· dλ
λ
, x > 0.

Substituting λ = µ2, we have

Fω2(x) = 1 +
2

π

∞∑
k=1

(−1)k
∫ 2kπ

(2k−1)π

e−µ
2x/2 dµ√

−µ sinµ
, x > 0.

Integrals are calculated numerically.
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8. Functional central limit theorem

Theorem Let X1, X2 . . . be independent and identically
distributed random variables, 0 < σ2 = VarX1 <∞. Then

Wn ⇒ W in C (0, 1).

Let us explain each letter in the statement of the theorem. Let’s
start from the end.
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Space C (0, 1) is a set of functions x = {x(t), 0 ≤ t ≤ 1} that are
continious on [0, 1]. Distance in uniform metric in space C (0, 1)
between two functions is the maximum of their absolete difference:

dist(x , y) = max
t∈[0,1]

|x(t)− y(t)|.

This distance (metrics) defines a topology (a collection of
neighborhoods) in C (0, 1) as follows: ε-neighborhood of function x
is the set of functions that differ from it in the uniform metric by
less than ε.
Exercise Shut your eyes and imagine a function that is continuous
on [0, 1] by a point in some space. Then open your eyes and draw
ε-neighborhood of this function in C (0, 1). Functions in this
neighborhood are super-numerous, aren’t it?
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If we take some set of functions B ⊂ C (0, 1) then its boundary ∂B
is a function, any neighborhood of which lies partly in B and partly
not. What’s this for? Of course, for the definition of weak
convergence ⇒.
Before formulating what it means in the space C (0, 1), let describe
it on a real axis, that is, for random variables.
Weak convergence of a sequence of random variables {ξn} to a
random variable ξ is convergence of the distribution functions at
all points of continuity of the limit function: if Fξ(t + 0) = Fξ(t)
then Fξn(t) → Fξ(t) as n → ∞.
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Let formulate the equivalent condition for weak convergence. As
already mentioned, boundary ∂B of the set B in some topological
space is the set of such points that any its neighborhood contains
both points of B and points not of B. For example, the boundary
of a segment (as well as an open interval) on a real line is the set
of two points, that is, its ends.

Theorem
Weak convergence ξn ⇒ ξ takes place if and in only for any Borel
set B with P(ξ ∈ ∂B) = 0 there is convergence
P(ξn ∈ B) → P(ξ ∈ B).
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This equivalent definition of weak convergence holds for separable
full topological spaces without changes. We decipher, however,
what it means in the case of C (0, 1).
Sequence of stochastic processes Zn = {Zn(t), 0 ≤ t ≤ 1} which
are continious on [0, 1] is called weakly convergent to a continious
stochastic process Z = {Z (t), 0 ≤ t ≤ 1} if for any measurable
set of functions B ∈ C (0, 1) with P(Z ∈ ∂B) = 0 there is
convergence P(Zn ∈ B) → P(Z ∈ B).
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Let define now the stochastic process Wn = {Wn(t), 0 ≤ t ≤ 1}.
Let Y1, Y2, . . . be independent and identically distributed random
variables, EY1 = a, 0 < VarY1 = σ2 <∞. Let S0 = 0,
Sk = Y1 + . . .+ Yk , k ≥ 1.
Stochastic process Wn is a broken line that is built by points(

k

n
,
Sk − ka

σ
√
n

)
, k = 0; 1; . . . ; n.
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Thus, the substance of the functional central limit theorem: a
random polygonal line Wn constructed by centered and normed
sums of independent random variables with finite nonzero variance,
weakly converges in the space C (0, 1) to the Wiener process.
A functional central limit theorem is also called the invariance
principle, since the limiting process is the same for any distribution
of random variables Yi with finite nonzero variance.
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The usual central limit theorem is a corollary of the functional
theorem. We obtain it by considering the processes at the right
end of the segment, that is, at point 1:

Wn(1) =
Sn − na

σ
√
n

⇒ W (1) ∼ N0,1.

It is rather inconvenient to operate with sets in function spaces.
Applications of the functional central limit theorem is based on the
weak convergence of continuous functionals.
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Functional g : C (0, 1) → R, which assigns real numbers to
functions, is said to be continuous (in the uniform metric), if from
the convergence dist(xn, y) → 0 follows g(xn) → g(y).

Exercise Prove that dist(x , 0),
∫ 1
0 x(t)dt,

∫ 1
0 x2(t)dt are

continuous functionals.
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Theorem If Zn ⇒ Z in C (0, 1) and g is a continuous functional
then g(Zn) ⇒ g(Z ).
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9. Empirical bridge
Let construct a process that is based only on empirical data and
converges weakly to standard Brownian bridge W 0 in the case that
the data satisfy the conditions of the Functional Central Limit
Theorem. This process is called as empirical bridge.
We have data X = (X1, . . . ,Xn).
Let S0 = 0, Sk =

∑k
i=1 Xi , k = 1, 2, . . . , n.

We calculate X = 1
n

∑n
i=1 Xi = Sn/n, X 2 = 1

n

∑n
i=1 X

2
i ,

s2X = X 2 − (X )2.
Empirical bridge Z 0

n = {Z 0
n (t), 0 ≤ t ≤ 1} is a random broken line

with nodes (
k

n
;
Sk − kSn/n

sX
√
n

)
, k = 0, . . . , n.

From definition,

Z 0
n (t) =

Sk − kSn/n

sX
√
n

+
nXk+1 − Sn

sX
√
n

(
t − k

n

)
,

k

n
≤ t <

k + 1

n
, k = 0, . . . , n − 1.
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Exercise 1 Draw the empirical bridge for x = (1, 1, −1, −1).
Exercise 2 Draw the empirical bridge for
x = (−3, 1, −2, 6, 4, 1, −4, 5).
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Theorem Let X1, X2 . . . be independent and identically
distributed random variables, 0 < σ2 = VarX1 <∞. Then

Z 0
n ⇒ W 0 in C (0, 1).

Proof

Z 0
n (t) =

σ

sX
(Wn(t)− tWn(1))

Note that σ
sX

→ 1 a.s., and Wn ⇒ W due to Functional Central
Limit Theorem.
As W 0(t) = W (t)− tW (1), and the map W → W 0 is continuous
in the uniform metric in C (0, 1), we have Z 0

n ⇒ W 0.
The proof is complete.
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Corollary If assumptions of the Theorem hold then∫ 1

0
Z 0
n (t) dt ⇒ N0,1/12,∫ 1

0
(Z 0

n (t))
2 dt ⇒ ω2,

J∞n
def
= max

0≤t≤1
|Zn(t)| ⇒ K (Kolmogorov distribution).

So we calculate p-value as

α∗ = 1− K (J∞n ),

K (t) =
∞∑

k=−∞
(−1)ke−2k2t2 , t > 0.

Exercise Calculate p-value if J∞n = 4.

75 / 179



10. Statistical tests

Recall that mathematical statistics constructs such probabilistic
models of phenomena, in which the distributions of random
variables are unknown or not known completely. Statistical
hypothesis is a statement about the distribution of random
variables, participating in the description of the model.
The statistical hypothesis can either fix a single distribution (such
a hypothesis is called simple), or allocate a class of distributions
consisting of more than one distribution (such a hypothesis is
called complex).
Most often, as a complex hypothesis, we propose a statement
about the belonging of a distribution to a certain parametric family.
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Hypotheses, as a rule, are denoted by the Latin letter H (from the
word hypothesis) with lower indices. Let X = (X1,X2, ...,Xn) be a
random sample, X ∼ P, and P is a distribution of any one
random variable Xi . This distribution is unknown (completely or
partually).
Statistical test is a rule based on which a sample is associated with
one of the hypotheses. More rigorously, the statistical criterion for
sample size n is a function from a sample space (of the entire space
Rn or of the set Gn, where G ⊂ R is the set on which the sample
values are concentrated according to a priori assumptions) into the
set of hypotheses. The number of hypotheses is always greater
than one and can be finite or infinite (countable or uncountable).

77 / 179



We will consider a situation where there are only two hypotheses.
One of them is called basic, and the other is called alternative,
denoting H and H, respectively. In this situation, a statistical
criterion is any rule that allows based on the observable sample
vector X choose one of the hypotheses: basic or alternative.
It is convenient to represent the statistical test as a function δ(X)
of the sample vector, taking two values: H and H. The most
common approach for construction of statistical tests is as follows.
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δ(X) = H, if J(X) ∈ Jα,

δ(X) = H, if J(X) ̸∈ Jα.

This rule is based on common sense: it prescribes to reject the
hypothesis H (that is, accept H), if event {J(X) ∈ Jα}
occures, which should not happen, be the hypothesis H true. The
number α > 0 is called level of significance, the statistic J(X)
is called by test statistics, and the set Jα by a critical set.
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When applying a statistical test, errors of two kinds can arise. The
error of the first kind is that the true basic hypothesis is rejected.
An error of the second kind is that the true alternative hypothesis
is rejected.

accepted hypothesis H hypothesis H
hypothesis is true is true

H no error error of 2nd kind

H error of 1st kind no error
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A criterion is characterized by error probabilities:

α1 = PH(H is rejected); α2 = PH(H is rejected).

Here, the subscript of the probability symbol indicates hypothesis
under which the probability is counted.
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Statistics Jn = Jn(X) should have the following properties:
1) if hypothesis H holds, statistic Jn has a known distribution or,
at least, converges weakly to some random variable J with known
distribution;
2) if hypothesis H holds, statistic Jn converges almost surely to
infinity with an increase of the sample size.
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The convergence of statistics Jn almost surely to infinity under the
basic hypothesis guarantees the consistency of the test, that is,
convergence of the error probability of the second kind α2 to zero
with increasing sample size.
For each sample realization x one can find the limit level
α∗ = α∗(x) under which the hypothesis H can still be accepted.
This value is called p-value. P-value α∗ has the sense of probability
to get worse agreement with the hypothesis being tested than real
obtained if the hypothesis H is true. Therefore, the less α∗, the
more it speaks against the hypothesis H.
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P-value is calculated using the distribution of J:

α∗ = P{J ≥ J(X)} = 1− FJ(J(X)).

In terms of p-value, the critical area has the following form

Jα = {α∗ ≤ α},

that is, the basic hypothesis is rejected at level α in the case
α∗ ≤ α.
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Example

We test the model of independent identically distributed random
variables:
1) for air temperatures y1, . . . , y30 in Moscow in November 2011
(data taken from the site
http://academic.udayton.edu/kissock/http/Weather/default.htm
and because the temperature is in Fahrenheit),
2) for temperature increments xi = yi+1 − yi , i = 1, . . . , 29.
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Figure: Temperature in Moscow in November 2011 in Fahrenheit

We use tests based on statistics
J∞n = maxt∈[0,1] |Zn(t)|,
J
(1)
n = 2

√
3
∣∣∣∫ 1

0 Zn(t)dt
∣∣∣.
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If the basic hypothesis is true then distribution of J∞n converges to

the Kolmogorov distribution, and distribution of statistics J
(1)
n

converges to distribution of absolete value of a standard normal
random variable.
1)

J∞n = max
1≤k≤n−1

∣∣∣∣∣n
∑k

i=1 yi − k
∑n

i=1 yi
syn

√
n

∣∣∣∣∣ ,
J
(1)
n =

√
3

syn
√
n

∣∣∣∣∣
n∑

k=1

(
k−1∑
i=1

yi +
k∑

i=1

yi −
2k − 1

n

n∑
i=1

yi

)∣∣∣∣∣ .
Here n = 30, sy is a sample standard deviation.
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We have J∞n ≈ 1.24, p-value α∗ = 1− K (1.24) ≈ 0.0929.

J
(1)
n ≈ 1.77, p-value α∗ = 2(1− Φ0,1(1.77)) ≈ 0.0763.
Both criteria are rejected the basic hypothesis at level 0.1, but
accept it at level 0.05.
A rather poor correspondence of the random sample model to the
data is explained by the fact that the temperatures in sequential
days are significantly dependent.
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2) We calculate the same statistics for temperature increments
xi = yi+1 − yi , i = 1, . . . , 29.

J∞n = max
1≤k≤n−1

∣∣∣∣∣n
∑k

i=1 xi − k
∑n

i=1 xi
sxn

√
n

∣∣∣∣∣ ,
J
(1)
n =

√
3

sxn
√
n

∣∣∣∣∣
n∑

k=1

(
k−1∑
i=1

xi +
k∑

i=1

xi −
2k − 1

n

n∑
i=1

xi

)∣∣∣∣∣ .
Here n = 29, sx is a sample standard deviation.
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J∞n ≈ 0, 865, p-value α∗ = 1− K (0, 865) ≈ 0, 442;

J
(1)
n ≈ 0, 738, p-value α∗ = 2(1− Φ0,1(0, 738)) ≈ 0, 461.
There is no reason to reject the hypothesis of homogeneity of
increments.
Thus, the hypothesis of homogeneity of increments corresponds
better to the data. According to this hypothesis, the average
temperature change in November 2011 in Moscow is
x ≈ −0.397 F per day with a sample standard deviation sx ≈ 2.79
F per day.
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Analysis of text homogeneity
For analysis of the homogeneity of a text, one must define a map
of text to a sequence of numbers.
We have developed a program that maps a text to
the sequence of indicators of occurrence of words in
dictionary of service words (prepositions, conjunctions, particles).
This is so-called dictionary of author’s invariant.
In this example we analyse 25 fiction texts.
The texts were studied singly and in contaminations.
There are 25× 24 = 600 pairwise contaminations of texts,
including 3! + 9× 2 = 24 contaminations of texts by one author
and 576 by different authors.
For these texts, empirical bridges Z 0

n were calculated.
We calculated J∞n = maxt∈[0; 1] |Z 0

n (t)| and p-values

α∗ = 2
∞∑
k=1

(−1)k+1e−2k2|J∞n |2 .
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Two texts by the same author

νn Tn Mn n ε∗

aelit+giper 0.1680 35709 2.2519 112342 7.87431E-05
be-god+grad 0.1877 47346 2.7534 156524 5.19998E-07
chapaev+insec 0.2007 96633 1.7162 135134 0.005531114
chapaev+pel-g 0.1966 106004 1.6702 157081 0.007553569
dogheart+master 0.2117 33497 4.1050 136976 4.61903E-15
giper+aelit 0.1680 62746 2.5383 112342 5.06749E-06
grad+be-god 0.1877 35301 2.9651 156524 4.61764E-08
gramota+zhiwago 0.2019 82610 3.6979 178858 2.65059E-12
insec+chapaev 0.2007 48889 1.3334 135134 0.057121241
insec+pel-g 0.1979 59715 2.5414 110792 4.90759E-06
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Novels Virgin soil upturned and The Quiet Don by Mikhail
Sholokhov

novel n νn Tn Mn ε∗

Virgin soil upturned 204955 0.21 97523 6.7 9.4E-40
The Quiet Don 421854 0.18 210643 9.0 5.61E-71

Here each of the novels gives very large deviation values of
empirical bridge that not characteristic for any other texts never
for a couple of novels of one author nor for single. The change
point on the graphs turns out to be extremely clear.
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Figure: The Quiet Don by Mikhail Sholokhov
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Figure: Virgin soil upturned by Mikhail Sholokhov
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11. Order statistics

If random variables X1, . . . ,Xn are sorted in ascending order, then
we get a new random variables, called order statistics:

X(1) ≤ X(2) ≤ . . . ≤ X(n−1) ≤ X(n).

So X(1) = min{X1, . . . ,Xn}, X(n) = max{X1, . . . ,Xn}.
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Empirical distribution function F ∗
n (t) is called the related

frequency of elements that smaller than the given t. Empirical
distribution function corresponding to sample X = (X1,X2, ...,Xn),
can be constructed from this sample using any of the following
formulas:

F ∗
n (t) =

{number of Xi : Xi ≤ t}
n

=
1

n

n∑
i=1

I(Xi ≤ t).

Here

I(Xi ≤ t) =

{
1, if Xi ≤ t;
0 else;

is an indicator of event {Xi ≤ t}.
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Let GLF (t) =
t∫
0

F−1(s) ds

be the theoretical general Lorenz curve
(Gastwirth, 1971; Davydov and Zitikis, 2004)
where F−1(s) = sup{x : F (x) < s}, 0 < s < 1,
is the inverse of distribution function F (x).
Let GL0F (t) = GLF (t)− tGLF (1) be its centered version.
Exercise 1 Find F−1, GLF and GL0F for pdf f (x) = λe−λx , x ≥ 0.
Exercise 2 Find F−1, GLF and GL0F if a random variable takes
values 0 and 1 with probabilities 1/2.
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Similarly, let GLn(t) =
1
n

∑⌊nt⌋
i=1 X(n)

be the empirical Lorenz curve.
GL0n(t) = GLn(t)− tGLn(1) is its centered version.
Exercise Find F−1

n , GLn and GL0n for x = (3, 1, 2, 2).
Goldie (1977) showed that, as n → ∞, the empirical Lorenz curve
converges a.s. to the theoretical curve in the uniform metric, i.e.
supt∈R |GLn(t)− GLF (t)| → 0 a.s.
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12. Regression on order statistics

Brown et al. (1975) proposed a test for change of regression at
unknown time. Their approach is based on computation of
recursive residuals. MacNeill (1978) studied a linear regression
against values of continuously differentiable functions. He obtained
limit processes for sequences of partial sums of regression residuals.
Later Bischoff (1997) showed that the MacNeill’s theorem holds in
more general setting, namely for continuous regressor functions.
Aue et al. (2008) introduced a new test for polynomial regression
functions which is analogous to the classical likelihood test. Stute
(1997) proposed a class of tests that are based on regression
residuals for one-parametric case.
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We consider a model of a simple linear regression on order
statistics. The need of this model comes from applications.
Kovalevskii (2013) analysed dependence of logarithm of a car price
on a production year basing on a list of ads. We have Yi (a
logarithm of price in this example) that is assumed to depend
linearly on production year Xi and noise εi with zero mean. Then
we reorder the data to correspond to acsending order of Xi . We
need in a statistical test to verify the model.
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To define the model, we introduce 2 mutually independent families
of random variables:
1) {εi , i ⩾ 1}, a family of independent identically distributed
random variables, E ε1 = 0, Var ε1 = σ2 > 0;
2) {Xi}∞i=1, a sequence of i.i.d. random variables with distribution
function F and finite positive variance VarX1.
A regression model before ordering:

Yi = a+ bXi + εi , i = 1, . . . , n.
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So we have a three-dimensional vector (Yi ,Xi , εi ). Then we order
it on the second component (Xi ) and obtain vector (Yni ,Xni , εni ).
Here Xni = Xi :n = X(i) is the i-th order statistic of the first n
random variables X1, . . . ,Xn. In particular, Xn1 = min1⩽i⩽n Xi and
Xnn = max1⩽i⩽n Xi . Values Yni , εni are values of Y and ε
corresponding to Xni (that is, induced order statistics,
concomitants).
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Exercise
Order by Xi ’s
Xi Yi

3 1

2 3

1 0

2 2
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We have the following regression model after ordering:

Yni = a+ bXni + εni , i = 1, . . . , n.

For this model, we introduce an empirical bridge and show its weak
convergence to a centered Gaussian process.
Let

b̂n =
XY − X Y

X 2 − X
2
, ân = Y − b̂n X

be the classical Gauss-Markov estimators for a and b. Here
X = 1

n

∑n
i=1 Xni =

1
n

∑n
i=1 Xi , Y = 1

n

∑n
i=1 Yni =

1
n

∑n
i=1 Yi etc.

Note that a sum on all i does not depend on order, therefore
estimators coincide for models before and after ordering.
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Exercise
Calculate b̂n and ân
Xni Yni

1 0

2 3

2 2

3 1
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Define fitted values Ŷni ,
regression residuals ε̂ni
and their partial sums ∆̂ni , by
Ŷni = ân + b̂nXni ,
ε̂ni = Yni − Ŷni and
∆̂ni = ε̂n1 + . . .+ ε̂ni
for 1 ⩽ i ⩽ n, ∆̂n0 = 0.
Note that ∆̂nn = 0.

108 / 179



Exercise
Calculate fitted values Ŷni , regression residuals ε̂ni and their
partial sums ∆̂ni

Xni Yni

1 0

2 3

2 2

3 1
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An empirical bridge is a random polygon Ẑ 0
n with nodes(

k/n, ∆̂nk/
√
ns2ε

)
, k = 0, . . . , n,

where s2ε = ε̂2 is an estimator of variance σ2.

110 / 179



Exercise
Draw an empirical bridge of regression residuals
Xni Yni

1 0

2 3

2 2

3 1
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Theorem 1 The empirical bridge Ẑ 0
n converge weakly, as n → ∞,

to the centered Gaussian process ZF with covariance function,
K 0
F (t, s), given by

K 0
F (t, s) = min{t, s} − ts −

GL0F (t)GL
0
F (s)

VarX1
, t, s ∈ [0, 1].

Here weak convergence holds in the space C (0, 1) of continuous
functions on [0,1] endowed by the uniform metric.
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Exercise 1 Find K 0
F (t, s) if fX (x) = λe−λx , x ≥ 0.

Exercise 2 Find K 0
F (t, s) if X takes values 0 and 1 with

probabilities 1/2.
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Proof of Theorem 1
Let X 0

ni = Xni − X , ε0ni = εni − ε where
ε = 1

n

∑n
i=1 εni =

1
n

∑n
i=1 εi because the sum on all i does not

depend on order.
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The proof includes four steps. In the first step, we show that, in

the formulae under consideration, the sum
n∑

i=1

ε0niX
0
ni√
n

may be

replaced by the sum
n∑

i=1

ε0niEX
0
ni√

n
.
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Secondly, we prove weak convergence of a normalized vector with
coordinates (∆̂nk1 , . . . , ∆̂nkm) to a normalized vector with
coordinates (∆nk1 , . . . ,∆nkm) where ∆nki are defined below. Then
we prove weak convergence of finite-dimensional distributions.
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The third step contains a proof of relative compactness of the
family {Ẑn(t), 0 ⩽ t ⩽ 1}. We complete with a proof of
convergence of sample variance s2ε to variance σ2.

In what follows, notation
p→ states for convergence in probability.
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Step 1
Note that

∆̂nk =
k∑

i=1

(
ε0ni −

X 0ε0

(X 0)2
X 0
ni

)
.

We show that

1√
n

(
n∑

i=1

ε0niX
0
ni −

n∑
i=1

ε0niEX
0
ni

)
p→ 0.
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We use Theorem 1 of Höeffding (1953) that implies

1
n

n∑
i=1

VarXni → 0 as n → ∞.

Note that VarX = VarX1/n,
1
n

∑n
i ,j=1 cov(Xni ,Xnj) =

1
nVar

∑n
i=1 Xni = VarX1.
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As
n∑

i=1
(X 0

ni − EX 0
ni ) = 0 we have

n∑
i=1

ε0ni (X
0
ni − EX 0

ni ) =
n∑

i=1

εni (X
0
ni − EX 0

ni ).
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Due to Chebyshev’s inequality,

P

{∣∣∣∣∣ 1√
n

n∑
i=1

εni (X
0
ni − EX 0

ni )

∣∣∣∣∣ ⩾ δ

}
⩽

Var
n∑

i=1
εni (X

0
ni − EX 0

ni )

nδ2
.
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As {εni} are independent and do not depend on {Xni} we have

Var
n∑

i=1

εni (X
0
ni − EX 0

ni ) =
n∑

i=1

VarεniVar
(
X 0
ni − EX 0

ni

)

=
n∑

i=1

VarεniVarX
0
ni .

122 / 179



n∑
i=1

VarX 0
ni =

n∑
i=1

VarXni − 2
n∑

i=1

cov(Xni ,X ) + nVarX

=
n∑

i=1

VarXni −
2

n

n∑
i ,j=1

cov(Xni ,Xnj) + VarX1

=
n∑

i=1

VarXni − VarX1 = o(n).
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Thus
1

n
Var

n∑
i=1

εni (X
0
ni − EX 0

ni ) → 0.

So (2.1) is proved.
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Step 2 Let ⌊t⌋ be the integer part of t. For any fixed m and for
0 ⩽ s1 < · · · < sm ⩽ 1, ki = ⌊nsi⌋, we establish weak convergence,
as n → ∞, of vector η⃗ = 1

σ
√
n
(∆̂nk1 , . . . , ∆̂nkm) to vector

Z⃗F = (ZF (s1), . . . ,ZF (sm)).
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From (2.1) and from convergences (X 0)2 → VarX1 a.s.,

1

n

ki∑
i=1

X 0
ni → GL0F (si )

a.s. (Goldie, 1975), it is enough to prove ζ⃗ =⇒ Z⃗F where
ζ⃗ = 1

σ
√
n
(∆nk1 , . . . ,∆nkm),

∆nkj =

kj∑
i=1

ε0ni−
GL0F (sj)

VarX1

n∑
i=1

ε0niEX
0
ni =

kj∑
i=1

ε0ni−
GL0F (sj)

VarX1

n∑
i=1

εniEX
0
ni .
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We prove weak convergence ζ⃗ =⇒ Z⃗ 0
F using characteristic function

φ
ζ⃗
(t ) = E

m∏
j=1

exp

(
i
tj∆̂nkj

σ
√
n

)
.
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Notice that

m∑
j=1

tj

 kj∑
i=1

(εni − ε)−
GL0F (sj)

VarX1

n∑
i=1

εniEX
0
ni


=

n∑
i=1

εni

m∑
j=1

tj

(
I{i ⩽ kj} −

kj
n

−
GL0F (sj)

VarX1
EX 0

ni

)
.
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It is well known that the finiteness of Eψ1 implies convergence
ψn:n

n → 0 a.s. and in mean for a sequence of i.i.d random variables
ψ1, . . . , ψn, and, more generally, for a stationary ergodic sequence
as a consequence of the subadditive ergodic theorem (Kingman,
1968).
Applying this fact and using Hőlder’s inequality we have
EX 0

ni = o(
√
n) uniformly in 1 ⩽ i ⩽ n.
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Let βni =
m∑
j=1

tj

(
I{i ⩽ kj} −

kj
n − GL0F (sj )

VarX1
EX 0

ni

)
. Then

βni/
√
n → 0,

n∑
i=1

β2ni
n

→ CF :=
m∑

j1=1

m∑
j2=1

tj1tj2KF (sj1 , sj2).

130 / 179



As for any t → 0

Ee itε
v
ni = −1

2
t2Varεvni (1 + o(1)) ,

and Varεni → σ2 as i , n → ∞, then we have by integration on
Markov chain distribution (as in Step 1)

φ
ζ⃗
(t ) = E

m∏
j=1

exp

(
i
εniβni
σ
√
n

)

= exp

(
−1

2

n∑
i=1

β2njVarεni

nσ2

)
(1 + o(1)) → exp(−CF/2).

So we have φ
ζ⃗
(t ) → exp(−CF/2). Thus convergence of

finite-dimensional distributions is proved.
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Step 3 We show that the family of distributions
{Ẑn(t), 0 ⩽ t ⩽ 1} is relatively compact.

Let Snk =
k∑

i=1
Xni , k = 1, . . . , n, Sn0 = 0.

By Prokhorov’s theorem (section 1 §6 in Billingsley, 1968) it
suffices to show that the family of distributions of random

processes

{
∆̂n,⌊nt⌋
σ
√
n
, 0 ⩽ t ⩽ 1

}
, n = 1, 2, . . . , is tight. Put

k = ⌊nt⌋ and let

∆̂0
nk =

k∑
i=1

(
εni −

X 0ε0

(X 0)2
Xni

)
.
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Then ∆̂nk = ∆̂0
nk −

k
n ∆̂

0
nn.

As {εvni} are i.i.d. for any v , the invariance principle implies

tightness of the family

{∑⌊nt⌋
i=1 εvni
σ
√
n
, 0 ⩽ t ⩽ 1

}
for any

v ∈ {1, . . . ,M}. Thus
{∑⌊nt⌋

i=1 εni
σ
√
n
, 0 ⩽ t ⩽ 1

}
is tight. Invariance

principle for this Markov-modulated sequence goes from Corollary
3.8 (McLeish, 1975).
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So, it is enough to establish tightness of{
X 0ε0

√
n

σ(X 0)2

Sn,⌊nt⌋
n

, 0 ⩽ t ⩽ 1

}
.
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In turn, by Theorem 8.3 (Billingsley, 1968), it suffices to prove
that, for any ε > 0, α > 0, there are 0 < δ < 1, n0 ∈ N such
that

1

δ
P

{
sup

t⩽s⩽t+δ

∣∣∣∣∣X 0ε0
√
n

σ(X 0)2

Sn,⌊ns⌋ − Sn,⌊nt⌋
n

∣∣∣∣∣ ⩾ ε

}
⩽ α, (2)

for all n > n0, 0 ⩽ t ⩽ 1.
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Notice that X 0ε0
√
n

σ(X 0)2
=⇒ ζ√

VarX1
, and (Goldie, 1977)

sup
t⩽s⩽t+δ

∣∣∣∣Sn,⌊ns⌋ − Sn,⌊nt⌋
n

∣∣∣∣→ sup
t⩽s⩽t+δ

|GLF (s)− GLF (t)| a.s..
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Here ζ is a standard normal random variable and GLF (x) is the
general Lorenz curve.
By Cauchy-Bunyakowsky inequality,

sup
t⩽s⩽t+δ

|GLF (s)− GLF (t)| ⩽ sup
t⩽s⩽t+δ

∫ s

t
|F−1(x)|dx ⩽

√
δEX 2

1 .

So one may choose a positive δ that satisfies (2.2).
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Step 4 It remains to prove s2ε
p→ σ2. Indeed,

ε̂2 =
1

n

n∑
i=1

(
εni − ε− X 0ε0

(X 0)2
(Xni − X )

)2

= (ε0)2−(X 0ε0)2

(X 0)2
p→ σ2.

This completes the proof of Theorem 1.
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Example 1. A Regression Model for Prices of Second-Hand
Cars

We analyse ads about sales of Toyota Corolla cars at www.ngs.ru
on 02.06.2012. There are 525 ads. We explore a regression of
logarithm of a sale price against a date of the ad, a steering wheel
position (left or right), a year of production, an engine volume,
gearboxes type, milage. Standard regression analysis gives p-values
lesser than 0.01 only for a steering wheel position and a year of
production. The number of cars with a left wheel is relatively
small, so we choose right-wheeled cars (382 ads). We investigate
dependence of price Yi against production year Xi . Ads are ordered
by the year. The order is random for cars of a same year.
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Prices of right-wheeled cars (in roubles, 382 ads)
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The model is

lnYi = aXi + b + εi , i = 1, . . . , n. (3)

Here εi are independent and identically distributed, have zero
mean and non-zero finite variance. Estimates of a and b are
approximately

â = 0.1089, b̂ = −205.3.
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Logarifms of prices
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We estimate Yi and calculate regression residuals. The sample
standard deviation of regression residuals is S = 0.2469.

Logarifms of prices with a trend line
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Then we delete consequently ads with regression residuals that are
absolutely greater then 3-multiplied sample standard deviation
(which is recalculated after each ad deletion). 364 ads remains
after deletion, parameters estimations for it

â = 0.09558, b̂ = −178.7, S = 0.1291.

We have decreased S almost twofold.

Logarifms of prices after 3-sigma procedure
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We calculate an empirical bridge of regression residuals.
Let Ŷi = â+ b̂Xi , ε̂i = Yi − Ŷi , ∆̂

0
i = ε̂1 + . . .+ ε̂i .

The empirical bridge is a random polygon Ẑn with nodes(
k

n
,
∆̂0

k −
k
n ∆̂

0
n√

s2εn

)
=

(
k

n
,

∆̂0
k√
s2εn

)

where s2ε = ε̂2 − (ε̂)2 = ε̂2
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The empirical bridge
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The basic hypothesis is model (1):

lnYi = aXi + b + εi , i = 1, . . . , n.

As distribution of an empirical bridge is close to distribution of a
standard brownian bridge under this hypothesis, we neglect the
basic hypothesis on level 0.01 on a base on maximal deviation of
the empirical bridge from an absciss axe. Therefore we propose a
new hypothesis: model (1) for each of intervals between sharp
peaks of the empirical bridge, that is, for intervals from 1 to 16,
from 17 to 154, from 155 to 364. We don’t analyse points from 1
to 16 due to a small number of points. We slightly correct
intervals to correspond production years. Interval from 17 to 148
corresponds to years from 1991 to 1999, and interval from 149 to
364 corresponds to years from 2000 to 2008.

147 / 179



We analyse each of these two intervals. For the first one

â = 0.06484, b̂ = −117.3, S = 0.1356.

For the second one

â = 0.07144, b̂ = −130.3, S = 0.08699.
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The empirical bridge for 1991–1999
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The empirical bridge for 2000–2008
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The empirical bridge is a random polygon Ẑ 0
n with nodes(

k

n
,
∆̂0

k −
k
n ∆̂

0
n√

s2εn

)
=

(
k

n
,

∆̂0
k√
s2εn

)
where s2ε = ε̂2 − (ε̂)2 = ε̂2.
Denote by

GLF (t) =

t∫
0

F−1(s) ds

a theoretical general Lorenz curve where

F−1(s) = sup{x : F (x) < s}

be a quantile function (a generalized inverse function) of a
distribution function F (x).
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Denote by

GLn(t) =
1

n

[nt]∑
i=1

ξi :n

an empirical Lorenz curve.

Goldie (1977) proved a fundamental fact: an empirical Lorenz
curve converges to a theoretical one in a uniform metric almost
surely.

Let GL0F (t) = GLF (t)− tGLF (1) be a centered theoretical general
Lorenz curve.
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We use the next theorem from [A. Kovalevskii, E. Shatalin (2016)]:

Theorem 1 Let Xi = ξi :n be order statistics generated by sample
(ξ1, . . . , ξn) with distribution function F , sequences {εi} and {ξi}
are independent. If 0 < Varξ1 <∞ then

Ẑ 0
n =⇒ Z 0

F where Z 0
F is a centered Gaussian process with a

covariance kernel K 0
F (t, u), given by

K 0
F (t, u) = min{t, u} − tu −

GL0F (t)GL
0
F (u)

Varξ1
, t, u ∈ [0, 1].
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We change GL0F (t) by its estimation GL0n(t) = GLn(t)− tGLn(1).
We substitute sample variance s2X for variance Varξ1. Let

K 0
n (t, u) = min{t, u} − tu − GL0n(t)GL

0
n(u)

S2
, t, u ∈ [0, 1].

Then K 0
n (t, u) → K 0

F (t, u) uniformly on t, u ∈ [0, 1] as n → ∞.
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Our statistical test use values of the empirical bridge in d points:
let

a = (a1, . . . , ad) =

(
1

d + 1
, . . . ,

d

d + 1

)
,

G =
(
K 0
F (ai , aj)

)d
i ,j=1

, Gn =
(
K 0
n (ai , aj)

)d
i ,j=1

,

q = (Ẑn(a1), . . . , Ẑn(ad))
T .
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If G−1 exists then qTG−1q is a continuous functional of Ẑn.
Therefore we have

Corollary 1 Let conditions of Theorem 1 be satisfied. If G−1 exists
then qTG−1

n q converge weakly to χ2-distribution with parameter
d.

P-value for the test is α∗ = 1− Fχ2
d
(qTG−1

n q).

We choose d = [n1/3] + 1.
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We have n = 364, d = 8 for all the sample,
n1 = 132, d1 = 6, n2 = 216, d2 = 7 for its 1st and 2nd parts
(corresponding years 1991–1999 and 2000–2008).

Caculations give α∗ << 10−4 for all the sample, α∗
1 = 0.1677 for

its 1st part and α∗
2 = 0.07505 for its 2nd part. Therefore the test

rejects the basic hypothesis in all the time interval at the 10−4

level and accepts it in intervals 1991–1999 and 2000–2008 at the
0.07 level.

So one can calculate estimated prices of cars in these intervals
using models with corresponding coefficients (see Table 1). There
is a gap between 1999 and 2000. The price difference is about 6%
per year in 1991–1999 and about 7% per year in 2000–2008. Cars
of 1999 cheaper than cars of 2000 approximately 1.32 times.
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Table: Estimated prices in thousands of roubles

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999

Price 130 139 148 158 169 180 192 205 219

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008

Price 290 312 335 360 386 415 446 479 514
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Logs of prices with different trend lines for 1991–1999 and
2000–2008
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Prices with different trend lines for 1991–1999 and 2000–2008 (in
roubles, 348 ads)
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Example 2. Dependence of weight on height

The initial data the is the information about heights (in cm) and
body weights (in kg) of female students of the first course of the
Volga state Medical University (2-dimensional sample of 750 items)
\http://www.volgmed.ru/ru/
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Models

Wi = θ + Hi + εi

lnWi = a+ lnHi + εi

lnWi = a+ 1.5 lnHi + εi

lnWi = a+ 2 lnHi + εi

lnWi = a+ 2.5 lnHi + εi

lnWi = a+ 3 lnHi + εi
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lnWi = a+ b lnHi + εi

Wi = a+ bHi + εi

Wi = a+ bH1.5
i + εi

Wi = a+ bH2
i + εi

Wi = a+ bH2.5
i + εi

Wi = a+ bH3
i + εi

163 / 179



ω2
n =

1∫
0

(Z 0
n (t))

2 dt is calculated as

ω2
n =

1

n

n∑
i=1

(
1

3

(
Z 0
n

(
i

n

)
− Z 0

n

(
i − 1

n

))2

+ Z 0
n

(
i

n

)
Z 0
n

(
i − 1

n

))
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Table 1
Model σ̂2 ω2

n α∗

1 66,82 7,96 < 10−5

2 0,0176 3,316 < 10−5

3 0,0171 0,4503 0,053

4 0,0174 0,5928 0,024

5 0,0185 3,591 < 10−5

6 0,0203 8,643 < 10−5

7 0,0171 0,2697 0,0052

8 57,22 0,2273 0,013

9 57,17 0,2172 0,016

10 57,14 0,2101 0,018
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Table 1 allows to compare models with each other. In particular,
we can conclude that Model 3 is the best. Note the interesting
effect. Model 3 is better than Model 7, in which the model
parameter b is accurately estimated. It turns out that it is better
to guess the model parameter than to estimate it. Of course, this
effect is related to the fact that limit distribution of statistics
omega2 significantly different for one- and two-parametrical models
: estimation of the second parameter should lead to much smaller
deviations, but this does not occur in this example.
None of the considered models shows the high p-value, i.e. good
compliance with the data being investigated. Therefore, the next
phase of the study is analysis of outliers.
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Dependence of body mass (in kg) on height (in cm)
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The graph shows outliers (abnormally large deviations from any of
the proposed regression dependencies), which can lead to the
distortion of results. To address this shortcoming, we repeatedly
performed the procedure of cleaning the sample using the rule of 3
sigma. We recalculated estimates of the parameters and sample
variances of residuals each time after deleting items. The normality
of the sample was checked and the procedure was repeated as long
as no value was deleted at the next step. As a result, a new
2-dimensional sample was obtained for each model. All
calculations were performed again.
The results of calculations are given in Table 2 (Model 10 is
excluded, because the sample have not passed the normality test at
one of steps ).
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Table 2
Model Iterations Deleted σ̂2 ω2

n α∗

1 4 14 53,07 6,87 < 10−5

2 2 9 0,0158 4,35 < 10−5

3 2 8 0,0158 0,8133 0, 0068

4 4 10 0,0149 0,2718 0,165

5 2 9 0,0164 2,84 < 10−5

6 2 8 0,0177 7,64 < 10−5

7 3 9 0,0151 0,1741 0,0412

8 1 11 47,14 0,1605 0,0563

9 4 20 42,27 0,1674 0,047
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Model 4 is the best. So Model 4 should be used to analyze body
mass deviations from the norm.
â ≈ −6, 2171.
In this way, our study allows to determine the significance of body
mass deviations from the norm on the basis of lognormal law with
parameters
µ = −6, 2171 + 2 lnH,
σ2 = 0, 0149.
H is a first-year femail student height in cm.
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Wi = θ + Hi + εi
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lnWi = a + lnHi + εi
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lnWi = a + 1.5 lnHi + εi
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lnWi = a + 2 lnHi + εi
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lnWi = a + 2.5 lnHi + εi
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lnWi = a + 3 lnHi + εi
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lnWi = a + b lnHi + εi
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Wi = a + bHi + εi

0 100 200 300 400 500 600 700 800
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

178 / 179



Wi = a + bH1.5
i + εi
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Wi = a + bH2
i + εi
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